Browse Source

Chamber Heater PID (#21156)

Co-authored-by: Scott Lahteine <thinkyhead@users.noreply.github.com>
vanilla_fb_2.0.x
Ken Sanislo 3 years ago
committed by Scott Lahteine
parent
commit
8d05a823e9
  1. 55
      Marlin/Configuration.h
  2. 17
      Marlin/Configuration_adv.h
  3. 2
      Marlin/src/core/language.h
  4. 13
      Marlin/src/feature/leds/printer_event_leds.cpp
  5. 7
      Marlin/src/feature/leds/printer_event_leds.h
  6. 48
      Marlin/src/gcode/config/M309.cpp
  7. 4
      Marlin/src/gcode/gcode.cpp
  8. 3
      Marlin/src/gcode/gcode.h
  9. 37
      Marlin/src/gcode/temp/M303.cpp
  10. 21
      Marlin/src/inc/Conditionals_post.h
  11. 7
      Marlin/src/inc/SanityCheck.h
  12. 79
      Marlin/src/lcd/menu/menu_advanced.cpp
  13. 61
      Marlin/src/module/settings.cpp
  14. 386
      Marlin/src/module/temperature.cpp
  15. 21
      Marlin/src/module/temperature.h

55
Marlin/Configuration.h

@ -447,6 +447,10 @@
#define TEMP_BED_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer #define TEMP_BED_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_BED_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target #define TEMP_BED_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
#define TEMP_CHAMBER_RESIDENCY_TIME 10 // (seconds) Time to wait for chamber to "settle" in M191
#define TEMP_CHAMBER_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_CHAMBER_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
// Below this temperature the heater will be switched off // Below this temperature the heater will be switched off
// because it probably indicates a broken thermistor wire. // because it probably indicates a broken thermistor wire.
#define HEATER_0_MINTEMP 5 #define HEATER_0_MINTEMP 5
@ -458,6 +462,7 @@
#define HEATER_6_MINTEMP 5 #define HEATER_6_MINTEMP 5
#define HEATER_7_MINTEMP 5 #define HEATER_7_MINTEMP 5
#define BED_MINTEMP 5 #define BED_MINTEMP 5
#define CHAMBER_MINTEMP 5
// Above this temperature the heater will be switched off. // Above this temperature the heater will be switched off.
// This can protect components from overheating, but NOT from shorts and failures. // This can protect components from overheating, but NOT from shorts and failures.
@ -471,6 +476,7 @@
#define HEATER_6_MAXTEMP 275 #define HEATER_6_MAXTEMP 275
#define HEATER_7_MAXTEMP 275 #define HEATER_7_MAXTEMP 275
#define BED_MAXTEMP 150 #define BED_MAXTEMP 150
#define CHAMBER_MAXTEMP 60
//=========================================================================== //===========================================================================
//============================= PID Settings ================================ //============================= PID Settings ================================
@ -544,7 +550,52 @@
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles. // FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED #endif // PIDTEMPBED
#if EITHER(PIDTEMP, PIDTEMPBED) //===========================================================================
//==================== PID > Chamber Temperature Control ====================
//===========================================================================
/**
* PID Chamber Heating
*
* If this option is enabled set PID constants below.
* If this option is disabled, bang-bang will be used and CHAMBER_LIMIT_SWITCHING will enable
* hysteresis.
*
* The PID frequency will be the same as the extruder PWM.
* If PID_dT is the default, and correct for the hardware/configuration, that means 7.689Hz,
* which is fine for driving a square wave into a resistive load and does not significantly
* impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 200W
* heater. If your configuration is significantly different than this and you don't understand
* the issues involved, don't use chamber PID until someone else verifies that your hardware works.
*/
//#define PIDTEMPCHAMBER
//#define CHAMBER_LIMIT_SWITCHING
/**
* Max Chamber Power
* Applies to all forms of chamber control (PID, bang-bang, and bang-bang with hysteresis).
* When set to any value below 255, enables a form of PWM to the chamber heater that acts like a divider
* so don't use it unless you are OK with PWM on your heater. (See the comment on enabling PIDTEMPCHAMBER)
*/
#define MAX_CHAMBER_POWER 255 // limits duty cycle to chamber heater; 255=full current
#if ENABLED(PIDTEMPCHAMBER)
#define MIN_CHAMBER_POWER 0
//#define PID_CHAMBER_DEBUG // Sends debug data to the serial port.
// Lasko "MyHeat Personal Heater" (200w) modified with a Fotek SSR-10DA to control only the heating element
// and placed inside the small Creality printer enclosure tent.
//
#define DEFAULT_chamberKp 37.04
#define DEFAULT_chamberKi 1.40
#define DEFAULT_chamberKd 655.17
// M309 P37.04 I1.04 D655.17
// FIND YOUR OWN: "M303 E-2 C8 S50" to run autotune on the chamber at 50 degreesC for 8 cycles.
#endif // PIDTEMPCHAMBER
#if ANY(PIDTEMP, PIDTEMPBED, PIDTEMPCHAMBER)
//#define PID_DEBUG // Sends debug data to the serial port. Use 'M303 D' to toggle activation. //#define PID_DEBUG // Sends debug data to the serial port. Use 'M303 D' to toggle activation.
//#define PID_OPENLOOP // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX //#define PID_OPENLOOP // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay //#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
@ -1624,11 +1675,13 @@
#define PREHEAT_1_LABEL "PLA" #define PREHEAT_1_LABEL "PLA"
#define PREHEAT_1_TEMP_HOTEND 180 #define PREHEAT_1_TEMP_HOTEND 180
#define PREHEAT_1_TEMP_BED 70 #define PREHEAT_1_TEMP_BED 70
#define PREHEAT_1_TEMP_CHAMBER 35
#define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255 #define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255
#define PREHEAT_2_LABEL "ABS" #define PREHEAT_2_LABEL "ABS"
#define PREHEAT_2_TEMP_HOTEND 240 #define PREHEAT_2_TEMP_HOTEND 240
#define PREHEAT_2_TEMP_BED 110 #define PREHEAT_2_TEMP_BED 110
#define PREHEAT_2_TEMP_CHAMBER 35
#define PREHEAT_2_FAN_SPEED 0 // Value from 0 to 255 #define PREHEAT_2_FAN_SPEED 0 // Value from 0 to 255
/** /**

17
Marlin/Configuration_adv.h

@ -143,12 +143,19 @@
// //
// Heated Chamber options // Heated Chamber options
// //
#if DISABLED(PIDTEMPCHAMBER)
#define CHAMBER_CHECK_INTERVAL 5000 // (ms) Interval between checks in bang-bang control
#if ENABLED(CHAMBER_LIMIT_SWITCHING)
#define CHAMBER_HYSTERESIS 2 // (°C) Only set the relevant heater state when ABS(T-target) > CHAMBER_HYSTERESIS
#endif
#endif
#if TEMP_SENSOR_CHAMBER #if TEMP_SENSOR_CHAMBER
#define CHAMBER_MINTEMP 5 // Make sure you define where your heater is connected, the following works on a BTT SKR 1.4 Turbo
#define CHAMBER_MAXTEMP 60 // using the secondary tool heater output. (FAN1 by default).
#define TEMP_CHAMBER_HYSTERESIS 1 // (°C) Temperature proximity considered "close enough" to the target //#define FAN1_PIN -1 // Remove the fan signal on pin P2_04 (SKR 1.4 Turbo specific)
//#define CHAMBER_LIMIT_SWITCHING //#define HEATER_CHAMBER_PIN P2_04 // Chamber heater on/off pin (HE1 connector on SKR 1.4 Turbo)
//#define HEATER_CHAMBER_PIN 44 // Chamber heater on/off pin
//#define HEATER_CHAMBER_INVERTING false //#define HEATER_CHAMBER_INVERTING false
//#define CHAMBER_FAN // Enable a fan on the chamber //#define CHAMBER_FAN // Enable a fan on the chamber

