Browse Source

Added #ifdef NUM_SERVOS to servo.cpp

pull/1/head
Erik van der Zalm 12 years ago
parent
commit
86cce025f4
  1. 676
      Marlin/Servo.cpp

676
Marlin/Servo.cpp

@ -1,337 +1,339 @@
/* /*
Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2 Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved. Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/ */
/* /*
A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method. A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
The servos are pulsed in the background using the value most recently written using the write() method The servos are pulsed in the background using the value most recently written using the write() method
Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached. Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four. Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
The methods are: The methods are:
Servo - Class for manipulating servo motors connected to Arduino pins. Servo - Class for manipulating servo motors connected to Arduino pins.
attach(pin ) - Attaches a servo motor to an i/o pin. attach(pin ) - Attaches a servo motor to an i/o pin.
attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds
default min is 544, max is 2400 default min is 544, max is 2400
write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds) write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
writeMicroseconds() - Sets the servo pulse width in microseconds writeMicroseconds() - Sets the servo pulse width in microseconds
read() - Gets the last written servo pulse width as an angle between 0 and 180. read() - Gets the last written servo pulse width as an angle between 0 and 180.
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release) readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
attached() - Returns true if there is a servo attached. attached() - Returns true if there is a servo attached.
detach() - Stops an attached servos from pulsing its i/o pin. detach() - Stops an attached servos from pulsing its i/o pin.
*/ */
#ifdef NUM_SERVOS
#include <avr/interrupt.h> #include <avr/interrupt.h>
#include <Arduino.h> #include <Arduino.h>
#include "Servo.h" #include "Servo.h"
#define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009 #define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds #define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009 #define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009
//#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER) //#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER)
static servo_t servos[MAX_SERVOS]; // static array of servo structures static servo_t servos[MAX_SERVOS]; // static array of servo structures
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval) static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
uint8_t ServoCount = 0; // the total number of attached servos uint8_t ServoCount = 0; // the total number of attached servos
// convenience macros // convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo #define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer #define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel #define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel #define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo #define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo #define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
/************ static functions common to all instances ***********************/ /************ static functions common to all instances ***********************/
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA) static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
{ {
if( Channel[timer] < 0 ) if( Channel[timer] < 0 )
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer *TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
else{ else{
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true ) if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true )
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
} }
Channel[timer]++; // increment to the next channel Channel[timer]++; // increment to the next channel
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) { if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
*OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks; *OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
if(SERVO(timer,Channel[timer]).Pin.isActive == true) // check if activated if(SERVO(timer,Channel[timer]).Pin.isActive == true) // check if activated
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
} }
else { else {
// finished all channels so wait for the refresh period to expire before starting over // finished all channels so wait for the refresh period to expire before starting over
if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) ) // allow a few ticks to ensure the next OCR1A not missed if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) ) // allow a few ticks to ensure the next OCR1A not missed
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL); *OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
else else
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed *OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
} }
} }
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform #ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino // Interrupt handlers for Arduino
