Browse Source

Merge pull request #1 from ErikZalm/Marlin_v1

merge
pull/1/head
midopple 11 years ago
parent
commit
7ced55b97c
  1. 2
      ArduinoAddons/Arduino_0.xx/Gen6/bootloaders/atmega644p/ATmegaBOOT.c
  2. 2
      ArduinoAddons/Arduino_0.xx/Sanguino/bootloaders/atmega644p/ATmegaBOOT.c
  3. 2
      ArduinoAddons/Arduino_0.xx/libraries/LiquidCrystal/LiquidCrystal.cpp
  4. 2
      ArduinoAddons/Arduino_0.xx/libraries/U8glib/utility/chessengine.c
  5. 2
      ArduinoAddons/Arduino_1.x.x/libraries/LiquidCrystal/LiquidCrystal.cpp
  6. 2
      ArduinoAddons/Arduino_1.x.x/libraries/U8glib/utility/chessengine.c
  7. 2
      ArduinoAddons/Arduino_1.x.x/sanguino/bootloaders/atmega/ATmegaBOOT_168.c
  8. 2
      ArduinoAddons/Arduino_1.x.x/sanguino/bootloaders/atmega644p/ATmegaBOOT.c
  9. 2
      ArduinoAddons/Arduino_1.x.x/sanguino/bootloaders/atmega644p/ATmegaBOOT.c.tst
  10. 323
      Marlin/Configuration.h
  11. 13
      Marlin/ConfigurationStore.cpp
  12. 62
      Marlin/Configuration_adv.h
  13. 6
      Marlin/DOGMbitmaps.h
  14. 2
      Marlin/LiquidCrystalRus.cpp
  15. 29
      Marlin/Makefile
  16. 21
      Marlin/Marlin.h
  17. 18
      Marlin/Marlin.pde
  18. 1019
      Marlin/Marlin_main.cpp
  19. 341
      Marlin/Servo.cpp
  20. 132
      Marlin/Servo.h
  21. 20
      Marlin/cardreader.cpp
  22. 5
      Marlin/cardreader.h
  23. 42
      Marlin/dogm_lcd_implementation.h
  24. 585
      Marlin/example_configurations/delta/Configuration.h
  25. 396
      Marlin/example_configurations/delta/Configuration_adv.h
  26. 696
      Marlin/fastio.h
  27. 2996
      Marlin/language.h
  28. 1034
      Marlin/pins.h
  29. 104
      Marlin/planner.cpp
  30. 8
      Marlin/planner.h
  31. 287
      Marlin/stepper.cpp
  32. 295
      Marlin/temperature.cpp
  33. 3
      Marlin/temperature.h
  34. 292
      Marlin/ultralcd.cpp
  35. 33
      Marlin/ultralcd.h
  36. 294
      Marlin/ultralcd_implementation_hitachi_HD44780.h
  37. 131
      Marlin/ultralcd_st7920_u8glib_rrd.h
  38. 189
      README.md

2
ArduinoAddons/Arduino_0.xx/Gen6/bootloaders/atmega644p/ATmegaBOOT.c

@ -168,7 +168,7 @@ int main(void)
WDTCSR = 0;
// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
if (! (ch & _BV(EXTRF))) // if its a not an external reset...
if (! (ch & _BV(EXTRF))) // if it's a not an external reset...
app_start(); // skip bootloader
#endif

2
ArduinoAddons/Arduino_0.xx/Sanguino/bootloaders/atmega644p/ATmegaBOOT.c

@ -168,7 +168,7 @@ int main(void)
WDTCSR = 0;
// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
if (! (ch & _BV(EXTRF))) // if its a not an external reset...
if (! (ch & _BV(EXTRF))) // if it's a not an external reset...
app_start(); // skip bootloader
#endif

2
ArduinoAddons/Arduino_0.xx/libraries/LiquidCrystal/LiquidCrystal.cpp

@ -21,7 +21,7 @@
// S = 0; No shift
//
// Note, however, that resetting the Arduino doesn't reset the LCD, so we
// can't assume that its in that state when a sketch starts (and the
// can't assume that it's in that state when a sketch starts (and the
// LiquidCrystal constructor is called).
LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable,

2
ArduinoAddons/Arduino_0.xx/libraries/U8glib/utility/chessengine.c

@ -72,7 +72,7 @@
- Castling: Need to check for fields under attack
--> done
- Check for WIN / LOOSE situation, perhaps call ce_Eval() once on the top-level board setup
- Check for WIN / LOSE situation, perhaps call ce_Eval() once on the top-level board setup
just after the real move
- cleanup cu_Move
--> almost done

2
ArduinoAddons/Arduino_1.x.x/libraries/LiquidCrystal/LiquidCrystal.cpp

@ -21,7 +21,7 @@
// S = 0; No shift
//
// Note, however, that resetting the Arduino doesn't reset the LCD, so we
// can't assume that its in that state when a sketch starts (and the
// can't assume that it's in that state when a sketch starts (and the
// LiquidCrystal constructor is called).
LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable,

2
ArduinoAddons/Arduino_1.x.x/libraries/U8glib/utility/chessengine.c

@ -72,7 +72,7 @@
- Castling: Need to check for fields under attack
--> done
- Check for WIN / LOOSE situation, perhaps call ce_Eval() once on the top-level board setup
- Check for WIN / LOSE situation, perhaps call ce_Eval() once on the top-level board setup
just after the real move
- cleanup cu_Move
--> almost done