2
Marlin/src/core/language.h

@ -221,7 +221,7 @@
// temperature.cpp strings // temperature.cpp strings
#define STR_PID_AUTOTUNE_START "PID Autotune start" #define STR_PID_AUTOTUNE_START "PID Autotune start"
#define STR_PID_BAD_EXTRUDER_NUM "PID Autotune failed! Bad extruder number" #define STR_PID_BAD_HEATER_ID "PID Autotune failed! Bad heater id"
#define STR_PID_TEMP_TOO_HIGH "PID Autotune failed! Temperature too high" #define STR_PID_TEMP_TOO_HIGH "PID Autotune failed! Temperature too high"
#define STR_PID_TIMEOUT "PID Autotune failed! timeout" #define STR_PID_TIMEOUT "PID Autotune failed! timeout"
#define STR_BIAS " bias: " #define STR_BIAS " bias: "

13
Marlin/src/feature/leds/printer_event_leds.cpp

@ -77,6 +77,19 @@ PrinterEventLEDs printerEventLEDs;
pel_set_rgb(red, 0, 255); pel_set_rgb(red, 0, 255);
} }
} }
#endif
#if HAS_HEATED_CHAMBER
void PrinterEventLEDs::onChamberHeating(const float &start, const float &current, const float &target) {
const uint8_t green = pel_intensity(start, current, target);
if (green != old_intensity) {
old_intensity = green;
pel_set_rgb(255, green, 255);
}
}
#endif #endif
#endif // PRINTER_EVENT_LEDS #endif // PRINTER_EVENT_LEDS

7
Marlin/src/feature/leds/printer_event_leds.h

@ -55,7 +55,12 @@ public:
static void onBedHeating(const float &start, const float &current, const float &target); static void onBedHeating(const float &start, const float &current, const float &target);
#endif #endif
#if HAS_TEMP_HOTEND || HAS_HEATED_BED #if HAS_HEATED_CHAMBER
static inline LEDColor onChamberHeatingStart() { old_intensity = 127; return leds.get_color(); }
static void onChamberHeating(const float &start, const float &current, const float &target);
#endif
#if HAS_TEMP_HOTEND || HAS_HEATED_BED || HAS_HEATED_CHAMBER
static inline void onHeatingDone() { leds.set_white(); } static inline void onHeatingDone() { leds.set_white(); }
static inline void onPidTuningDone(LEDColor c) { leds.set_color(c); } static inline void onPidTuningDone(LEDColor c) { leds.set_color(c); }
#endif #endif

48
Marlin/src/gcode/config/M309.cpp

@ -0,0 +1,48 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(PIDTEMPCHAMBER)
#include "../gcode.h"
#include "../../module/temperature.h"
/**
* M309 - Set and/or Report the current Chamber PID values
*
* P<pval> - Set the P value
* I<ival> - Set the I value
* D<dval> - Set the D value
*/
void GcodeSuite::M309() {
if (parser.seen('P')) thermalManager.temp_chamber.pid.Kp = parser.value_float();
if (parser.seen('I')) thermalManager.temp_chamber.pid.Ki = scalePID_i(parser.value_float());
if (parser.seen('D')) thermalManager.temp_chamber.pid.Kd = scalePID_d(parser.value_float());
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR(" p:", thermalManager.temp_chamber.pid.Kp,
" i:", unscalePID_i(thermalManager.temp_chamber.pid.Ki),
" d:", unscalePID_d(thermalManager.temp_chamber.pid.Kd));
}
#endif // PIDTEMPCHAMBER

4
Marlin/src/gcode/gcode.cpp

@ -682,6 +682,10 @@ void GcodeSuite::process_parsed_command(const bool no_ok/*=false*/) {
case 304: M304(); break; // M304: Set bed PID parameters case 304: M304(); break; // M304: Set bed PID parameters
#endif #endif
#if ENABLED(PIDTEMPCHAMBER)
case 309: M309(); break; // M309: Set chamber PID parameters
#endif
#if ENABLED(PHOTO_GCODE) #if ENABLED(PHOTO_GCODE)
case 240: M240(); break; // M240: Trigger a camera case 240: M240(); break; // M240: Trigger a camera
#endif #endif

3
Marlin/src/gcode/gcode.h

@ -197,6 +197,7 @@
* M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP) * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
* M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED) * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
* M305 - Set user thermistor parameters R T and P. (Requires TEMP_SENSOR_x 1000) * M305 - Set user thermistor parameters R T and P. (Requires TEMP_SENSOR_x 1000)
* M309 - Set chamber PID parameters P I and D. (Requires PIDTEMPCHAMBER)
* M350 - Set microstepping mode. (Requires digital microstepping pins.) * M350 - Set microstepping mode. (Requires digital microstepping pins.)
* M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.) * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
* M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN) * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
@ -711,6 +712,8 @@ private:
TERN_(HAS_USER_THERMISTORS, static void M305()); TERN_(HAS_USER_THERMISTORS, static void M305());
TERN_(PIDTEMPCHAMBER, static void M309());
#if HAS_MICROSTEPS #if HAS_MICROSTEPS
static void M350(); static void M350();
static void M351(); static void M351();

37
Marlin/src/gcode/temp/M303.cpp

@ -40,19 +40,15 @@
* C<cycles> Number of times to repeat the procedure. (Minimum: 3, Default: 5) * C<cycles> Number of times to repeat the procedure. (Minimum: 3, Default: 5)
* U<bool> Flag to apply the result to the current PID values * U<bool> Flag to apply the result to the current PID values
* *
* With PID_DEBUG: * With PID_DEBUG, PID_BED_DEBUG, or PID_CHAMBER_DEBUG:
* D Toggle PID debugging and EXIT without further action. * D Toggle PID debugging and EXIT without further action.
*/ */
#if ENABLED(PID_DEBUG)
bool pid_debug_flag = 0;
#endif
void GcodeSuite::M303() { void GcodeSuite::M303() {
#if ENABLED(PID_DEBUG) #if ANY(PID_DEBUG, PID_BED_DEBUG, PID_CHAMBER_DEBUG)
if (parser.seen('D')) { if (parser.seen('D')) {
pid_debug_flag = !pid_debug_flag; thermalManager.pid_debug_flag ^= true;
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHOPGM("PID Debug "); SERIAL_ECHOPGM("PID Debug ");
serialprintln_onoff(pid_debug_flag); serialprintln_onoff(pid_debug_flag);
@ -60,25 +56,34 @@ void GcodeSuite::M303() {
} }
#endif #endif
#define SI TERN(PIDTEMPBED, H_BED, H_E0) const heater_id_t hid = (heater_id_t)parser.intval('E');
#define EI TERN(PIDTEMP, HOTENDS - 1, H_BED) int16_t default_temp;
const heater_id_t e = (heater_id_t)parser.intval('E'); switch (hid) {
if (!WITHIN(e, SI, EI)) { #if ENABLED(PIDTEMP)
SERIAL_ECHOLNPGM(STR_PID_BAD_EXTRUDER_NUM); case 0 ... HOTENDS - 1: default_temp = PREHEAT_1_TEMP_HOTEND; break;
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_BAD_EXTRUDER_NUM)); #endif
return; #if ENABLED(PIDTEMPBED)
case H_BED: default_temp = PREHEAT_1_TEMP_BED; break;
#endif
#if ENABLED(PIDTEMPCHAMBER)
case H_CHAMBER: default_temp = PREHEAT_1_TEMP_CHAMBER; break;
#endif
default:
SERIAL_ECHOLNPGM(STR_PID_BAD_HEATER_ID);
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_BAD_EXTRUDER_NUM));
return;
} }
const int16_t temp = parser.celsiusval('S', default_temp);
const int c = parser.intval('C', 5); const int c = parser.intval('C', 5);
const bool u = parser.boolval('U'); const bool u = parser.boolval('U');
const int16_t temp = parser.celsiusval('S', e < 0 ? PREHEAT_1_TEMP_BED : PREHEAT_1_TEMP_HOTEND);
#if DISABLED(BUSY_WHILE_HEATING) #if DISABLED(BUSY_WHILE_HEATING)
KEEPALIVE_STATE(NOT_BUSY); KEEPALIVE_STATE(NOT_BUSY);
#endif #endif
LCD_MESSAGEPGM(MSG_PID_AUTOTUNE); LCD_MESSAGEPGM(MSG_PID_AUTOTUNE);
thermalManager.PID_autotune(temp, e, c, u); thermalManager.PID_autotune(temp, hid, c, u);
ui.reset_status(); ui.reset_status();
} }