#if defined(_useTimer1) #if defined(_useTimer1)
SIGNAL (TIMER1_COMPA_vect) SIGNAL (TIMER1_COMPA_vect)
{ {
handle_interrupts(_timer1, &TCNT1, &OCR1A); handle_interrupts(_timer1, &TCNT1, &OCR1A);
} }
#endif #endif
#if defined(_useTimer3) #if defined(_useTimer3)
SIGNAL (TIMER3_COMPA_vect) SIGNAL (TIMER3_COMPA_vect)
{ {
handle_interrupts(_timer3, &TCNT3, &OCR3A); handle_interrupts(_timer3, &TCNT3, &OCR3A);
} }
#endif #endif
#if defined(_useTimer4) #if defined(_useTimer4)
SIGNAL (TIMER4_COMPA_vect) SIGNAL (TIMER4_COMPA_vect)
{ {
handle_interrupts(_timer4, &TCNT4, &OCR4A); handle_interrupts(_timer4, &TCNT4, &OCR4A);
} }
#endif #endif
#if defined(_useTimer5) #if defined(_useTimer5)
SIGNAL (TIMER5_COMPA_vect) SIGNAL (TIMER5_COMPA_vect)
{ {
handle_interrupts(_timer5, &TCNT5, &OCR5A); handle_interrupts(_timer5, &TCNT5, &OCR5A);
} }
#endif #endif
#elif defined WIRING #elif defined WIRING
// Interrupt handlers for Wiring // Interrupt handlers for Wiring
#if defined(_useTimer1) #if defined(_useTimer1)
void Timer1Service() void Timer1Service()
{ {
handle_interrupts(_timer1, &TCNT1, &OCR1A); handle_interrupts(_timer1, &TCNT1, &OCR1A);
} }
#endif #endif
#if defined(_useTimer3) #if defined(_useTimer3)
void Timer3Service() void Timer3Service()
{ {
handle_interrupts(_timer3, &TCNT3, &OCR3A); handle_interrupts(_timer3, &TCNT3, &OCR3A);
} }
#endif #endif
#endif #endif
static void initISR(timer16_Sequence_t timer) static void initISR(timer16_Sequence_t timer)
{ {
#if defined (_useTimer1) #if defined (_useTimer1)
if(timer == _timer1) { if(timer == _timer1) {
TCCR1A = 0; // normal counting mode TCCR1A = 0; // normal counting mode
TCCR1B = _BV(CS11); // set prescaler of 8 TCCR1B = _BV(CS11); // set prescaler of 8
TCNT1 = 0; // clear the timer count TCNT1 = 0; // clear the timer count
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__) #if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
TIFR |= _BV(OCF1A); // clear any pending interrupts; TIFR |= _BV(OCF1A); // clear any pending interrupts;
TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt
#else #else
// here if not ATmega8 or ATmega128 // here if not ATmega8 or ATmega128
TIFR1 |= _BV(OCF1A); // clear any pending interrupts; TIFR1 |= _BV(OCF1A); // clear any pending interrupts;
TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt
#endif #endif
#if defined(WIRING) #if defined(WIRING)
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service); timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif #endif
} }
#endif #endif
#if defined (_useTimer3) #if defined (_useTimer3)
if(timer == _timer3) { if(timer == _timer3) {
TCCR3A = 0; // normal counting mode TCCR3A = 0; // normal counting mode
TCCR3B = _BV(CS31); // set prescaler of 8 TCCR3B = _BV(CS31); // set prescaler of 8
TCNT3 = 0; // clear the timer count TCNT3 = 0; // clear the timer count
#if defined(__AVR_ATmega128__) #if defined(__AVR_ATmega128__)
TIFR |= _BV(OCF3A); // clear any pending interrupts; TIFR |= _BV(OCF3A); // clear any pending interrupts;
ETIMSK |= _BV(OCIE3A); // enable the output compare interrupt ETIMSK |= _BV(OCIE3A); // enable the output compare interrupt
#else #else
TIFR3 = _BV(OCF3A); // clear any pending interrupts; TIFR3 = _BV(OCF3A); // clear any pending interrupts;
TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt
#endif #endif
#if defined(WIRING) #if defined(WIRING)
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif #endif
} }
#endif #endif
#if defined (_useTimer4) #if defined (_useTimer4)
if(timer == _timer4) { if(timer == _timer4) {
TCCR4A = 0; // normal counting mode TCCR4A = 0; // normal counting mode
TCCR4B = _BV(CS41); // set prescaler of 8 TCCR4B = _BV(CS41); // set prescaler of 8
TCNT4 = 0; // clear the timer count TCNT4 = 0; // clear the timer count
TIFR4 = _BV(OCF4A); // clear any pending interrupts; TIFR4 = _BV(OCF4A); // clear any pending interrupts;
TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt
} }
#endif #endif
#if defined (_useTimer5) #if defined (_useTimer5)
if(timer == _timer5) { if(timer == _timer5) {
TCCR5A = 0; // normal counting mode TCCR5A = 0; // normal counting mode
TCCR5B = _BV(CS51); // set prescaler of 8 TCCR5B = _BV(CS51); // set prescaler of 8
TCNT5 = 0; // clear the timer count TCNT5 = 0; // clear the timer count
TIFR5 = _BV(OCF5A); // clear any pending interrupts; TIFR5 = _BV(OCF5A); // clear any pending interrupts;
TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt
} }
#endif #endif
} }
static void finISR(timer16_Sequence_t timer) static void finISR(timer16_Sequence_t timer)
{ {
//disable use of the given timer //disable use of the given timer
#if defined WIRING // Wiring #if defined WIRING // Wiring
if(timer == _timer1) { if(timer == _timer1) {
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__) #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
TIMSK1 &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt TIMSK1 &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
#else #else
TIMSK &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt TIMSK &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
#endif #endif
timerDetach(TIMER1OUTCOMPAREA_INT); timerDetach(TIMER1OUTCOMPAREA_INT);
} }
else if(timer == _timer3) { else if(timer == _timer3) {
