|
|
@ -141,8 +141,8 @@ float Planner::previous_speed[NUM_AXIS], |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE) |
|
|
|
float Planner::extruder_advance_k = LIN_ADVANCE_K; |
|
|
|
float Planner::position_float[NUM_AXIS] = { 0 }; |
|
|
|
float Planner::extruder_advance_k = LIN_ADVANCE_K, |
|
|
|
Planner::position_float[NUM_AXIS] = { 0 }; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(ENSURE_SMOOTH_MOVES) |
|
|
@ -654,7 +654,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
// The target position of the tool in absolute steps
|
|
|
|
// Calculate target position in absolute steps
|
|
|
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
|
|
long target[XYZE] = { |
|
|
|
const long target[XYZE] = { |
|
|
|
lround(a * axis_steps_per_mm[X_AXIS]), |
|
|
|
lround(b * axis_steps_per_mm[Y_AXIS]), |
|
|
|
lround(c * axis_steps_per_mm[Z_AXIS]), |
|
|
@ -670,16 +670,16 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE) |
|
|
|
float target_float[XYZE] = {a, b, c, e}; |
|
|
|
float de_float = target_float[E_AXIS] - position_float[E_AXIS]; |
|
|
|
float mm_D_float = sqrt(sq(target_float[X_AXIS] - position_float[X_AXIS]) + sq(target_float[Y_AXIS] - position_float[Y_AXIS])); |
|
|
|
const float target_float[XYZE] = { a, b, c, e }, |
|
|
|
de_float = target_float[E_AXIS] - position_float[E_AXIS], |
|
|
|
mm_D_float = sqrt(sq(target_float[X_AXIS] - position_float[X_AXIS]) + sq(target_float[Y_AXIS] - position_float[Y_AXIS])); |
|
|
|
|
|
|
|
memcpy(position_float, target_float, sizeof(position_float)); |
|
|
|
#endif |
|
|
|
|
|
|
|
long da = target[X_AXIS] - position[X_AXIS], |
|
|
|
db = target[Y_AXIS] - position[Y_AXIS], |
|
|
|
dc = target[Z_AXIS] - position[Z_AXIS]; |
|
|
|
const long da = target[X_AXIS] - position[X_AXIS], |
|
|
|
db = target[Y_AXIS] - position[Y_AXIS], |
|
|
|
dc = target[Z_AXIS] - position[Z_AXIS]; |
|
|
|
|
|
|
|
/*
|
|
|
|
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s); |
|
|
@ -755,11 +755,11 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
#endif |
|
|
|
if (de < 0) SBI(dm, E_AXIS); |
|
|
|
|
|
|
|
float esteps_float = de * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01; |
|
|
|
int32_t esteps = abs(esteps_float) + 0.5; |
|
|
|
const float esteps_float = de * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01; |
|
|
|
const int32_t esteps = abs(esteps_float) + 0.5; |
|
|
|
|
|
|
|
// Calculate the buffer head after we push this byte
|
|
|
|
int8_t next_buffer_head = next_block_index(block_buffer_head); |
|
|
|
const uint8_t next_buffer_head = next_block_index(block_buffer_head); |
|
|
|
|
|
|
|
// If the buffer is full: good! That means we are well ahead of the robot.
|
|
|
|
// Rest here until there is room in the buffer.
|
|
|
@ -852,7 +852,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
|
|
|
|
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
|
|
|
|
|
|
|
|
for (int8_t i = 0; i < EXTRUDERS; i++) |
|
|
|
for (uint8_t i = 0; i < EXTRUDERS; i++) |
|
|
|
if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--; |
|
|
|
|
|
|
|
switch(extruder) { |
|
|
@ -980,7 +980,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
// Calculate moves/second for this move. No divide by zero due to previous checks.
|
|
|
|
float inverse_mm_s = fr_mm_s * inverse_millimeters; |
|
|
|
|
|
|
|
int moves_queued = movesplanned(); |
|
|
|
const uint8_t moves_queued = movesplanned(); |
|
|
|
|
|
|
|
// Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
|
|
|
|
#if ENABLED(SLOWDOWN) |
|
|
@ -1037,7 +1037,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
// If the index has changed (must have gone forward)...