21
Marlin/src/inc/Conditionals_post.h

@ -1992,27 +1992,31 @@
#define BED_OVERSHOOT 10 #define BED_OVERSHOOT 10
#endif #endif
#define BED_MAX_TARGET (BED_MAXTEMP - (BED_OVERSHOOT)) #define BED_MAX_TARGET (BED_MAXTEMP - (BED_OVERSHOOT))
#else
#undef PIDTEMPBED
#endif #endif
#if HAS_HEATED_BED || HAS_TEMP_CHAMBER #if HAS_HEATED_BED || HAS_TEMP_CHAMBER
#define BED_OR_CHAMBER 1 #define BED_OR_CHAMBER 1
#endif #endif
#if HAS_TEMP_HOTEND || BED_OR_CHAMBER || HAS_TEMP_PROBE #if HAS_TEMP_HOTEND || BED_OR_CHAMBER || HAS_TEMP_PROBE
#define HAS_TEMP_SENSOR 1 #define HAS_TEMP_SENSOR 1
#endif #endif
#if HAS_TEMP_CHAMBER && PIN_EXISTS(HEATER_CHAMBER) #if HAS_TEMP_CHAMBER && PIN_EXISTS(HEATER_CHAMBER)
#define HAS_HEATED_CHAMBER 1 #define HAS_HEATED_CHAMBER 1
#ifndef CHAMBER_OVERSHOOT
#define CHAMBER_OVERSHOOT 10
#endif
#define CHAMBER_MAX_TARGET (CHAMBER_MAXTEMP - (CHAMBER_OVERSHOOT))
#else
#undef PIDTEMPCHAMBER
#endif #endif
// PID heating // PID heating
#if !HAS_HEATED_BED #if ANY(PIDTEMP, PIDTEMPBED, PIDTEMPCHAMBER)
#undef PIDTEMPBED
#endif
#if EITHER(PIDTEMP, PIDTEMPBED)
#define HAS_PID_HEATING 1 #define HAS_PID_HEATING 1
#endif #endif
#if BOTH(PIDTEMP, PIDTEMPBED)
#define HAS_PID_FOR_BOTH 1
#endif
// Thermal protection // Thermal protection
#if BOTH(HAS_HEATED_BED, THERMAL_PROTECTION_BED) #if BOTH(HAS_HEATED_BED, THERMAL_PROTECTION_BED)
@ -2346,6 +2350,9 @@
* Heated chamber requires settings * Heated chamber requires settings
*/ */
#if HAS_HEATED_CHAMBER #if HAS_HEATED_CHAMBER
#ifndef MIN_CHAMBER_POWER
#define MIN_CHAMBER_POWER 0
#endif
#ifndef MAX_CHAMBER_POWER #ifndef MAX_CHAMBER_POWER
#define MAX_CHAMBER_POWER 255 #define MAX_CHAMBER_POWER 255
#endif #endif

7
Marlin/src/inc/SanityCheck.h

@ -1203,6 +1203,13 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
#error "To use BED_LIMIT_SWITCHING you must disable PIDTEMPBED." #error "To use BED_LIMIT_SWITCHING you must disable PIDTEMPBED."
#endif #endif
/**
* Chamber Heating Options - PID vs Limit Switching
*/
#if BOTH(PIDTEMPCHAMBER, CHAMBER_LIMIT_SWITCHING)
#error "To use CHAMBER_LIMIT_SWITCHING you must disable PIDTEMPCHAMBER."
#endif
/** /**
* Kinematics * Kinematics
*/ */