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__) #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
TIMSK3 &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt TIMSK3 &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
#else #else
ETIMSK &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt ETIMSK &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
#endif #endif
timerDetach(TIMER3OUTCOMPAREA_INT); timerDetach(TIMER3OUTCOMPAREA_INT);
} }
#else #else
//For arduino - in future: call here to a currently undefined function to reset the timer //For arduino - in future: call here to a currently undefined function to reset the timer
#endif #endif
} }
static boolean isTimerActive(timer16_Sequence_t timer) static boolean isTimerActive(timer16_Sequence_t timer)
{ {
// returns true if any servo is active on this timer // returns true if any servo is active on this timer
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) { for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
if(SERVO(timer,channel).Pin.isActive == true) if(SERVO(timer,channel).Pin.isActive == true)
return true; return true;
} }
return false; return false;
} }
/****************** end of static functions ******************************/ /****************** end of static functions ******************************/
Servo::Servo() Servo::Servo()
{ {
if( ServoCount < MAX_SERVOS) { if( ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance this->servoIndex = ServoCount++; // assign a servo index to this instance
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009 servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
} }
else else
this->servoIndex = INVALID_SERVO ; // too many servos this->servoIndex = INVALID_SERVO ; // too many servos
} }
uint8_t Servo::attach(int pin) uint8_t Servo::attach(int pin)
{ {
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
} }
uint8_t Servo::attach(int pin, int min, int max) uint8_t Servo::attach(int pin, int min, int max)
{ {
if(this->servoIndex < MAX_SERVOS ) { if(this->servoIndex < MAX_SERVOS ) {
pinMode( pin, OUTPUT) ; // set servo pin to output pinMode( pin, OUTPUT) ; // set servo pin to output
servos[this->servoIndex].Pin.nbr = pin; servos[this->servoIndex].Pin.nbr = pin;
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128 // todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max)/4; this->max = (MAX_PULSE_WIDTH - max)/4;
// initialize the timer if it has not already been initialized // initialize the timer if it has not already been initialized
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false) if(isTimerActive(timer) == false)
initISR(timer); initISR(timer);
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
} }
return this->servoIndex ; return this->servoIndex ;
} }
void Servo::detach() void Servo::detach()
{ {
servos[this->servoIndex].Pin.isActive = false; servos[this->servoIndex].Pin.isActive = false;
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false) { if(isTimerActive(timer) == false) {
finISR(timer); finISR(timer);
} }
} }
void Servo::write(int value) void Servo::write(int value)
{ {
if(value < MIN_PULSE_WIDTH) if(value < MIN_PULSE_WIDTH)
{ // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds) { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if(value < 0) value = 0; if(value < 0) value = 0;
if(value > 180) value = 180; if(value > 180) value = 180;
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX()); value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
} }
this->writeMicroseconds(value); this->writeMicroseconds(value);
} }
void Servo::writeMicroseconds(int value) void Servo::writeMicroseconds(int value)
{ {
// calculate and store the values for the given channel // calculate and store the values for the given channel
byte channel = this->servoIndex; byte channel = this->servoIndex;
if( (channel < MAX_SERVOS) ) // ensure channel is valid if( (channel < MAX_SERVOS) ) // ensure channel is valid
{ {
if( value < SERVO_MIN() ) // ensure pulse width is valid if( value < SERVO_MIN() ) // ensure pulse width is valid
value = SERVO_MIN(); value = SERVO_MIN();
else if( value > SERVO_MAX() ) else if( value > SERVO_MAX() )
value = SERVO_MAX(); value = SERVO_MAX();
value = value - TRIM_DURATION; value = value - TRIM_DURATION;
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009 value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
uint8_t oldSREG = SREG; uint8_t oldSREG = SREG;
cli(); cli();
servos[channel].ticks = value; servos[channel].ticks = value;
SREG = oldSREG; SREG = oldSREG;
} }
} }
int Servo::read() // return the value as degrees int Servo::read() // return the value as degrees
{ {
return map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180); return map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
} }
int Servo::readMicroseconds() int Servo::readMicroseconds()
{ {
unsigned int pulsewidth; unsigned int pulsewidth;
if( this->servoIndex != INVALID_SERVO ) if( this->servoIndex != INVALID_SERVO )
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION ; // 12 aug 2009 pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION ; // 12 aug 2009
else else
pulsewidth = 0; pulsewidth = 0;
return pulsewidth; return pulsewidth;
} }
bool Servo::attached() bool Servo::attached()
{ {
return servos[this->servoIndex].Pin.isActive ; return servos[this->servoIndex].Pin.isActive ;
} }
#endif

Loading…
Cancel
Save