2
ArduinoAddons/Arduino_1.x.x/sanguino/bootloaders/atmega/ATmegaBOOT_168.c

@ -301,7 +301,7 @@ int main(void)
WDTCSR = 0;
// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
if (! (ch & _BV(EXTRF))) // if its a not an external reset...
if (! (ch & _BV(EXTRF))) // if it's a not an external reset...
app_start(); // skip bootloader
#else
asm volatile("nop\n\t");

2
ArduinoAddons/Arduino_1.x.x/sanguino/bootloaders/atmega644p/ATmegaBOOT.c

@ -172,7 +172,7 @@ int main(void)
WDTCSR = 0;
// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
if (! (ch & _BV(EXTRF))) // if its a not an external reset...
if (! (ch & _BV(EXTRF))) // if it's a not an external reset...
app_start(); // skip bootloader
#endif

2
ArduinoAddons/Arduino_1.x.x/sanguino/bootloaders/atmega644p/ATmegaBOOT.c.tst

@ -172,7 +172,7 @@ int main(void)
WDTCSR = 0;
// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.
if (! (ch & _BV(EXTRF))) // if its a not an external reset...
if (! (ch & _BV(EXTRF))) // if it's a not an external reset...
app_start(); // skip bootloader
#endif

323
Marlin/Configuration.h

@ -1,15 +1,15 @@
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
// This configurtion file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
//User specified version info of this build to display in [Pronterface, etc] terminal window during startup.
//Implementation of an idea by Prof Braino to inform user that any changes made
//to this build by the user have been successfully uploaded into firmware.
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time
#define STRING_CONFIG_H_AUTHOR "(none, default config)" //Who made the changes.
#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
// SERIAL_PORT selects which serial port should be used for communication with the host.
// This allows the connection of wireless adapters (for instance) to non-default port pins.
@ -26,8 +26,9 @@
// 12 = Gen7 v1.3
// 13 = Gen7 v1.4
// 3 = MEGA/RAMPS up to 1.2 = 3
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Bed, Fan)
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
// 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
// 35 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Fan)
// 4 = Duemilanove w/ ATMega328P pin assignment
// 5 = Gen6
// 51 = Gen6 deluxe
@ -35,28 +36,77 @@
// 62 = Sanguinololu 1.2 and above
// 63 = Melzi
// 64 = STB V1.1
// 65 = Azteeg X1
// 66 = Melzi with ATmega1284 (MaKr3d version)
// 7 = Ultimaker
// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
// 77 = 3Drag Controller
// 8 = Teensylu
// 80 = Rumba
// 81 = Printrboard (AT90USB1286)
// 82 = Brainwave (AT90USB646)
// 9 = Gen3+
// 70 = Megatronics
// 701= Megatronics v2.0
// 702= Minitronics v1.0
// 90 = Alpha OMCA board
// 91 = Final OMCA board
// 301 = Rambo
// 21 = Elefu Ra Board (v3)
#ifndef MOTHERBOARD
#define MOTHERBOARD 7
#endif
// Define this to set a custom name for your generic Mendel,
// #define CUSTOM_MENDEL_NAME "This Mendel"
// This defines the number of extruders
#define EXTRUDERS 1
//// The following define selects which power supply you have. Please choose the one that matches your setup
// 1 = ATX
// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
#define POWER_SUPPLY 1
//===========================================================================
//============================== Delta Settings =============================
//===========================================================================
// Enable DELTA kinematics
//#define DELTA
// Make delta curves from many straight lines (linear interpolation).
// This is a trade-off between visible corners (not enough segments)
// and processor overload (too many expensive sqrt calls).
#define DELTA_SEGMENTS_PER_SECOND 200
// Center-to-center distance of the holes in the diagonal push rods.
#define DELTA_DIAGONAL_ROD 250.0 // mm
// Horizontal offset from middle of printer to smooth rod center.
#define DELTA_SMOOTH_ROD_OFFSET 175.0 // mm
// Horizontal offset of the universal joints on the end effector.
#define DELTA_EFFECTOR_OFFSET 33.0 // mm
// Horizontal offset of the universal joints on the carriages.
#define DELTA_CARRIAGE_OFFSET 18.0 // mm
// Effective horizontal distance bridged by diagonal push rods.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
// Effective X/Y positions of the three vertical towers.
#define SIN_60 0.8660254037844386
#define COS_60 0.5
#define DELTA_TOWER1_X -SIN_60*DELTA_RADIUS // front left tower
#define DELTA_TOWER1_Y -COS_60*DELTA_RADIUS
#define DELTA_TOWER2_X SIN_60*DELTA_RADIUS // front right tower
#define DELTA_TOWER2_Y -COS_60*DELTA_RADIUS
#define DELTA_TOWER3_X 0.0 // back middle tower
#define DELTA_TOWER3_Y DELTA_RADIUS
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
@ -77,25 +127,30 @@
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 60 is 100k Maker's Tool Works Kapton Bed Thermister
//
// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
// (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan) (1k pullup)
#define TEMP_SENSOR_0 -1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_1 -1
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_BED 0
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
// Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the recidency timer x degC early.
#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
@ -118,57 +173,57 @@
// PID settings:
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 256 // limits current to nozzle while in bang-bang mode; 256=full current
#define PID_MAX 256 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 256=full current
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
#define K1 0.95 //smoothing factor withing the PID
#define K1 0.95 //smoothing factor within the PID
#define PID_dT ((16.0 * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a preconfigured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
#define DEFAULT_Kp 22.2
#define DEFAULT_Ki 1.08
#define DEFAULT_Kd 114
#define DEFAULT_Ki 1.08
#define DEFAULT_Kd 114
// Makergear
// #define DEFAULT_Kp 7.0
// #define DEFAULT_Ki 0.1
// #define DEFAULT_Kd 12
// #define DEFAULT_Ki 0.1
// #define DEFAULT_Kd 12
// Mendel Parts V9 on 12V
// Mendel Parts V9 on 12V
// #define DEFAULT_Kp 63.0
// #define DEFAULT_Ki 2.25
// #define DEFAULT_Kd 440
#endif // PIDTEMP
// Bed Temperature Control
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// uncomment this to enable PID on the bed. It uses the same ferquency PWM as the extruder.
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you proabaly
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//
//#define BED_LIMIT_SWITCHING
// This sets the max power delived to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 256 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 256 // limits duty cycle to bed; 256=full current
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
#ifdef PIDTEMPBED
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, argressive factor of .15 (vs .1, 1, 10)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4
@ -200,17 +255,17 @@
// Uncomment the following line to enable CoreXY kinematics
// #define COREXY
// corse Endstop Settings
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
#ifndef ENDSTOPPULLUPS
// fine Enstop settings: Individual Pullups. will be ignord if ENDSTOPPULLUPS is defined
#define ENDSTOPPULLUP_XMAX
#define ENDSTOPPULLUP_YMAX
#define ENDSTOPPULLUP_ZMAX
#define ENDSTOPPULLUP_XMIN
#define ENDSTOPPULLUP_YMIN
//#define ENDSTOPPULLUP_ZMIN