79
Marlin/src/lcd/menu/menu_advanced.cpp

@ -177,18 +177,25 @@ void menu_backlash();
#if ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
int16_t autotune_temp_bed = PREHEAT_1_TEMP_BED; int16_t autotune_temp_bed = PREHEAT_1_TEMP_BED;
#endif #endif
#if ENABLED(PIDTEMPCHAMBER)
int16_t autotune_temp_chamber = PREHEAT_1_TEMP_CHAMBER;
#endif
#include "../../gcode/queue.h" #include "../../gcode/queue.h"
void _lcd_autotune(const int16_t e) { void _lcd_autotune(const heater_id_t hid) {
char cmd[30]; char cmd[30];
sprintf_P(cmd, PSTR("M303 U1 E%i S%i"), e, int16_t tune_temp;
#if HAS_PID_FOR_BOTH switch (hid) {
e < 0 ? autotune_temp_bed : autotune_temp[e] #if ENABLED(PIDTEMPBED)
#else case H_BED: tune_temp = autotune_temp_bed; break;
TERN(PIDTEMPBED, autotune_temp_bed, autotune_temp[e])
#endif #endif
); #if ENABLED(PIDTEMPCHAMBER)
case H_CHAMBER: tune_temp = autotune_temp_chamber; break;
#endif
default: tune_temp = autotune_temp[hid]; break;
}
sprintf_P(cmd, PSTR("M303 U1 E%i S%i"), hid, tune_temp);
queue.inject(cmd); queue.inject(cmd);
ui.return_to_status(); ui.return_to_status();
} }
@ -225,7 +232,7 @@ void menu_backlash();
#if ENABLED(PID_AUTOTUNE_MENU) #if ENABLED(PID_AUTOTUNE_MENU)
#define DEFINE_PIDTEMP_FUNCS(N) \ #define DEFINE_PIDTEMP_FUNCS(N) \
_DEFINE_PIDTEMP_BASE_FUNCS(N); \ _DEFINE_PIDTEMP_BASE_FUNCS(N); \
void lcd_autotune_callback_E##N() { _lcd_autotune(N); } void lcd_autotune_callback_E##N() { _lcd_autotune(heater_id_t(N)); }
#else #else
#define DEFINE_PIDTEMP_FUNCS(N) _DEFINE_PIDTEMP_BASE_FUNCS(N); #define DEFINE_PIDTEMP_FUNCS(N) _DEFINE_PIDTEMP_BASE_FUNCS(N);
#endif #endif
@ -269,56 +276,70 @@ void menu_backlash();
// //
#if ENABLED(PID_EDIT_MENU) #if ENABLED(PID_EDIT_MENU)
#define __PID_BASE_MENU_ITEMS(N) \ #define _PID_EDIT_ITEMS_TMPL(N,T) \
raw_Ki = unscalePID_i(TERN(PID_BED_MENU_SECTION, thermalManager.temp_bed.pid.Ki, PID_PARAM(Ki, N))); \ raw_Ki = unscalePID_i(T.pid.Ki); \
raw_Kd = unscalePID_d(TERN(PID_BED_MENU_SECTION, thermalManager.temp_bed.pid.Kd, PID_PARAM(Kd, N))); \ raw_Kd = unscalePID_d(T.pid.Kd); \
EDIT_ITEM_FAST_N(float41sign, N, MSG_PID_P_E, &TERN(PID_BED_MENU_SECTION, thermalManager.temp_bed.pid.Kp, PID_PARAM(Kp, N)), 1, 9990); \ EDIT_ITEM_FAST_N(float41sign, N, MSG_PID_P_E, &T.pid.Kp, 1, 9990); \
EDIT_ITEM_FAST_N(float52sign, N, MSG_PID_I_E, &raw_Ki, 0.01f, 9990, []{ copy_and_scalePID_i(N); }); \
EDIT_ITEM_FAST_N(float41sign, N, MSG_PID_D_E, &raw_Kd, 1, 9990, []{ copy_and_scalePID_d(N); })
#define __PID_HOTEND_MENU_ITEMS(N) \
raw_Ki = unscalePID_i(PID_PARAM(Ki, N)); \
raw_Kd = unscalePID_d(PID_PARAM(Kd, N)); \
EDIT_ITEM_FAST_N(float41sign, N, MSG_PID_P_E, &PID_PARAM(Kp, N), 1, 9990); \
EDIT_ITEM_FAST_N(float52sign, N, MSG_PID_I_E, &raw_Ki, 0.01f, 9990, []{ copy_and_scalePID_i(N); }); \ EDIT_ITEM_FAST_N(float52sign, N, MSG_PID_I_E, &raw_Ki, 0.01f, 9990, []{ copy_and_scalePID_i(N); }); \
EDIT_ITEM_FAST_N(float41sign, N, MSG_PID_D_E, &raw_Kd, 1, 9990, []{ copy_and_scalePID_d(N); }) EDIT_ITEM_FAST_N(float41sign, N, MSG_PID_D_E, &raw_Kd, 1, 9990, []{ copy_and_scalePID_d(N); })
#if ENABLED(PID_EXTRUSION_SCALING) #if ENABLED(PID_EXTRUSION_SCALING)
#define _PID_BASE_MENU_ITEMS(N) \ #define _PID_HOTEND_MENU_ITEMS(N) \
__PID_BASE_MENU_ITEMS(N); \ __PID_HOTEND_MENU_ITEMS(N); \
EDIT_ITEM_N(float4, N, MSG_PID_C_E, &PID_PARAM(Kc, N), 1, 9990) EDIT_ITEM_N(float4, N, MSG_PID_C_E, &PID_PARAM(Kc, N), 1, 9990)
#else #else
#define _PID_BASE_MENU_ITEMS(N) __PID_BASE_MENU_ITEMS(N) #define _PID_HOTEND_MENU_ITEMS(N) __PID_HOTEND_MENU_ITEMS(N)
#endif #endif
#if ENABLED(PID_FAN_SCALING) #if ENABLED(PID_FAN_SCALING)
#define _PID_EDIT_MENU_ITEMS(N) \ #define _HOTEND_PID_EDIT_MENU_ITEMS(N) \
_PID_BASE_MENU_ITEMS(N); \ _PID_HOTEND_MENU_ITEMS(N); \
EDIT_ITEM_N(float4, N, MSG_PID_F_E, &PID_PARAM(Kf, N), 1, 9990) EDIT_ITEM_N(float4, N, MSG_PID_F_E, &PID_PARAM(Kf, N), 1, 9990)
#else #else
#define _PID_EDIT_MENU_ITEMS(N) _PID_BASE_MENU_ITEMS(N) #define _HOTEND_PID_EDIT_MENU_ITEMS(N) _PID_HOTEND_MENU_ITEMS(N)
#endif #endif
#else #else
#define _PID_EDIT_MENU_ITEMS(N) NOOP #define _HOTEND_PID_EDIT_MENU_ITEMS(N) NOOP
#endif #endif
#if ENABLED(PID_AUTOTUNE_MENU) #if ENABLED(PID_AUTOTUNE_MENU)
#define PID_EDIT_MENU_ITEMS(N) \ #define HOTEND_PID_EDIT_MENU_ITEMS(N) \
_PID_EDIT_MENU_ITEMS(N); \ _HOTEND_PID_EDIT_MENU_ITEMS(N); \
EDIT_ITEM_FAST_N(int3, N, MSG_PID_AUTOTUNE_E, &autotune_temp[N], 150, thermalManager.heater_maxtemp[N] - HOTEND_OVERSHOOT, []{ _lcd_autotune(MenuItemBase::itemIndex); }); EDIT_ITEM_FAST_N(int3, N, MSG_PID_AUTOTUNE_E, &autotune_temp[N], 150, thermalManager.heater_maxtemp[N] - HOTEND_OVERSHOOT, []{ _lcd_autotune(heater_id_t(MenuItemBase::itemIndex)); });
#else #else
#define PID_EDIT_MENU_ITEMS(N) _PID_EDIT_MENU_ITEMS(N); #define HOTEND_PID_EDIT_MENU_ITEMS(N) _HOTEND_PID_EDIT_MENU_ITEMS(N);
#endif #endif
PID_EDIT_MENU_ITEMS(0); HOTEND_PID_EDIT_MENU_ITEMS(0);
#if ENABLED(PID_PARAMS_PER_HOTEND) #if ENABLED(PID_PARAMS_PER_HOTEND)
REPEAT_S(1, HOTENDS, PID_EDIT_MENU_ITEMS) REPEAT_S(1, HOTENDS, HOTEND_PID_EDIT_MENU_ITEMS)
#endif #endif
#if ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
#if ENABLED(PID_EDIT_MENU) #if ENABLED(PID_EDIT_MENU)
#define PID_BED_MENU_SECTION _PID_EDIT_ITEMS_TMPL(H_BED, thermalManager.temp_bed);
__PID_BASE_MENU_ITEMS(-1); #endif
#undef PID_BED_MENU_SECTION #if ENABLED(PID_AUTOTUNE_MENU)
EDIT_ITEM_FAST_N(int3, H_BED, MSG_PID_AUTOTUNE_E, &autotune_temp_bed, PREHEAT_1_TEMP_BED, BED_MAX_TARGET, []{ _lcd_autotune(H_BED); });
#endif
#endif
#if ENABLED(PIDTEMPCHAMBER)
#if ENABLED(PID_EDIT_MENU)
_PID_EDIT_ITEMS_TMPL(H_CHAMBER, thermalManager.temp_chamber);
#endif #endif
#if ENABLED(PID_AUTOTUNE_MENU) #if ENABLED(PID_AUTOTUNE_MENU)
EDIT_ITEM_FAST_N(int3, -1, MSG_PID_AUTOTUNE_E, &autotune_temp_bed, PREHEAT_1_TEMP_BED, BED_MAX_TARGET, []{ _lcd_autotune(-1); }); EDIT_ITEM_FAST_N(int3, H_CHAMBER, MSG_PID_AUTOTUNE_E, &autotune_temp_chamber, PREHEAT_1_TEMP_CHAMBER, CHAMBER_MAX_TARGET, []{ _lcd_autotune(H_CHAMBER); });
#endif #endif
#endif #endif

61
Marlin/src/module/settings.cpp

@ -318,6 +318,11 @@ typedef struct SettingsDataStruct {
// //
PID_t bedPID; // M304 PID / M303 E-1 U PID_t bedPID; // M304 PID / M303 E-1 U
//
// PIDTEMPCHAMBER
//
PID_t chamberPID; // M309 PID / M303 E-2 U
// //
// User-defined Thermistors // User-defined Thermistors
// //
@ -926,6 +931,25 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(bed_pid); EEPROM_WRITE(bed_pid);
} }
//
// PIDTEMPCHAMBER
//
{
_FIELD_TEST(chamberPID);
const PID_t chamber_pid = {
#if DISABLED(PIDTEMPCHAMBER)
NAN, NAN, NAN
#else
// Store the unscaled PID values
thermalManager.temp_chamber.pid.Kp,
unscalePID_i(thermalManager.temp_chamber.pid.Ki),
unscalePID_d(thermalManager.temp_chamber.pid.Kd)
#endif
};
EEPROM_WRITE(chamber_pid);
}
// //
// User-defined Thermistors // User-defined Thermistors
// //
@ -1787,6 +1811,22 @@ void MarlinSettings::postprocess() {
#endif #endif
} }
//
// Heated Chamber PID
//
{
PID_t pid;
EEPROM_READ(pid);
#if ENABLED(PIDTEMPCHAMBER)
if (!validating && !isnan(pid.Kp)) {
// Scale PID values since EEPROM values are unscaled
thermalManager.temp_chamber.pid.Kp = pid.Kp;
thermalManager.temp_chamber.pid.Ki = scalePID_i(pid.Ki);
thermalManager.temp_chamber.pid.Kd = scalePID_d(pid.Kd);
}
#endif
}
// //
// User-defined Thermistors // User-defined Thermistors
// //
@ -2811,6 +2851,16 @@ void MarlinSettings::reset() {
thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd); thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
#endif #endif
//
// Heated Chamber PID
//
#if ENABLED(PIDTEMPCHAMBER)
thermalManager.temp_chamber.pid.Kp = DEFAULT_chamberKp;
thermalManager.temp_chamber.pid.Ki = scalePID_i(DEFAULT_chamberKi);
thermalManager.temp_chamber.pid.Kd = scalePID_d(DEFAULT_chamberKd);
#endif
// //
// User-Defined Thermistors // User-Defined Thermistors
// //
@ -3386,7 +3436,16 @@ void MarlinSettings::reset() {
); );
#endif #endif
#endif // PIDTEMP || PIDTEMPBED #if ENABLED(PIDTEMPCHAMBER)
CONFIG_ECHO_START();
SERIAL_ECHOLNPAIR(
" M309 P", thermalManager.temp_chamber.pid.Kp
, " I", unscalePID_i(thermalManager.temp_chamber.pid.Ki)
, " D", unscalePID_d(thermalManager.temp_chamber.pid.Kd)
);
#endif
#endif // PIDTEMP || PIDTEMPBED || PIDTEMPCHAMBER
#if HAS_USER_THERMISTORS #if HAS_USER_THERMISTORS
CONFIG_ECHO_HEADING("User thermistors:"); CONFIG_ECHO_HEADING("User thermistors:");

