Browse Source

Fix some of the crowded code style. And fixed the conditional. #300

pull/1/head
daid303 12 years ago
parent
commit
8f20562f49
  1. 98
      Marlin/planner.cpp

98
Marlin/planner.cpp

@ -435,7 +435,8 @@ void getHighESpeed()
}
#endif
void check_axes_activity() {
void check_axes_activity()
{
unsigned char x_active = 0;
unsigned char y_active = 0;
unsigned char z_active = 0;
@ -444,10 +445,12 @@ void check_axes_activity() {
unsigned char tail_fan_speed = 0;
block_t *block;
if(block_buffer_tail != block_buffer_head) {
if(block_buffer_tail != block_buffer_head)
{
uint8_t block_index = block_buffer_tail;
tail_fan_speed = block_buffer[block_index].fan_speed;
while(block_index != block_buffer_head) {
while(block_index != block_buffer_head)
{
block = &block_buffer[block_index];
if(block->steps_x != 0) x_active++;
if(block->steps_y != 0) y_active++;
@ -457,7 +460,8 @@ void check_axes_activity() {
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
}
else {
else
{
#if FAN_PIN > -1
if (FanSpeed != 0){
analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
@ -467,17 +471,20 @@ void check_axes_activity() {
if((DISABLE_X) && (x_active == 0)) disable_x();
if((DISABLE_Y) && (y_active == 0)) disable_y();
if((DISABLE_Z) && (z_active == 0)) disable_z();
if((DISABLE_E) && (e_active == 0)) {
if((DISABLE_E) && (e_active == 0))
{
disable_e0();
disable_e1();
disable_e2();
}
#if FAN_PIN > -1
if((FanSpeed == 0) && (fan_speed ==0)) {
if((FanSpeed == 0) && (fan_speed ==0))
{
analogWrite(FAN_PIN, 0);
}
if (FanSpeed != 0 && tail_fan_speed !=0) {
if (FanSpeed != 0 && tail_fan_speed !=0)
{
analogWrite(FAN_PIN,tail_fan_speed);
}
#endif
@ -498,7 +505,8 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while(block_buffer_tail == next_buffer_head) {
while(block_buffer_tail == next_buffer_head)
{
manage_heater();
manage_inactivity();
LCD_STATUS;
@ -515,12 +523,14 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
#ifdef PREVENT_DANGEROUS_EXTRUDE
if(target[E_AXIS]!=position[E_AXIS])
{
if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
{
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
}
#ifdef PREVENT_LENGTHY_EXTRUDE
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
{
@ -529,6 +539,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif
}
#endif
// Prepare to set up new block
@ -547,24 +558,29 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block
if (block->step_event_count <= dropsegments) {
if (block->step_event_count <= dropsegments)
{
return;
};
}
block->fan_speed = FanSpeed;
// Compute direction bits for this block
block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) {
if (target[X_AXIS] < position[X_AXIS])
{
block->direction_bits |= (1<<X_AXIS);
}
if (target[Y_AXIS] < position[Y_AXIS]) {
if (target[Y_AXIS] < position[Y_AXIS])
{
block->direction_bits |= (1<<Y_AXIS);
}
if (target[Z_AXIS] < position[Z_AXIS]) {
if (target[Z_AXIS] < position[Z_AXIS])
{
block->direction_bits |= (1<<Z_AXIS);
}
if (target[E_AXIS] < position[E_AXIS]) {
if (target[E_AXIS] < position[E_AXIS])
{
block->direction_bits |= (1<<E_AXIS);
}
@ -578,16 +594,19 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
#endif
// Enable all
if(block->steps_e != 0) {
if(block->steps_e != 0)
{
enable_e0();
enable_e1();
enable_e2();
}
if (block->steps_e == 0) {
if (block->steps_e == 0)
{
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
}
else {
else
{
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
}
@ -596,10 +615,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) {
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
{
block->millimeters = fabs(delta_mm[E_AXIS]);
}
else {
else
{
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
}
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
@ -611,14 +632,17 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
#ifdef OLD_SLOWDOWN
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
#endif
#ifdef SLOWDOWN
// segment time im micro seconds
unsigned long segment_time = lround(1000000.0/inverse_second);
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) {
if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
{
if (segment_time < minsegmenttime)
{ // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
}
}
@ -632,7 +656,8 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Calculate and limit speed in mm/sec for each axis
float current_speed[4];
float speed_factor = 1.0; //factor <=1 do decrease speed
for(int i=0; i < 4; i++) {
for(int i=0; i < 4; i++)
{
current_speed[i] = delta_mm[i] * inverse_second;
if(fabs(current_speed[i]) > max_feedrate[i])
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
@ -646,18 +671,22 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
unsigned char direction_change = block->direction_bits ^ old_direction_bits;
old_direction_bits = block->direction_bits;
if((direction_change & (1<<X_AXIS)) == 0) {
if((direction_change & (1<<X_AXIS)) == 0)
{
x_segment_time[0] += segment_time;
}
else {
else
{
x_segment_time[2] = x_segment_time[1];
x_segment_time[1] = x_segment_time[0];
x_segment_time[0] = segment_time;
}
if((direction_change & (1<<Y_AXIS)) == 0) {
if((direction_change & (1<<Y_AXIS)) == 0)
{
y_segment_time[0] += segment_time;
}
else {
else
{
y_segment_time[2] = y_segment_time[1];
y_segment_time[1] = y_segment_time[0];
y_segment_time[0] = segment_time;
@ -665,12 +694,15 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
if(min_xy_segment_time < MAX_FREQ_TIME)
speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
#endif
// Correct the speed
if( speed_factor < 1.0) {
for(unsigned char i=0; i < 4; i++) {
if( speed_factor < 1.0)
{
for(unsigned char i=0; i < 4; i++)
{
current_speed[i] *= speed_factor;
}
block->nominal_speed *= speed_factor;
@ -679,10 +711,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Compute and limit the acceleration rate for the trapezoid generator.
float steps_per_mm = block->step_event_count/block->millimeters;
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
{
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
}
else {
else
{
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
// Limit acceleration per axis
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])

Loading…
Cancel
Save