// fine Enstop settings: Individual Pullups. will be ignored if ENDSTOPPULLUPS is defined
// #define ENDSTOPPULLUP_XMAX
// #define ENDSTOPPULLUP_YMAX
// #define ENDSTOPPULLUP_ZMAX
// #define ENDSTOPPULLUP_XMIN
// #define ENDSTOPPULLUP_YMIN
// #define ENDSTOPPULLUP_ZMIN
#endif
#ifdef ENDSTOPPULLUPS
@ -223,10 +278,16 @@
#endif
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool X_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool X_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
@ -253,8 +314,8 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
#define min_software_endstops true //If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true //If true, axis won't move to coordinates greater than the defined lengths below.
#define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below.
// Travel limits after homing
#define X_MAX_POS 205
#define X_MIN_POS 0
@ -272,22 +333,24 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
//Manual homing switch locations:
// For deltabots this means top and center of the cartesian print volume.
#define MANUAL_X_HOME_POS 0
#define MANUAL_Y_HOME_POS 0
#define MANUAL_Z_HOME_POS 0
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
//// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
// default settings
// default settings
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200.0*8/3,760*1.1} // default steps per unit for ultimaker
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200.0*8/3,760*1.1} // default steps per unit for Ultimaker
#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 25} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for retracts
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
@ -295,7 +358,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// #define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
// #define EXTRUDER_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
// The speed change that does not require acceleration (i.e. the software might assume it can be done instanteneously)
// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XYJERK 20.0 // (mm/sec)
#define DEFAULT_ZJERK 0.4 // (mm/sec)
#define DEFAULT_EJERK 5.0 // (mm/sec)
@ -307,7 +370,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// EEPROM
// the microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores paramters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//define this to enable eeprom support
//#define EEPROM_SETTINGS
@ -315,15 +378,28 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// please keep turned on if you can.
//#define EEPROM_CHITCHAT
// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 180
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
#define ABS_PREHEAT_HOTEND_TEMP 240
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//LCD and SD support
//#define ULTRA_LCD //general lcd support, also 16x2
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define ULTIMAKERCONTROLLER //as available from the ultimaker online store.
//#define ULTIPANEL //the ultipanel as on thingiverse
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
@ -338,7 +414,25 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER
// The RepRapWorld REPRAPWORLD_KEYPAD v1.1
// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // how much should be moved when a key is pressed, eg 10.0 means 10mm per click
// The Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=product/product&product_id=53
// REMEMBER TO INSTALL LiquidCrystal_I2C.h in your ARUDINO library folder: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//#define RA_CONTROL_PANEL
//automatic expansion
#if defined (MAKRPANEL)
#define DOGLCD
#define SDSUPPORT
#define ULTIPANEL
#define NEWPANEL
#define DEFAULT_LCD_CONTRAST 17
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920
@ -348,44 +442,104 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#if defined(ULTIMAKERCONTROLLER) || defined(REPRAP_DISCOUNT_SMART_CONTROLLER) || defined(G3D_PANEL)
#define ULTIPANEL
#define NEWPANEL
#endif
#endif
// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 180
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
#if defined(REPRAPWORLD_KEYPAD)
#define NEWPANEL
#define ULTIPANEL
#endif
#if defined(RA_CONTROL_PANEL)
#define ULTIPANEL
#define NEWPANEL
#define LCD_I2C_TYPE_PCA8574
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#endif
#define ABS_PREHEAT_HOTEND_TEMP 240
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//I2C PANELS
//#define LCD_I2C_SAINSMART_YWROBOT
#ifdef LCD_I2C_SAINSMART_YWROBOT
// This uses the LiquidCrystal_I2C library ( https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home )
// Make sure it is placed in the Arduino libraries directory.
#define LCD_I2C_TYPE_PCF8575
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#define NEWPANEL
#define ULTIPANEL
#endif
// PANELOLU2 LCD with status LEDs, separate encoder and click inputs
//#define LCD_I2C_PANELOLU2
#ifdef LCD_I2C_PANELOLU2
// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
// (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file)
// Note: The PANELOLU2 encoder click input can either be directly connected to a pin
// (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
#define LCD_I2C_TYPE_MCP23017
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD
#define NEWPANEL
#define ULTIPANEL
#endif
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
#ifdef LCD_I2C_VIKI
// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
// Note: The pause/stop/resume LCD button pin should be connected to the Arduino
// BTN_ENC pin (or set BTN_ENC to -1 if not used)
#define LCD_I2C_TYPE_MCP23017
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later)
#define NEWPANEL
#define ULTIPANEL
#endif
#ifdef ULTIPANEL
// #define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
#define LCD_HEIGHT 4
#endif
#else //no panel but just lcd
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
#define LCD_HEIGHT 4
#endif
#else //no panel but just lcd
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16
#define LCD_HEIGHT 2
#endif
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16
#define LCD_HEIGHT 2
#endif
#endif
#endif
// default LCD contrast for dogm-like LCD displays
#ifdef DOGLCD
# ifndef DEFAULT_LCD_CONTRAST
# define DEFAULT_LCD_CONTRAST 32
# endif
#endif
// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN
// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not ass annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM
// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0
// M240 Triggers a camera by emulating a Canon RC-1 Remote
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
// #define PHOTOGRAPH_PIN 23
@ -393,6 +547,31 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// SF send wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX
// Support for the BariCUDA Paste Extruder.
//#define BARICUDA
/*********************************************************************\
* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas
**********************************************************************/
// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command
// Servo Endstops
//
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M206 command to correct for switch height offset to actual nozzle height. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
//#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles
#include "Configuration_adv.h"
#include "thermistortables.h"