386
Marlin/src/module/temperature.cpp

@ -371,10 +371,8 @@ const char str_t_thermal_runaway[] PROGMEM = STR_T_THERMAL_RUNAWAY,
#ifdef CHAMBER_MAXTEMP #ifdef CHAMBER_MAXTEMP
int16_t Temperature::maxtemp_raw_CHAMBER = TEMP_SENSOR_CHAMBER_RAW_HI_TEMP; int16_t Temperature::maxtemp_raw_CHAMBER = TEMP_SENSOR_CHAMBER_RAW_HI_TEMP;
#endif #endif
#if WATCH_CHAMBER TERN_(WATCH_CHAMBER, chamber_watch_t Temperature::watch_chamber{0});
chamber_watch_t Temperature::watch_chamber{0}; IF_DISABLED(PIDTEMPCHAMBER, millis_t Temperature::next_chamber_check_ms);
#endif
millis_t Temperature::next_chamber_check_ms;
#endif // HAS_HEATED_CHAMBER #endif // HAS_HEATED_CHAMBER
#endif // HAS_TEMP_CHAMBER #endif // HAS_TEMP_CHAMBER
@ -382,11 +380,6 @@ const char str_t_thermal_runaway[] PROGMEM = STR_T_THERMAL_RUNAWAY,
probe_info_t Temperature::temp_probe; // = { 0 } probe_info_t Temperature::temp_probe; // = { 0 }
#endif #endif
// Initialized by settings.load()
#if ENABLED(PIDTEMP)
//hotend_pid_t Temperature::pid[HOTENDS];
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION) #if ENABLED(PREVENT_COLD_EXTRUSION)
bool Temperature::allow_cold_extrude = false; bool Temperature::allow_cold_extrude = false;
int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP; int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
@ -485,41 +478,44 @@ volatile bool Temperature::raw_temps_ready = false;
millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms; millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms;
long t_high = 0, t_low = 0; long t_high = 0, t_low = 0;
long bias, d;
PID_t tune_pid = { 0, 0, 0 }; PID_t tune_pid = { 0, 0, 0 };
float maxT = 0, minT = 10000; float maxT = 0, minT = 10000;
const bool isbed = (heater_id == H_BED); const bool isbed = (heater_id == H_BED);
const bool ischamber = (heater_id == H_CHAMBER);
#if HAS_PID_FOR_BOTH #if ENABLED(PIDTEMPCHAMBER)
#define GHV(B,H) (isbed ? (B) : (H)) #define C_TERN(T,A,B) ((T) ? (A) : (B))
#define SHV(B,H) do{ if (isbed) temp_bed.soft_pwm_amount = B; else temp_hotend[heater_id].soft_pwm_amount = H; }while(0)
#define ONHEATINGSTART() (isbed ? printerEventLEDs.onBedHeatingStart() : printerEventLEDs.onHotendHeatingStart())
#define ONHEATING(S,C,T) (isbed ? printerEventLEDs.onBedHeating(S,C,T) : printerEventLEDs.onHotendHeating(S,C,T))
#elif ENABLED(PIDTEMPBED)
#define GHV(B,H) B
#define SHV(B,H) (temp_bed.soft_pwm_amount = B)
#define ONHEATINGSTART() printerEventLEDs.onBedHeatingStart()
#define ONHEATING(S,C,T) printerEventLEDs.onBedHeating(S,C,T)
#else #else
#define GHV(B,H) H #define C_TERN(T,A,B) (B)
#define SHV(B,H) (temp_hotend[heater_id].soft_pwm_amount = H)
#define ONHEATINGSTART() printerEventLEDs.onHotendHeatingStart()
#define ONHEATING(S,C,T) printerEventLEDs.onHotendHeating(S,C,T)
#endif #endif
#define WATCH_PID BOTH(WATCH_BED, PIDTEMPBED) || BOTH(WATCH_HOTENDS, PIDTEMP) #if ENABLED(PIDTEMPBED)
#define B_TERN(T,A,B) ((T) ? (A) : (B))
#else
#define B_TERN(T,A,B) (B)
#endif
#define GHV(C,B,H) C_TERN(ischamber, C, B_TERN(isbed, B, H))
#define SHV(V) C_TERN(ischamber, temp_chamber.soft_pwm_amount = V, B_TERN(isbed, temp_bed.soft_pwm_amount = V, temp_hotend[heater_id].soft_pwm_amount = V))
#define ONHEATINGSTART() C_TERN(ischamber, printerEventLEDs.onChamberHeatingStart(), B_TERN(isbed, printerEventLEDs.onBedHeatingStart(), printerEventLEDs.onHotendHeatingStart()))
#define ONHEATING(S,C,T) C_TERN(ischamber, printerEventLEDs.onChamberHeating(S,C,T), B_TERN(isbed, printerEventLEDs.onBedHeating(S,C,T), printerEventLEDs.onHotendHeating(S,C,T)))
#define WATCH_PID BOTH(WATCH_CHAMBER, PIDTEMPCHAMBER) || BOTH(WATCH_BED, PIDTEMPBED) || BOTH(WATCH_HOTENDS, PIDTEMP)
#if WATCH_PID #if WATCH_PID
#if ALL(THERMAL_PROTECTION_HOTENDS, PIDTEMP, THERMAL_PROTECTION_BED, PIDTEMPBED) #if BOTH(THERMAL_PROTECTION_CHAMBER, PIDTEMPCHAMBER)
#define GTV(B,H) (isbed ? (B) : (H)) #define C_GTV(T,A,B) ((T) ? (A) : (B))
#elif BOTH(THERMAL_PROTECTION_HOTENDS, PIDTEMP)
#define GTV(B,H) (H)
#else #else
#define GTV(B,H) (B) #define C_GTV(T,A,B) (B)
#endif #endif
const uint16_t watch_temp_period = GTV(WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD); #if BOTH(THERMAL_PROTECTION_BED, PIDTEMPBED)
const uint8_t watch_temp_increase = GTV(WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE); #define B_GTV(T,A,B) ((T) ? (A) : (B))
const float watch_temp_target = target - float(watch_temp_increase + GTV(TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1); #else
#define B_GTV(T,A,B) (B)
#endif
#define GTV(C,B,H) C_GTV(ischamber, C, B_GTV(isbed, B, H))
const uint16_t watch_temp_period = GTV(WATCH_CHAMBER_TEMP_PERIOD, WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD);
const uint8_t watch_temp_increase = GTV(WATCH_CHAMBER_TEMP_INCREASE, WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE);
const float watch_temp_target = target - float(watch_temp_increase + GTV(TEMP_CHAMBER_HYSTERESIS, TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1);
millis_t temp_change_ms = next_temp_ms + SEC_TO_MS(watch_temp_period); millis_t temp_change_ms = next_temp_ms + SEC_TO_MS(watch_temp_period);
float next_watch_temp = 0.0; float next_watch_temp = 0.0;
bool heated = false; bool heated = false;
@ -527,7 +523,7 @@ volatile bool Temperature::raw_temps_ready = false;
TERN_(HAS_AUTO_FAN, next_auto_fan_check_ms = next_temp_ms + 2500UL); TERN_(HAS_AUTO_FAN, next_auto_fan_check_ms = next_temp_ms + 2500UL);
if (target > GHV(BED_MAX_TARGET, temp_range[heater_id].maxtemp - HOTEND_OVERSHOOT)) { if (target > GHV(CHAMBER_MAX_TARGET, BED_MAX_TARGET, temp_range[heater_id].maxtemp - HOTEND_OVERSHOOT)) {
SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH); SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH)); TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH));
return; return;
@ -538,10 +534,11 @@ volatile bool Temperature::raw_temps_ready = false;
disable_all_heaters(); disable_all_heaters();
TERN_(AUTO_POWER_CONTROL, powerManager.power_on()); TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
SHV(bias = d = (MAX_BED_POWER) >> 1, bias = d = (PID_MAX) >> 1); long bias = GHV(MAX_CHAMBER_POWER, MAX_BED_POWER, PID_MAX) >> 1, d = bias;
SHV(bias);
#if ENABLED(PRINTER_EVENT_LEDS) #if ENABLED(PRINTER_EVENT_LEDS)
const float start_temp = GHV(temp_bed.celsius, temp_hotend[heater_id].celsius); const float start_temp = GHV(temp_chamber.celsius, temp_bed.celsius, temp_hotend[heater_id].celsius);
LEDColor color = ONHEATINGSTART(); LEDColor color = ONHEATINGSTART();
#endif #endif
@ -557,7 +554,7 @@ volatile bool Temperature::raw_temps_ready = false;
updateTemperaturesFromRawValues(); updateTemperaturesFromRawValues();
// Get the current temperature and constrain it // Get the current temperature and constrain it
current_temp = GHV(temp_bed.celsius, temp_hotend[heater_id].celsius); current_temp = GHV(temp_chamber.celsius, temp_bed.celsius, temp_hotend[heater_id].celsius);
NOLESS(maxT, current_temp); NOLESS(maxT, current_temp);
NOMORE(minT, current_temp); NOMORE(minT, current_temp);
@ -572,67 +569,46 @@ volatile bool Temperature::raw_temps_ready = false;