|
|
|
|
if (filwidth_delay_index[0] != filwidth_delay_index[1]) { |
|
|
|
filwidth_e_count = 0; // Reset the E movement counter
|
|
|
|
int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
|
|
|
|
const int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
|
|
|
|
do { |
|
|
|
filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
|
|
|
|
measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
|
|
|
@ -1050,7 +1050,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
// Calculate and limit speed in mm/sec for each axis
|
|
|
|
float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
|
|
|
|
LOOP_XYZE(i) { |
|
|
|
float cs = fabs(current_speed[i] = delta_mm[i] * inverse_mm_s); |
|
|
|
const float cs = fabs(current_speed[i] = delta_mm[i] * inverse_mm_s); |
|
|
|
if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs); |
|
|
|
} |
|
|
|
|
|
|
@ -1058,7 +1058,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
#ifdef XY_FREQUENCY_LIMIT |
|
|
|
|
|
|
|
// Check and limit the xy direction change frequency
|
|
|
|
unsigned char direction_change = block->direction_bits ^ old_direction_bits; |
|
|
|
const unsigned char direction_change = block->direction_bits ^ old_direction_bits; |
|
|
|
old_direction_bits = block->direction_bits; |
|
|
|
segment_time = lround((float)segment_time / speed_factor); |
|
|
|
|
|
|
@ -1083,11 +1083,11 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
} |
|
|
|
ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time; |
|
|
|
|
|
|
|
long max_x_segment_time = MAX3(xs0, xs1, xs2), |
|
|
|
max_y_segment_time = MAX3(ys0, ys1, ys2), |
|
|
|
min_xy_segment_time = min(max_x_segment_time, max_y_segment_time); |
|
|
|
const long max_x_segment_time = MAX3(xs0, xs1, xs2), |
|
|
|
max_y_segment_time = MAX3(ys0, ys1, ys2), |
|
|
|
min_xy_segment_time = min(max_x_segment_time, max_y_segment_time); |
|
|
|
if (min_xy_segment_time < MAX_FREQ_TIME) { |
|
|
|
float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME); |
|
|
|
const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME); |
|
|
|
NOMORE(speed_factor, low_sf); |
|
|
|
} |
|
|
|
#endif // XY_FREQUENCY_LIMIT
|
|
|
@ -1100,7 +1100,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
} |
|
|
|
|
|
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
|
|
float steps_per_mm = block->step_event_count * inverse_millimeters; |
|
|
|
const float steps_per_mm = block->step_event_count * inverse_millimeters; |
|
|
|
uint32_t accel; |
|
|
|
if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) { |
|
|
|
// convert to: acceleration steps/sec^2
|
|
|
@ -1204,22 +1204,17 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
static float previous_safe_speed; |
|
|
|
|
|
|
|
float safe_speed = block->nominal_speed; |
|
|
|
bool limited = false; |
|
|
|
uint8_t limited = 0; |
|
|
|
LOOP_XYZE(i) { |
|
|
|
float jerk = fabs(current_speed[i]); |
|
|
|
if (jerk > max_jerk[i]) { |
|
|
|
// The actual jerk is lower if it has been limited by the XY jerk.
|
|
|
|
const float jerk = fabs(current_speed[i]), maxj = max_jerk[i]; |
|
|
|
if (jerk > maxj) { |
|
|
|
if (limited) { |
|
|
|
// Spare one division by a following gymnastics:
|
|
|
|
// Instead of jerk *= safe_speed / block->nominal_speed,
|
|
|
|
// multiply max_jerk[i] by the divisor.
|
|
|
|
jerk *= safe_speed; |
|
|
|
float mjerk = max_jerk[i] * block->nominal_speed; |
|
|
|
if (jerk > mjerk) safe_speed *= mjerk / jerk; |
|
|
|
const float mjerk = maxj * block->nominal_speed; |
|
|
|
if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; |
|
|
|
} |
|
|
|
else { |
|
|
|
safe_speed = max_jerk[i]; |
|
|
|
limited = true; |
|
|
|
++limited; |
|
|
|
safe_speed = maxj; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
@ -1236,7 +1231,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed; |
|
|
|
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
|
|
|
|
float v_factor = 1.f; |
|
|
|
limited = false; |
|
|
|
limited = 0; |
|
|
|
// Now limit the jerk in all axes.
|
|
|
|
LOOP_XYZE(axis) { |
|
|
|
// Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
|
|
|
@ -1247,28 +1242,21 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
v_entry *= v_factor; |
|
|
|
} |
|
|
|
// Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
|
|
|
|
float jerk = |
|
|
|
(v_exit > v_entry) ? |
|
|
|
((v_entry > 0.f || v_exit < 0.f) ? |
|
|
|
// coasting
|
|
|
|
(v_exit - v_entry) : |
|
|
|
// axis reversal
|
|
|
|
max(v_exit, -v_entry)) : |
|
|
|
// v_exit <= v_entry
|
|
|
|
((v_entry < 0.f || v_exit > 0.f) ? |
|
|
|
// coasting
|
|
|
|
(v_entry - v_exit) : |
|
|
|
// axis reversal
|
|
|
|
max(-v_exit, v_entry)); |
|
|
|
const float jerk = (v_exit > v_entry) |
|
|
|
? // coasting axis reversal
|
|
|
|
( (v_entry > 0.f || v_exit < 0.f) ? (v_exit - v_entry) : max(v_exit, -v_entry) ) |
|
|
|
: // v_exit <= v_entry coasting axis reversal
|
|
|
|
( (v_entry < 0.f || v_exit > 0.f) ? (v_entry - v_exit) : max(-v_exit, v_entry) ); |
|
|
|
|
|
|
|
if (jerk > max_jerk[axis]) { |
|
|
|
v_factor *= max_jerk[axis] / jerk; |
|
|
|
limited = true; |
|
|
|
++limited; |
|
|
|
} |
|
|
|
} |
|
|
|
if (limited) vmax_junction *= v_factor; |
|
|
|
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
|
|
|
|
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
|
|
|
|
float vmax_junction_threshold = vmax_junction * 0.99f; |
|
|
|
const float vmax_junction_threshold = vmax_junction * 0.99f; |
|
|
|
if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) { |
|
|
|
// Not coasting. The machine will stop and start the movements anyway,
|
|
|
|
// better to start the segment from start.