13
Marlin/ConfigurationStore.cpp

@ -37,7 +37,7 @@ void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size)
// the default values are used whenever there is a change to the data, to prevent
// wrong data being written to the variables.
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
#define EEPROM_VERSION "V07"
#define EEPROM_VERSION "V08"
#ifdef EEPROM_SETTINGS
void Config_StoreSettings()
@ -78,6 +78,10 @@ void Config_StoreSettings()
EEPROM_WRITE_VAR(i,dummy);
EEPROM_WRITE_VAR(i,dummy);
#endif
#ifndef DOGLCD
int lcd_contrast = 32;
#endif
EEPROM_WRITE_VAR(i,lcd_contrast);
char ver2[4]=EEPROM_VERSION;
i=EEPROM_OFFSET;
EEPROM_WRITE_VAR(i,ver2); // validate data
@ -198,6 +202,10 @@ void Config_RetrieveSettings()
EEPROM_READ_VAR(i,Kp);
EEPROM_READ_VAR(i,Ki);
EEPROM_READ_VAR(i,Kd);
#ifndef DOGLCD
int lcd_contrast;
#endif
EEPROM_READ_VAR(i,lcd_contrast);
// Call updatePID (similar to when we have processed M301)
updatePID();
@ -244,6 +252,9 @@ void Config_ResetDefault()
absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
#endif
#ifdef DOGLCD
lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif
#ifdef PIDTEMP
Kp = DEFAULT_Kp;
Ki = scalePID_i(DEFAULT_Ki);