} }
#endif #endif
if (heating && current_temp > target) { if (heating && current_temp > target && ELAPSED(ms, t2 + 5000UL)) {
if (ELAPSED(ms, t2 + 5000UL)) { heating = false;
heating = false; SHV((bias - d) >> 1);
SHV((bias - d) >> 1, (bias - d) >> 1); t1 = ms;
t1 = ms; t_high = t1 - t2;
t_high = t1 - t2; maxT = target;
maxT = target;
}
} }
if (!heating && current_temp < target) { if (!heating && current_temp < target && ELAPSED(ms, t1 + 5000UL)) {
if (ELAPSED(ms, t1 + 5000UL)) { heating = true;
heating = true; t2 = ms;
t2 = ms; t_low = t2 - t1;
t_low = t2 - t1; if (cycles > 0) {
if (cycles > 0) { const long max_pow = GHV(MAX_CHAMBER_POWER, MAX_BED_POWER, PID_MAX);
const long max_pow = GHV(MAX_BED_POWER, PID_MAX); bias += (d * (t_high - t_low)) / (t_low + t_high);
bias += (d * (t_high - t_low)) / (t_low + t_high); LIMIT(bias, 20, max_pow - 20);
LIMIT(bias, 20, max_pow - 20); d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
SERIAL_ECHOPAIR(STR_BIAS, bias, STR_D_COLON, d, STR_T_MIN, minT, STR_T_MAX, maxT);
SERIAL_ECHOPAIR(STR_BIAS, bias, STR_D_COLON, d, STR_T_MIN, minT, STR_T_MAX, maxT); if (cycles > 2) {
if (cycles > 2) { const float Ku = (4.0f * d) / (float(M_PI) * (maxT - minT) * 0.5f),
const float Ku = (4.0f * d) / (float(M_PI) * (maxT - minT) * 0.5f), Tu = float(t_low + t_high) * 0.001f,
Tu = float(t_low + t_high) * 0.001f, pf = ischamber ? 0.2f : (isbed ? 0.2f : 0.6f),
pf = isbed ? 0.2f : 0.6f, df = ischamber ? 1.0f / 3.0f : (isbed ? 1.0f / 3.0f : 1.0f / 8.0f);
df = isbed ? 1.0f / 3.0f : 1.0f / 8.0f;
tune_pid.Kp = Ku * pf;
SERIAL_ECHOPAIR(STR_KU, Ku, STR_TU, Tu); tune_pid.Ki = tune_pid.Kp * 2.0f / Tu;
if (isbed) { // Do not remove this otherwise PID autotune won't work right for the bed! tune_pid.Kd = tune_pid.Kp * Tu * df;
tune_pid.Kp = Ku * 0.2f;
tune_pid.Ki = 2 * tune_pid.Kp / Tu; SERIAL_ECHOLNPAIR(STR_KU, Ku, STR_TU, Tu);
tune_pid.Kd = tune_pid.Kp * Tu / 3; if (ischamber || isbed)
SERIAL_ECHOLNPGM("\n" " No overshoot"); // Works far better for the bed. Classic and some have bad ringing. SERIAL_ECHOLNPGM(" No overshoot");
SERIAL_ECHOLNPAIR(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd); else
} SERIAL_ECHOLNPGM(STR_CLASSIC_PID);
else { SERIAL_ECHOLNPAIR(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd);
tune_pid.Kp = Ku * pf;
tune_pid.Kd = tune_pid.Kp * Tu * df;
tune_pid.Ki = 2 * tune_pid.Kp / Tu;
SERIAL_ECHOLNPGM("\n" STR_CLASSIC_PID);
SERIAL_ECHOLNPAIR(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd);
}
/**
tune_pid.Kp = 0.33 * Ku;
tune_pid.Ki = tune_pid.Kp / Tu;
tune_pid.Kd = tune_pid.Kp * Tu / 3;
SERIAL_ECHOLNPGM(" Some overshoot");
SERIAL_ECHOLNPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd, " No overshoot");
tune_pid.Kp = 0.2 * Ku;
tune_pid.Ki = 2 * tune_pid.Kp / Tu;
tune_pid.Kd = tune_pid.Kp * Tu / 3;
SERIAL_ECHOPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd);
*/
}
} }
SHV((bias + d) >> 1, (bias + d) >> 1);
cycles++;
minT = target;
} }
SHV((bias + d) >> 1);
cycles++;
minT = target;
} }
} }
@ -649,14 +625,14 @@ volatile bool Temperature::raw_temps_ready = false;
// Report heater states every 2 seconds // Report heater states every 2 seconds
if (ELAPSED(ms, next_temp_ms)) { if (ELAPSED(ms, next_temp_ms)) {
#if HAS_TEMP_SENSOR #if HAS_TEMP_SENSOR
print_heater_states(isbed ? active_extruder : heater_id); print_heater_states(ischamber ? active_extruder : (isbed ? active_extruder : heater_id));
SERIAL_EOL(); SERIAL_EOL();
#endif #endif
next_temp_ms = ms + 2000UL; next_temp_ms = ms + 2000UL;
// Make sure heating is actually working // Make sure heating is actually working
#if WATCH_PID #if WATCH_PID
if (BOTH(WATCH_BED, WATCH_HOTENDS) || isbed == DISABLED(WATCH_HOTENDS)) { if (BOTH(WATCH_BED, WATCH_HOTENDS) || isbed == DISABLED(WATCH_HOTENDS) || ischamber == DISABLED(WATCH_HOTENDS)) {
if (!heated) { // If not yet reached target... if (!heated) { // If not yet reached target...
if (current_temp > next_watch_temp) { // Over the watch temp? if (current_temp > next_watch_temp) { // Over the watch temp?
next_watch_temp = current_temp + watch_temp_increase; // - set the next temp to watch for next_watch_temp = current_temp + watch_temp_increase; // - set the next temp to watch for
@ -686,43 +662,47 @@ volatile bool Temperature::raw_temps_ready = false;
if (cycles > ncycles && cycles > 2) { if (cycles > ncycles && cycles > 2) {
SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_FINISHED); SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_FINISHED);
#if HAS_PID_FOR_BOTH #if EITHER(PIDTEMPBED, PIDTEMPCHAMBER)
const char * const estring = GHV(PSTR("bed"), NUL_STR); PGM_P const estring = GHV(PSTR("chamber"), PSTR("bed"), NUL_STR);
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp); say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki); say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd); say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
#elif ENABLED(PIDTEMP) #else
say_default_(); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp); say_default_(); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
say_default_(); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki); say_default_(); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
say_default_(); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd); say_default_(); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
#else
say_default_(); SERIAL_ECHOLNPAIR("bedKp ", tune_pid.Kp);
say_default_(); SERIAL_ECHOLNPAIR("bedKi ", tune_pid.Ki);
say_default_(); SERIAL_ECHOLNPAIR("bedKd ", tune_pid.Kd);
#endif #endif
#define _SET_BED_PID() do { \ auto _set_hotend_pid = [](const uint8_t e, const PID_t &in_pid) {
temp_bed.pid.Kp = tune_pid.Kp; \ #if ENABLED(PIDTEMP)
temp_bed.pid.Ki = scalePID_i(tune_pid.Ki); \ PID_PARAM(Kp, e) = in_pid.Kp;
temp_bed.pid.Kd = scalePID_d(tune_pid.Kd); \ PID_PARAM(Ki, e) = scalePID_i(in_pid.Ki);
}while(0) PID_PARAM(Kd, e) = scalePID_d(in_pid.Kd);
updatePID();
#else
UNUSED(e); UNUSED(in_pid);
#endif
};
#define _SET_EXTRUDER_PID() do { \ #if ENABLED(PIDTEMPBED)
PID_PARAM(Kp, heater_id) = tune_pid.Kp; \ auto _set_bed_pid = [](const PID_t &in_pid) {
PID_PARAM(Ki, heater_id) = scalePID_i(tune_pid.Ki); \ temp_bed.pid.Kp = in_pid.Kp;
PID_PARAM(Kd, heater_id) = scalePID_d(tune_pid.Kd); \ temp_bed.pid.Ki = scalePID_i(in_pid.Ki);
updatePID(); }while(0) temp_bed.pid.Kd = scalePID_d(in_pid.Kd);
};
#endif
#if ENABLED(PIDTEMPCHAMBER)
auto _set_chamber_pid = [](const PID_t &in_pid) {
temp_chamber.pid.Kp = in_pid.Kp;
temp_chamber.pid.Ki = scalePID_i(in_pid.Ki);
temp_chamber.pid.Kd = scalePID_d(in_pid.Kd);
};
#endif
// Use the result? (As with "M303 U1") // Use the result? (As with "M303 U1")
if (set_result) { if (set_result)
#if HAS_PID_FOR_BOTH GHV(_set_chamber_pid(tune_pid), _set_bed_pid(tune_pid), _set_hotend_pid(heater_id, tune_pid));
if (isbed) _SET_BED_PID(); else _SET_EXTRUDER_PID();
#elif ENABLED(PIDTEMP)
_SET_EXTRUDER_PID();
#else
_SET_BED_PID();
#endif
}
TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color)); TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color));
