Browse Source

EEPROM read code grouping

pull/1/head
Scott Lahteine 6 years ago
parent
commit
946cf8b453
  1. 340
      Marlin/src/module/configuration_store.cpp

340
Marlin/src/module/configuration_store.cpp

@ -1008,10 +1008,6 @@ void MarlinSettings::postprocess() {
} }
else { else {
float dummy = 0; float dummy = 0;
#if DISABLED(AUTO_BED_LEVELING_UBL) || DISABLED(FWRETRACT) || DISABLED(FWRETRACT_AUTORETRACT) || ENABLED(NO_VOLUMETRICS)
bool dummyb;
#endif
working_crc = 0; // Init to 0. Accumulated by EEPROM_READ working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
_FIELD_TEST(esteppers); _FIELD_TEST(esteppers);
@ -1023,223 +1019,241 @@ void MarlinSettings::postprocess() {
// //
// Planner Motion // Planner Motion
// //
{
// Get only the number of E stepper parameters previously stored
// Any steppers added later are set to their defaults
const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
uint32_t tmp1[XYZ + esteppers];
EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
EEPROM_READ(planner.settings.min_segment_time_us);
float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
EEPROM_READ(tmp2); // axis_steps_per_mm
EEPROM_READ(tmp3); // max_feedrate_mm_s
if (!validating) LOOP_XYZE_N(i) {
const bool in = (i < esteppers + XYZ);
planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
}
// Get only the number of E stepper parameters previously stored EEPROM_READ(planner.settings.acceleration);
// Any steppers added later are set to their defaults EEPROM_READ(planner.settings.retract_acceleration);
const uint32_t def1[] = DEFAULT_MAX_ACCELERATION; EEPROM_READ(planner.settings.travel_acceleration);
const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE; EEPROM_READ(planner.settings.min_feedrate_mm_s);
EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
uint32_t tmp1[XYZ + esteppers];
EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
EEPROM_READ(planner.settings.min_segment_time_us);
float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
EEPROM_READ(tmp2); // axis_steps_per_mm
EEPROM_READ(tmp3); // max_feedrate_mm_s
if (!validating) LOOP_XYZE_N(i) {
const bool in = (i < esteppers + XYZ);
planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
}
EEPROM_READ(planner.settings.acceleration); #if HAS_CLASSIC_JERK
EEPROM_READ(planner.settings.retract_acceleration); EEPROM_READ(planner.max_jerk);
EEPROM_READ(planner.settings.travel_acceleration); #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
EEPROM_READ(planner.settings.min_feedrate_mm_s); EEPROM_READ(dummy);
EEPROM_READ(planner.settings.min_travel_feedrate_mm_s); #endif
#else
for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
#endif
#if HAS_CLASSIC_JERK #if ENABLED(JUNCTION_DEVIATION)
EEPROM_READ(planner.max_jerk); EEPROM_READ(planner.junction_deviation_mm);
#if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE) #else
EEPROM_READ(dummy); EEPROM_READ(dummy);
#endif #endif
#else }
for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
#endif
#if ENABLED(JUNCTION_DEVIATION)
EEPROM_READ(planner.junction_deviation_mm);
#else
EEPROM_READ(dummy);
#endif
// //
// Home Offset (M206) // Home Offset (M206)
// //
{
_FIELD_TEST(home_offset);
_FIELD_TEST(home_offset); #if !HAS_HOME_OFFSET
float home_offset[XYZ];
#if !HAS_HOME_OFFSET #endif
float home_offset[XYZ]; EEPROM_READ(home_offset);
#endif }
EEPROM_READ(home_offset);
// //
// Hotend Offsets, if any // Hotend Offsets, if any
// //
{
#if HAS_HOTEND_OFFSET #if HAS_HOTEND_OFFSET
// Skip hotend 0 which must be 0 // Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++) for (uint8_t e = 1; e < HOTENDS; e++)
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]); LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
#endif #endif
}
// //
// Global Leveling // Global Leveling
// //
{
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
EEPROM_READ(new_z_fade_height); EEPROM_READ(new_z_fade_height);
#else #else
EEPROM_READ(dummy); EEPROM_READ(dummy);
#endif #endif
}
// //
// Mesh (Manual) Bed Leveling // Mesh (Manual) Bed Leveling
// //
{
uint8_t mesh_num_x, mesh_num_y; uint8_t mesh_num_x, mesh_num_y;
EEPROM_READ(dummy); EEPROM_READ(dummy);
EEPROM_READ_ALWAYS(mesh_num_x); EEPROM_READ_ALWAYS(mesh_num_x);
EEPROM_READ_ALWAYS(mesh_num_y); EEPROM_READ_ALWAYS(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
if (!validating) mbl.z_offset = dummy; if (!validating) mbl.z_offset = dummy;
if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) { if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
// EEPROM data fits the current mesh // EEPROM data fits the current mesh
EEPROM_READ(mbl.z_values); EEPROM_READ(mbl.z_values);
} }
else { else {
// EEPROM data is stale // EEPROM data is stale
if (!validating) mbl.reset(); if (!validating) mbl.reset();
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
}
#else
// MBL is disabled - skip the stored data
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
} #endif // MESH_BED_LEVELING
#else }
// MBL is disabled - skip the stored data
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