62
Marlin/Configuration_adv.h

@ -18,12 +18,6 @@
//#define WATCH_TEMP_PERIOD 40000 //40 seconds
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
// Wait for Cooldown
// This defines if the M109 call should not block if it is cooling down.
// example: From a current temp of 220, you set M109 S200.
// if CooldownNoWait is defined M109 will not wait for the cooldown to finish
#define CooldownNoWait true
#ifdef PIDTEMP
// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
// if Kc is choosen well, the additional required power due to increased melting should be compensated.
@ -63,21 +57,31 @@
//This is for controlling a fan to cool down the stepper drivers
//it will turn on when any driver is enabled
//and turn off after the set amount of seconds from last driver being disabled again
//#define CONTROLLERFAN_PIN 23 //Pin used for the fan to cool controller, comment out to disable this function
#define CONTROLLERFAN_SEC 60 //How many seconds, after all motors were disabled, the fan should run
#define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)
#define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run
#define CONTROLLERFAN_SPEED 255 // == full speed
// When first starting the main fan, run it at full speed for the
// given number of milliseconds. This gets the fan spinning reliably
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
//#define FAN_KICKSTART_TIME 100
// Extruder cooling fans
// Configure fan pin outputs to automatically turn on/off when the associated
// extruder temperature is above/below EXTRUDER_AUTO_FAN_TEMPERATURE.
// Multiple extruders can be assigned to the same pin in which case
// the fan will turn on when any selected extruder is above the threshold.
#define EXTRUDER_0_AUTO_FAN_PIN -1
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
//===========================================================================
//=============================Mechanical Settings===========================
//===========================================================================
// This defines the number of extruders
#define EXTRUDERS 1
#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
@ -142,6 +146,31 @@
#define EXTRUDERS 1
#endif
// Enable this for dual x-carriage printers.
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// allowing faster printing speeds.
//#define DUAL_X_CARRIAGE
#ifdef DUAL_X_CARRIAGE
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 88 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 350.45 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// without modifying the firmware (through the "M218 T1 X???" command).
// Remember: you should set the second extruder x-offset to 0 in your slicer.
// Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h)
#define X2_ENABLE_PIN 29
#define X2_STEP_PIN 25
#define X2_DIR_PIN 23
#endif // DUAL_X_CARRIAGE
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_RETRACT_MM 5
#define Y_HOME_RETRACT_MM 5
@ -210,9 +239,9 @@
// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.
//#define WATCHDOG_RESET_MANUAL
#endif
// Enable the option to stop SD printing when hitting and endstops, needs to be enabled from the LCD menu when this option is enabled.
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
// Enable the option to stop SD printing when hitting and endstops, needs to be enabled from the LCD menu when this option is enabled.
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
// extruder advance constant (s2/mm3)
//
@ -276,7 +305,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif
//The ASCII buffer for recieving from the serial:
#define MAX_CMD_SIZE 96
@ -308,6 +337,9 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//===========================================================================
//============================= Define Defines ============================
//===========================================================================
#if EXTRUDERS > 1 && defined TEMP_SENSOR_1_AS_REDUNDANT
#error "You cannot use TEMP_SENSOR_1_AS_REDUNDANT if EXTRUDERS > 1"
#endif
#if TEMP_SENSOR_0 > 0
#define THERMISTORHEATER_0 TEMP_SENSOR_0

6
Marlin/DOGMbitmaps.h

@ -1,7 +1,7 @@
#define START_BMPWIDTH 60 //Width in pixels
#define START_BMPHEIGHT 64 //Height in pixels
#define START_BMPBYTEWIDTH 8 //Width in bytes
unsigned char start_bmp[574] PROGMEM = { //AVR-GCC, WinAVR
const unsigned char start_bmp[574] PROGMEM = { //AVR-GCC, WinAVR
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xF0,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xF0,
0xFF,0xFF,0xFF,0xF9,0xFF,0xFF,0xFF,0xF0,
@ -71,7 +71,7 @@ unsigned char start_bmp[574] PROGMEM = { //AVR-GCC, WinAVR
#define STATUS_SCREENWIDTH 115 //Width in pixels
#define STATUS_SCREENHEIGHT 19 //Height in pixels
#define STATUS_SCREENBYTEWIDTH 15 //Width in bytes
unsigned char status_screen0_bmp[] PROGMEM = { //AVR-GCC, WinAVR
const unsigned char status_screen0_bmp[] PROGMEM = { //AVR-GCC, WinAVR
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x7F,0xFF,0xE0,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x70,0x00,0xE0,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x63,0x0C,0x60,
@ -96,7 +96,7 @@ unsigned char status_screen0_bmp[] PROGMEM = { //AVR-GCC, WinAVR
#define STATUS_SCREENWIDTH 115 //Width in pixels
#define STATUS_SCREENHEIGHT 19 //Height in pixels
#define STATUS_SCREENBYTEWIDTH 15 //Width in bytes
unsigned char status_screen1_bmp[] PROGMEM = { //AVR-GCC, WinAVR
const unsigned char status_screen1_bmp[] PROGMEM = { //AVR-GCC, WinAVR
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x7F,0xFF,0xE0,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x70,0x00,0xE0,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x61,0xF8,0x60,

2
Marlin/LiquidCrystalRus.cpp

@ -36,7 +36,7 @@ const PROGMEM uint8_t utf_recode[] =
// S = 0; No shift
//
// Note, however, that resetting the Arduino doesn't reset the LCD, so we
// can't assume that its in that state when a sketch starts (and the
// can't assume that it's in that state when a sketch starts (and the
// LiquidCrystal constructor is called).
//
// modified 27 Jul 2011