@ -939,10 +919,11 @@ void Temperature::min_temp_error(const heater_id_t heater_id) {
_temp_error(heater_id, PSTR(STR_T_MINTEMP), GET_TEXT(MSG_ERR_MINTEMP)); _temp_error(heater_id, PSTR(STR_T_MINTEMP), GET_TEXT(MSG_ERR_MINTEMP));
} }
#if ANY(PID_DEBUG, PID_BED_DEBUG, PID_CHAMBER_DEBUG)
bool Temperature::pid_debug_flag; // = 0
#endif
#if HAS_HOTEND #if HAS_HOTEND
#if ENABLED(PID_DEBUG)
extern bool pid_debug_flag;
#endif
float Temperature::get_pid_output_hotend(const uint8_t E_NAME) { float Temperature::get_pid_output_hotend(const uint8_t E_NAME) {
const uint8_t ee = HOTEND_INDEX; const uint8_t ee = HOTEND_INDEX;
@ -1023,23 +1004,18 @@ void Temperature::min_temp_error(const heater_id_t heater_id) {
#if ENABLED(PID_DEBUG) #if ENABLED(PID_DEBUG)
if (ee == active_extruder && pid_debug_flag) { if (ee == active_extruder && pid_debug_flag) {
SERIAL_ECHO_START(); SERIAL_ECHO_MSG(STR_PID_DEBUG, ee, STR_PID_DEBUG_INPUT, temp_hotend[ee].celsius, STR_PID_DEBUG_OUTPUT, pid_output
SERIAL_ECHOPAIR(STR_PID_DEBUG, ee, STR_PID_DEBUG_INPUT, temp_hotend[ee].celsius, STR_PID_DEBUG_OUTPUT, pid_output); #if DISABLED(PID_OPENLOOP)
#if DISABLED(PID_OPENLOOP) , STR_PID_DEBUG_PTERM, work_pid[ee].Kp
{ , STR_PID_DEBUG_ITERM, work_pid[ee].Ki
SERIAL_ECHOPAIR( , STR_PID_DEBUG_DTERM, work_pid[ee].Kd
STR_PID_DEBUG_PTERM, work_pid[ee].Kp,
STR_PID_DEBUG_ITERM, work_pid[ee].Ki,
STR_PID_DEBUG_DTERM, work_pid[ee].Kd
#if ENABLED(PID_EXTRUSION_SCALING) #if ENABLED(PID_EXTRUSION_SCALING)
, STR_PID_DEBUG_CTERM, work_pid[ee].Kc , STR_PID_DEBUG_CTERM, work_pid[ee].Kc
#endif #endif
); #endif
} );
#endif
SERIAL_EOL();
} }
#endif // PID_DEBUG #endif
#else // No PID enabled #else // No PID enabled
@ -1099,13 +1075,76 @@ void Temperature::min_temp_error(const heater_id_t heater_id) {
#endif // PID_OPENLOOP #endif // PID_OPENLOOP
#if ENABLED(PID_BED_DEBUG) #if ENABLED(PID_BED_DEBUG)
if (pid_debug_flag) {
SERIAL_ECHO_MSG(
" PID_BED_DEBUG : Input ", temp_bed.celsius, " Output ", pid_output
#if DISABLED(PID_OPENLOOP)
, STR_PID_DEBUG_PTERM, work_pid.Kp
, STR_PID_DEBUG_ITERM, work_pid.Ki
, STR_PID_DEBUG_DTERM, work_pid.Kd
#endif
);
}
#endif
return pid_output;
}
#endif // PIDTEMPBED
#if ENABLED(PIDTEMPCHAMBER)
float Temperature::get_pid_output_chamber() {
#if DISABLED(PID_OPENLOOP)
static PID_t work_pid{0};
static float temp_iState = 0, temp_dState = 0;
static bool pid_reset = true;
float pid_output = 0;
const float max_power_over_i_gain = float(MAX_CHAMBER_POWER) / temp_chamber.pid.Ki - float(MIN_CHAMBER_POWER),
pid_error = temp_chamber.target - temp_chamber.celsius;
if (!temp_chamber.target || pid_error < -(PID_FUNCTIONAL_RANGE)) {
pid_output = 0;
pid_reset = true;
}
else if (pid_error > PID_FUNCTIONAL_RANGE) {
pid_output = MAX_CHAMBER_POWER;
pid_reset = true;
}
else {
if (pid_reset) {
temp_iState = 0.0;
work_pid.Kd = 0.0;
pid_reset = false;
}
temp_iState = constrain(temp_iState + pid_error, 0, max_power_over_i_gain);
work_pid.Kp = temp_chamber.pid.Kp * pid_error;
work_pid.Ki = temp_chamber.pid.Ki * temp_iState;
work_pid.Kd = work_pid.Kd + PID_K2 * (temp_chamber.pid.Kd * (temp_dState - temp_chamber.celsius) - work_pid.Kd);
temp_dState = temp_chamber.celsius;
pid_output = constrain(work_pid.Kp + work_pid.Ki + work_pid.Kd + float(MIN_CHAMBER_POWER), 0, MAX_CHAMBER_POWER);
}
#else // PID_OPENLOOP
const float pid_output = constrain(temp_chamber.target, 0, MAX_CHAMBER_POWER);
#endif // PID_OPENLOOP
#if ENABLED(PID_CHAMBER_DEBUG)
{ {
SERIAL_ECHO_MSG( SERIAL_ECHO_MSG(
" PID_BED_DEBUG : Input ", temp_bed.celsius, " Output ", pid_output, " PID_CHAMBER_DEBUG : Input ", temp_chamber.celsius, " Output ", pid_output
#if DISABLED(PID_OPENLOOP) #if DISABLED(PID_OPENLOOP)
STR_PID_DEBUG_PTERM, work_pid.Kp, , STR_PID_DEBUG_PTERM, work_pid.Kp
STR_PID_DEBUG_ITERM, work_pid.Ki, , STR_PID_DEBUG_ITERM, work_pid.Ki
STR_PID_DEBUG_DTERM, work_pid.Kd, , STR_PID_DEBUG_DTERM, work_pid.Kd
#endif #endif
); );
} }
@ -1114,7 +1153,7 @@ void Temperature::min_temp_error(const heater_id_t heater_id) {
return pid_output; return pid_output;
} }
#endif // PIDTEMPBED #endif // PIDTEMPCHAMBER
/** /**
* Manage heating activities for extruder hot-ends and a heated bed * Manage heating activities for extruder hot-ends and a heated bed
@ -1363,42 +1402,47 @@ void Temperature::manage_heater() {
} }
#endif #endif
#if ENABLED(PIDTEMPCHAMBER)
// PIDTEMPCHAMBER doens't support a CHAMBER_VENT yet.
temp_chamber.soft_pwm_amount = WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0;
#else
if (ELAPSED(ms, next_chamber_check_ms)) { if (ELAPSED(ms, next_chamber_check_ms)) {
next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL; next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL;
if (WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) { if (WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) {
if (flag_chamber_excess_heat) { if (flag_chamber_excess_heat) {
temp_chamber.soft_pwm_amount = 0; temp_chamber.soft_pwm_amount = 0;
#if ENABLED(CHAMBER_VENT) #if ENABLED(CHAMBER_VENT)
if (!flag_chamber_off) MOVE_SERVO(CHAMBER_VENT_SERVO_NR, temp_chamber.celsius <= temp_chamber.target ? 0 : 90); if (!flag_chamber_off) MOVE_SERVO(CHAMBER_VENT_SERVO_NR, temp_chamber.celsius <= temp_chamber.target ? 0 : 90);
#endif #endif
}
else {
#if ENABLED(CHAMBER_LIMIT_SWITCHING)
if (temp_chamber.celsius >= temp_chamber.target + TEMP_CHAMBER_HYSTERESIS)
temp_chamber.soft_pwm_amount = 0;
else if (temp_chamber.celsius <= temp_chamber.target - (TEMP_CHAMBER_HYSTERESIS))
temp_chamber.soft_pwm_amount = (MAX_CHAMBER_POWER) >> 1;
#else
temp_chamber.soft_pwm_amount = temp_chamber.celsius < temp_chamber.target ? (MAX_CHAMBER_POWER) >> 1 : 0;
#endif
#if ENABLED(CHAMBER_VENT)
if (!flag_chamber_off) MOVE_SERVO(CHAMBER_VENT_SERVO_NR, 0);
#endif
}
} }
else { else {
#if ENABLED(CHAMBER_LIMIT_SWITCHING) temp_chamber.soft_pwm_amount = 0;
if (temp_chamber.celsius >= temp_chamber.target + TEMP_CHAMBER_HYSTERESIS) WRITE_HEATER_CHAMBER(LOW);
temp_chamber.soft_pwm_amount = 0;
else if (temp_chamber.celsius <= temp_chamber.target - (TEMP_CHAMBER_HYSTERESIS))
temp_chamber.soft_pwm_amount = (MAX_CHAMBER_POWER) >> 1;
#else
temp_chamber.soft_pwm_amount = temp_chamber.celsius < temp_chamber.target ? (MAX_CHAMBER_POWER) >> 1 : 0;
#endif
#if ENABLED(CHAMBER_VENT)
if (!flag_chamber_off) MOVE_SERVO(CHAMBER_VENT_SERVO_NR, 0);
#endif
} }
}
else {
temp_chamber.soft_pwm_amount = 0;
WRITE_HEATER_CHAMBER(LOW);
}
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
tr_state_machine[RUNAWAY_IND_CHAMBER].run(temp_chamber.celsius, temp_chamber.target, H_CHAMBER, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS);
#endif
}
// TODO: Implement true PID pwm }
//temp_bed.soft_pwm_amount = WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0; #if ENABLED(THERMAL_PROTECTION_CHAMBER)
tr_state_machine[RUNAWAY_IND_CHAMBER].run(temp_chamber.celsius, temp_chamber.target, H_CHAMBER, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS);
#endif
#endif
#endif // HAS_HEATED_CHAMBER #endif // HAS_HEATED_CHAMBER