#endif // MESH_BED_LEVELING
_FIELD_TEST(zprobe_zoffset); //
// Probe Z Offset
//
{
_FIELD_TEST(zprobe_zoffset);
#if !HAS_BED_PROBE #if !HAS_BED_PROBE
float zprobe_zoffset; float zprobe_zoffset;
#endif #endif
EEPROM_READ(zprobe_zoffset); EEPROM_READ(zprobe_zoffset);
}
// //
// Planar Bed Leveling matrix // Planar Bed Leveling matrix
// //
{
#if ABL_PLANAR #if ABL_PLANAR
EEPROM_READ(planner.bed_level_matrix); EEPROM_READ(planner.bed_level_matrix);
#else #else
for (uint8_t q = 9; q--;) EEPROM_READ(dummy); for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
#endif #endif
}
// //
// Bilinear Auto Bed Leveling // Bilinear Auto Bed Leveling
// //
{
uint8_t grid_max_x, grid_max_y; uint8_t grid_max_x, grid_max_y;
EEPROM_READ_ALWAYS(grid_max_x); // 1 byte EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
EEPROM_READ_ALWAYS(grid_max_y); // 1 byte EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) { if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
if (!validating) set_bed_leveling_enabled(false); if (!validating) set_bed_leveling_enabled(false);
EEPROM_READ(bilinear_grid_spacing); // 2 ints EEPROM_READ(bilinear_grid_spacing); // 2 ints
EEPROM_READ(bilinear_start); // 2 ints EEPROM_READ(bilinear_start); // 2 ints
EEPROM_READ(z_values); // 9 to 256 floats EEPROM_READ(z_values); // 9 to 256 floats
} }
else // EEPROM data is stale else // EEPROM data is stale
#endif // AUTO_BED_LEVELING_BILINEAR #endif // AUTO_BED_LEVELING_BILINEAR
{ {
// Skip past disabled (or stale) Bilinear Grid data // Skip past disabled (or stale) Bilinear Grid data
int bgs[2], bs[2]; int bgs[2], bs[2];
EEPROM_READ(bgs); EEPROM_READ(bgs);
EEPROM_READ(bs); EEPROM_READ(bs);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy); for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
} }
}
// //
// Unified Bed Leveling active state // Unified Bed Leveling active state
// //
{
_FIELD_TEST(planner_leveling_active);
_FIELD_TEST(planner_leveling_active); #if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_READ(planner.leveling_active);
#if ENABLED(AUTO_BED_LEVELING_UBL) EEPROM_READ(ubl.storage_slot);
EEPROM_READ(planner.leveling_active); #else
EEPROM_READ(ubl.storage_slot); bool planner_leveling_active;
#else uint8_t ubl_storage_slot;
uint8_t dummyui8; EEPROM_READ(planner_leveling_active);
EEPROM_READ(dummyb); EEPROM_READ(ubl_storage_slot);
EEPROM_READ(dummyui8); #endif
#endif // AUTO_BED_LEVELING_UBL }
// //
// SERVO_ANGLES // SERVO_ANGLES
// //
#if !HAS_SERVOS || DISABLED(EDITABLE_SERVO_ANGLES) {
uint16_t servo_angles[NUM_SERVOS][2]; #if !HAS_SERVOS || DISABLED(EDITABLE_SERVO_ANGLES)
#endif uint16_t servo_angles[NUM_SERVOS][2];
EEPROM_READ(servo_angles); #endif
EEPROM_READ(servo_angles);
}
// //
// DELTA Geometry or Dual Endstops offsets // DELTA Geometry or Dual Endstops offsets
// //
{
#if ENABLED(DELTA)
#if ENABLED(DELTA) _FIELD_TEST(delta_height);
_FIELD_TEST(delta_height); EEPROM_READ(delta_height); // 1 float
EEPROM_READ(delta_endstop_adj); // 3 floats
EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float
EEPROM_READ(delta_calibration_radius); // 1 float
EEPROM_READ(delta_tower_angle_trim); // 3 floats
EEPROM_READ(delta_height); // 1 float #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
EEPROM_READ(delta_endstop_adj); // 3 floats
EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float
EEPROM_READ(delta_calibration_radius); // 1 float
EEPROM_READ(delta_tower_angle_trim); // 3 floats
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS _FIELD_TEST(x2_endstop_adj);
_FIELD_TEST(x2_endstop_adj); #if ENABLED(X_DUAL_ENDSTOPS)
EEPROM_READ(endstops.x2_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
EEPROM_READ(endstops.y2_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if Z_MULTI_ENDSTOPS
EEPROM_READ(endstops.z2_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if ENABLED(Z_TRIPLE_ENDSTOPS)
EEPROM_READ(endstops.z3_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if ENABLED(X_DUAL_ENDSTOPS)
EEPROM_READ(endstops.x2_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
EEPROM_READ(endstops.y2_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if Z_MULTI_ENDSTOPS
EEPROM_READ(endstops.z2_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif #endif
#if ENABLED(Z_TRIPLE_ENDSTOPS) }
EEPROM_READ(endstops.z3_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#endif
// //
// LCD Preheat settings // LCD Preheat settings
// //
{
_FIELD_TEST(lcd_preheat_hotend_temp);
_FIELD_TEST(lcd_preheat_hotend_temp); #if DISABLED(ULTIPANEL)
int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2];
#if DISABLED(ULTIPANEL) uint8_t lcd_preheat_fan_speed[2];
int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2]; #endif
uint8_t lcd_preheat_fan_speed[2]; EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
#endif EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
EEPROM_READ(lcd_preheat_bed_temp); // 2 floats }
EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
// //
// Hotend PID // Hotend PID

Loading…
Cancel
Save