29
Marlin/Makefile

@ -1,12 +1,12 @@
# Sprinter Arduino Project Makefile
#
#
# Makefile Based on:
# Arduino 0011 Makefile
# Arduino adaptation by mellis, eighthave, oli.keller
# Marlin adaption by Daid
#
# This has been tested with Arduino 0022.
#
#
# This makefile allows you to build sketches from the command line
# without the Arduino environment (or Java).
#
@ -21,7 +21,7 @@
# (e.g. UPLOAD_PORT = /dev/tty.USB0). If the exact name of this file
# changes, you can use * as a wildcard (e.g. UPLOAD_PORT = /dev/tty.usb*).
#
# 3. Set the line containing "MCU" to match your board's processor.
# 3. Set the line containing "MCU" to match your board's processor.
# Older one's are atmega8 based, newer ones like Arduino Mini, Bluetooth
# or Diecimila have the atmega168. If you're using a LilyPad Arduino,
# change F_CPU to 8000000. If you are using Gen7 electronics, you
@ -44,7 +44,7 @@ ARDUINO_INSTALL_DIR ?= ../../arduino-0022
ARDUINO_VERSION ?= 22
# You can optionally set a path to the avr-gcc tools. Requires a trailing slash. (ex: /usr/local/avr-gcc/bin)
AVR_TOOLS_PATH ?=
AVR_TOOLS_PATH ?=
#Programmer configuration
UPLOAD_RATE ?= 115200
@ -114,6 +114,12 @@ MCU ?= atmega644p
else ifeq ($(HARDWARE_MOTHERBOARD),63)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega644p
else ifeq ($(HARDWARE_MOTHERBOARD),65)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
else ifeq ($(HARDWARE_MOTHERBOARD),66)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
#Ultimaker
else ifeq ($(HARDWARE_MOTHERBOARD),7)
@ -213,7 +219,7 @@ CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp \
SdFile.cpp SdVolume.cpp motion_control.cpp planner.cpp \
stepper.cpp temperature.cpp cardreader.cpp ConfigurationStore.cpp \
watchdog.cpp
CXXSRC += LiquidCrystal.cpp ultralcd.cpp SPI.cpp
CXXSRC += LiquidCrystal.cpp ultralcd.cpp SPI.cpp Servo.cpp Tone.cpp
#Check for Arduino 1.0.0 or higher and use the correct sourcefiles for that version
ifeq ($(shell [ $(ARDUINO_VERSION) -ge 100 ] && echo true), true)
@ -277,6 +283,7 @@ ifneq ($(HARDWARE_MOTHERBOARD),)
CTUNING += -DMOTHERBOARD=${HARDWARE_MOTHERBOARD}
endif
#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)
CEXTRA = -fno-use-cxa-atexit
CFLAGS := $(CDEBUG) $(CDEFS) $(CINCS) -O$(OPT) $(CWARN) $(CEXTRA) $(CTUNING)
CXXFLAGS := $(CDEFS) $(CINCS) -O$(OPT) -Wall $(CEXTRA) $(CTUNING)
@ -287,7 +294,7 @@ LDFLAGS = -lm
# Programming support using avrdude. Settings and variables.
AVRDUDE_PORT = $(UPLOAD_PORT)
AVRDUDE_WRITE_FLASH = -U flash:w:$(BUILD_DIR)/$(TARGET).hex:i
AVRDUDE_FLAGS = -D -C $(ARDUINO_INSTALL_DIR)/hardware/tools/avrdude.conf \
AVRDUDE_FLAGS = -D -C $(ARDUINO_INSTALL_DIR)/hardware/tools/avr/etc/avrdude.conf \
-p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER) \
-b $(UPLOAD_RATE)
@ -317,19 +324,19 @@ endif
# Default target.
all: sizeafter
build: $(BUILD_DIR) elf hex
build: $(BUILD_DIR) elf hex
# Creates the object directory
$(BUILD_DIR):
$(BUILD_DIR):
$P mkdir -p $(BUILD_DIR)
elf: $(BUILD_DIR)/$(TARGET).elf
hex: $(BUILD_DIR)/$(TARGET).hex
eep: $(BUILD_DIR)/$(TARGET).eep
lss: $(BUILD_DIR)/$(TARGET).lss
lss: $(BUILD_DIR)/$(TARGET).lss
sym: $(BUILD_DIR)/$(TARGET).sym
# Program the device.
# Program the device.
# Do not try to reset an arduino if it's not one
upload: $(BUILD_DIR)/$(TARGET).hex
ifeq (${AVRDUDE_PROGRAMMER}, arduino)
@ -356,7 +363,7 @@ COFFCONVERT=$(OBJCOPY) --debugging \
--change-section-address .data-0x800000 \
--change-section-address .bss-0x800000 \
--change-section-address .noinit-0x800000 \
--change-section-address .eeprom-0x810000
--change-section-address .eeprom-0x810000
coff: $(BUILD_DIR)/$(TARGET).elf

21
Marlin/Marlin.h

@ -96,7 +96,11 @@ void process_commands();
void manage_inactivity();
#if X_ENABLE_PIN > -1
#if defined(DUAL_X_CARRIAGE) && defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 \
&& defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
#define enable_x() do { WRITE(X_ENABLE_PIN, X_ENABLE_ON); WRITE(X2_ENABLE_PIN, X_ENABLE_ON); } while (0)
#define disable_x() do { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); WRITE(X2_ENABLE_PIN,!X_ENABLE_ON); } while (0)
#elif defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)
#else
@ -104,7 +108,7 @@ void manage_inactivity();
#define disable_x() ;
#endif
#if Y_ENABLE_PIN > -1
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
#define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON)
#define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON)
#else
@ -112,7 +116,7 @@ void manage_inactivity();
#define disable_y() ;
#endif
#if Z_ENABLE_PIN > -1
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
#ifdef Z_DUAL_STEPPER_DRIVERS
#define enable_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); }
#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); }
@ -157,6 +161,9 @@ void FlushSerialRequestResend();
void ClearToSend();
void get_coordinates();
#ifdef DELTA
void calculate_delta(float cartesian[3]);
#endif
void prepare_move();
void kill();
void Stop();
@ -186,6 +193,14 @@ extern float add_homeing[3];
extern float min_pos[3];
extern float max_pos[3];
extern int fanSpeed;
#ifdef BARICUDA
extern int ValvePressure;
extern int EtoPPressure;
#endif
#ifdef FAN_SOFT_PWM
extern unsigned char fanSpeedSoftPwm;
#endif
#ifdef FWRETRACT
extern bool autoretract_enabled;