21
Marlin/src/module/temperature.h

@ -210,7 +210,11 @@ struct PIDHeaterInfo : public HeaterInfo {
typedef temp_info_t probe_info_t; typedef temp_info_t probe_info_t;
#endif #endif
#if HAS_HEATED_CHAMBER #if HAS_HEATED_CHAMBER
typedef heater_info_t chamber_info_t; #if ENABLED(PIDTEMPCHAMBER)
typedef struct PIDHeaterInfo<PID_t> chamber_info_t;
#else
typedef heater_info_t chamber_info_t;
#endif
#elif HAS_TEMP_CHAMBER #elif HAS_TEMP_CHAMBER
typedef temp_info_t chamber_info_t; typedef temp_info_t chamber_info_t;
#endif #endif
@ -415,7 +419,7 @@ class Temperature {
#if HAS_HEATED_CHAMBER #if HAS_HEATED_CHAMBER
TERN_(WATCH_CHAMBER, static chamber_watch_t watch_chamber); TERN_(WATCH_CHAMBER, static chamber_watch_t watch_chamber);
static millis_t next_chamber_check_ms; TERN(PIDTEMPCHAMBER,,static millis_t next_chamber_check_ms);
#ifdef CHAMBER_MINTEMP #ifdef CHAMBER_MINTEMP
static int16_t mintemp_raw_CHAMBER; static int16_t mintemp_raw_CHAMBER;
#endif #endif
@ -751,6 +755,11 @@ class Temperature {
* Perform auto-tuning for hotend or bed in response to M303 * Perform auto-tuning for hotend or bed in response to M303
*/ */
#if HAS_PID_HEATING #if HAS_PID_HEATING
#if ANY(PID_DEBUG, PID_BED_DEBUG, PID_CHAMBER_DEBUG)
static bool pid_debug_flag;
#endif
static void PID_autotune(const float &target, const heater_id_t heater_id, const int8_t ncycles, const bool set_result=false); static void PID_autotune(const float &target, const heater_id_t heater_id, const int8_t ncycles, const bool set_result=false);
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING) #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
@ -826,11 +835,9 @@ class Temperature {
static void checkExtruderAutoFans(); static void checkExtruderAutoFans();
static float get_pid_output_hotend(const uint8_t e); TERN_(HAS_HOTEND, static float get_pid_output_hotend(const uint8_t e));
TERN_(PIDTEMPBED, static float get_pid_output_bed());
TERN_(PIDTEMPBED, static float get_pid_output_bed()); TERN_(PIDTEMPCHAMBER, static float get_pid_output_chamber());
TERN_(HAS_HEATED_CHAMBER, static float get_pid_output_chamber());
static void _temp_error(const heater_id_t e, PGM_P const serial_msg, PGM_P const lcd_msg); static void _temp_error(const heater_id_t e, PGM_P const serial_msg, PGM_P const lcd_msg);
static void min_temp_error(const heater_id_t e); static void min_temp_error(const heater_id_t e);

Loading…
Cancel
Save