|
|
|
@ -1285,7 +1273,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
block->max_entry_speed = vmax_junction; |
|
|
|
|
|
|
|
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
|
|
|
|
float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters); |
|
|
|
const float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters); |
|
|
|
block->entry_speed = min(vmax_junction, v_allowable); |
|
|
|
|
|
|
|
// Initialize planner efficiency flags
|
|
|
@ -1305,36 +1293,41 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE) |
|
|
|
|
|
|
|
// Don't use LIN_ADVANCE for blocks if:
|
|
|
|
// !block->steps[E_AXIS]: We don't have E steps todo (Travel move)
|
|
|
|
// !block->steps[X_AXIS] && !block->steps[Y_AXIS]: We don't have a movement in XY direction (Retract / Prime moves)
|
|
|
|
// extruder_advance_k == 0.0: There is no advance factor set
|
|
|
|
// block->steps[E_AXIS] == block->step_event_count: A problem occurs when there's a very tiny move before a retract.
|
|
|
|
// In this case, the retract and the move will be executed together.
|
|
|
|
// This leads to an enormous number of advance steps due to a huge e_acceleration.
|
|
|
|
// The math is correct, but you don't want a retract move done with advance!
|
|
|
|
// de_float <= 0.0: Extruder is running in reverse direction (for example during "Wipe while retracting" (Slic3r) or "Combing" (Cura) movements)
|
|
|
|
if (!esteps || (!block->steps[X_AXIS] && !block->steps[Y_AXIS]) || extruder_advance_k == 0.0 || (uint32_t)esteps == block->step_event_count || de_float <= 0.0) { |
|
|
|
block->use_advance_lead = false; |
|
|
|
} |
|
|
|
else { |
|
|
|
block->use_advance_lead = true; |
|
|
|
//
|
|
|
|
// Use LIN_ADVANCE for blocks if all these are true:
|
|
|
|
//
|
|
|
|
// esteps : We have E steps todo (a printing move)
|
|
|
|
//
|
|
|
|
// block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
|
|
|
|
//
|
|
|
|
// extruder_advance_k : There is an advance factor set.
|
|
|
|
//
|
|
|
|
// block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
|
|
|
|
// In that case, the retract and move will be executed together.
|
|
|
|
// This leads to too many advance steps due to a huge e_acceleration.
|
|
|
|
// The math is good, but we must avoid retract moves with advance!
|
|
|
|
// de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
|
|
|
//
|
|
|
|
block->use_advance_lead = esteps |
|
|
|
&& (block->steps[X_AXIS] || block->steps[Y_AXIS]) |
|
|
|
&& extruder_advance_k |
|
|
|
&& (uint32_t)esteps != block->step_event_count |
|
|
|
&& de_float > 0.0; |
|
|
|
if (block->use_advance_lead) |
|
|
|
block->abs_adv_steps_multiplier8 = lround(extruder_advance_k * (de_float / mm_D_float) * block->nominal_speed / (float)block->nominal_rate * axis_steps_per_mm[E_AXIS_N] * 256.0); |
|
|
|
} |
|
|
|
|
|
|
|
#elif ENABLED(ADVANCE) |
|
|
|
|
|
|
|
// Calculate advance rate
|
|
|
|
if (!esteps || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) { |
|
|
|
block->advance_rate = 0; |
|
|
|
block->advance = 0; |
|
|
|
} |
|
|
|
else { |
|
|
|
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2); |
|
|
|
float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(current_speed[E_AXIS], EXTRUSION_AREA) * 256; |
|
|
|
if (esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS])) { |
|
|
|
const long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2); |
|
|
|
const float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(current_speed[E_AXIS], EXTRUSION_AREA) * 256; |
|
|
|
block->advance = advance; |
|
|
|
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0; |
|
|
|
} |
|
|
|
else |
|
|
|
block->advance_rate = block->advance = 0; |
|
|
|
|
|
|
|
/**
|
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_ECHOPGM("advance :"); |
|
|
|