18
Marlin/Marlin.pde

@ -34,13 +34,19 @@
#include "pins.h"
#ifdef ULTRA_LCD
#ifdef DOGLCD
#include <U8glib.h> // library for graphics LCD by Oli Kraus (https://code.google.com/p/u8glib/)
#else
#include <LiquidCrystal.h> // library for character LCD
#endif
#if defined(LCD_I2C_TYPE_PCF8575)
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#elif defined(LCD_I2C_TYPE_MCP23017) || defined(LCD_I2C_TYPE_MCP23008)
#include <Wire.h>
#include <LiquidTWI2.h>
#elif defined(DOGLCD)
#include <U8glib.h> // library for graphics LCD by Oli Kraus (https://code.google.com/p/u8glib/)
#else
#include <LiquidCrystal.h> // library for character LCD
#endif
#endif
#if DIGIPOTSS_PIN > -1
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include <SPI.h>
#endif

1019
Marlin/Marlin_main.cpp

File diff suppressed because it is too large

341
Marlin/Servo.cpp

@ -0,0 +1,341 @@
/*
Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
The servos are pulsed in the background using the value most recently written using the write() method
Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
The methods are:
Servo - Class for manipulating servo motors connected to Arduino pins.
attach(pin ) - Attaches a servo motor to an i/o pin.
attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds
default min is 544, max is 2400
write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
writeMicroseconds() - Sets the servo pulse width in microseconds
read() - Gets the last written servo pulse width as an angle between 0 and 180.
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
attached() - Returns true if there is a servo attached.
detach() - Stops an attached servos from pulsing its i/o pin.
*/
#include "Configuration.h"
#ifdef NUM_SERVOS
#include <avr/interrupt.h>
#include <Arduino.h>
#include "Servo.h"
#define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009
//#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER)
static servo_t servos[MAX_SERVOS]; // static array of servo structures
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
uint8_t ServoCount = 0; // the total number of attached servos
// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
/************ static functions common to all instances ***********************/
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
{
if( Channel[timer] < 0 )
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
else{
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true )
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
}
Channel[timer]++; // increment to the next channel
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
*OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
if(SERVO(timer,Channel[timer]).Pin.isActive == true) // check if activated
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
}
else {
// finished all channels so wait for the refresh period to expire before starting over
if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) ) // allow a few ticks to ensure the next OCR1A not missed
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
else
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
}
}
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#if defined(_useTimer1)
SIGNAL (TIMER1_COMPA_vect)
{
handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
SIGNAL (TIMER3_COMPA_vect)
{
handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#if defined(_useTimer4)
SIGNAL (TIMER4_COMPA_vect)
{
handle_interrupts(_timer4, &TCNT4, &OCR4A);
}
#endif
#if defined(_useTimer5)
SIGNAL (TIMER5_COMPA_vect)
{
handle_interrupts(_timer5, &TCNT5, &OCR5A);
}
#endif
#elif defined WIRING
// Interrupt handlers for Wiring
#if defined(_useTimer1)
void Timer1Service()
{
handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
void Timer3Service()
{
handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#endif
static void initISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
if(timer == _timer1) {
TCCR1A = 0; // normal counting mode
TCCR1B = _BV(CS11); // set prescaler of 8
TCNT1 = 0; // clear the timer count
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
TIFR |= _BV(OCF1A); // clear any pending interrupts;
TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt
#else
// here if not ATmega8 or ATmega128
TIFR1 |= _BV(OCF1A); // clear any pending interrupts;
TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif
}
#endif
#if defined (_useTimer3)
if(timer == _timer3) {
TCCR3A = 0; // normal counting mode
TCCR3B = _BV(CS31); // set prescaler of 8
TCNT3 = 0; // clear the timer count
#if defined(__AVR_ATmega128__)
TIFR |= _BV(OCF3A); // clear any pending interrupts;
ETIMSK |= _BV(OCIE3A); // enable the output compare interrupt
#else
TIFR3 = _BV(OCF3A); // clear any pending interrupts;
TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif
}
#endif
#if defined (_useTimer4)
if(timer == _timer4) {
TCCR4A = 0; // normal counting mode
TCCR4B = _BV(CS41); // set prescaler of 8
TCNT4 = 0; // clear the timer count
TIFR4 = _BV(OCF4A); // clear any pending interrupts;
TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt
}
#endif
#if defined (_useTimer5)
if(timer == _timer5) {
TCCR5A = 0; // normal counting mode
TCCR5B = _BV(CS51); // set prescaler of 8
TCNT5 = 0; // clear the timer count
TIFR5 = _BV(OCF5A); // clear any pending interrupts;
TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt
}
#endif
}
static void finISR(timer16_Sequence_t timer)
{
//disable use of the given timer
#if defined WIRING // Wiring
if(timer == _timer1) {
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
TIMSK1 &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
#else
TIMSK &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
#endif
timerDetach(TIMER1OUTCOMPAREA_INT);
}
else if(timer == _timer3) {
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
TIMSK3 &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
#else
ETIMSK &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
#endif
timerDetach(TIMER3OUTCOMPAREA_INT);
}
#else
//For arduino - in future: call here to a currently undefined function to reset the timer
#endif
}
static boolean isTimerActive(timer16_Sequence_t timer)
{
// returns true if any servo is active on this timer
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
if(SERVO(timer,channel).Pin.isActive == true)
return true;
}
return false;
}
/****************** end of static functions ******************************/
Servo::Servo()
{
if( ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
}
else
this->servoIndex = INVALID_SERVO ; // too many servos
}
uint8_t Servo::attach(int pin)
{
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, int min, int max)
{
if(this->servoIndex < MAX_SERVOS ) {
pinMode( pin, OUTPUT) ; // set servo pin to output
servos[this->servoIndex].Pin.nbr = pin;
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max)/4;
// initialize the timer if it has not already been initialized
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false)
initISR(timer);
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
}
return this->servoIndex ;
}
void Servo::detach()
{
servos[this->servoIndex].Pin.isActive = false;
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false) {
finISR(timer);
}
}
void Servo::write(int value)
{
if(value < MIN_PULSE_WIDTH)
{ // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if(value < 0) value = 0;
if(value > 180) value = 180;
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
}
this->writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
// calculate and store the values for the given channel
byte channel = this->servoIndex;
if( (channel < MAX_SERVOS) ) // ensure channel is valid
{
if( value < SERVO_MIN() ) // ensure pulse width is valid
value = SERVO_MIN();
else if( value > SERVO_MAX() )
value = SERVO_MAX();
value = value - TRIM_DURATION;
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
uint8_t oldSREG = SREG;
cli();
servos[channel].ticks = value;
SREG = oldSREG;
}
}
int Servo::read() // return the value as degrees
{
return map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
}
int Servo::readMicroseconds()
{
unsigned int pulsewidth;
if( this->servoIndex != INVALID_SERVO )
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION ; // 12 aug 2009
else
pulsewidth = 0;
return pulsewidth;
}
bool Servo::attached()
{
return servos[this->servoIndex].Pin.isActive ;
}
#endif

132
Marlin/Servo.h

@ -0,0 +1,132 @@
/*
Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
The servos are pulsed in the background using the value most recently written using the write() method
Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
The sequence used to sieze timers is defined in timers.h
The methods are:
Servo - Class for manipulating servo motors connected to Arduino pins.
attach(pin ) - Attaches a servo motor to an i/o pin.
attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds
default min is 544, max is 2400
write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
writeMicroseconds() - Sets the servo pulse width in microseconds
read() - Gets the last written servo pulse width as an angle between 0 and 180.
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
attached() - Returns true if there is a servo attached.
detach() - Stops an attached servos from pulsing its i/o pin.
*/
#ifndef Servo_h
#define Servo_h
#include <inttypes.h>
/*
* Defines for 16 bit timers used with Servo library
*
* If _useTimerX is defined then TimerX is a 16 bit timer on the curent board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many 16 bit timers are available.
*
*/
// Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define _useTimer5
//#define _useTimer1
#define _useTimer3
#define _useTimer4
//typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer5, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t ;
#elif defined(__AVR_ATmega32U4__)
//#define _useTimer1
#define _useTimer3
//typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define _useTimer3
//#define _useTimer1
//typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
#elif defined(__AVR_ATmega128__) ||defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
#define _useTimer3
//#define _useTimer1
//typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
#else // everything else
//#define _useTimer1
//typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _Nbr_16timers } timer16_Sequence_t ;
#endif
#define Servo_VERSION 2 // software version of this library
#define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo
#define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached
#define REFRESH_INTERVAL 20000 // minumim time to refresh servos in microseconds
#define SERVOS_PER_TIMER 12 // the maximum number of servos controlled by one timer
#define MAX_SERVOS (_Nbr_16timers * SERVOS_PER_TIMER)
#define INVALID_SERVO 255 // flag indicating an invalid servo index
typedef struct {
uint8_t nbr :6 ; // a pin number from 0 to 63
uint8_t isActive :1 ; // true if this channel is enabled, pin not pulsed if false
} ServoPin_t ;
typedef struct {
ServoPin_t Pin;
unsigned int ticks;
} servo_t;
class Servo
{
public:
Servo();
uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure
uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
void detach();
void write(int value); // if value is < 200 its treated as an angle, otherwise as pulse width in microseconds
void writeMicroseconds(int value); // Write pulse width in microseconds
int read(); // returns current pulse width as an angle between 0 and 180 degrees
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
bool attached(); // return true if this servo is attached, otherwise false
private:
uint8_t servoIndex; // index into the channel data for this servo
int8_t min; // minimum is this value times 4 added to MIN_PULSE_WIDTH
int8_t max; // maximum is this value times 4 added to MAX_PULSE_WIDTH
};
#endif

20
Marlin/cardreader.cpp

@ -18,6 +18,8 @@ CardReader::CardReader()
saving = false;
logging = false;
autostart_atmillis=0;
workDirDepth = 0;
memset(workDirParents, 0, sizeof(workDirParents));
autostart_stilltocheck=true; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware.
lastnr=0;
@ -204,7 +206,6 @@ void CardReader::startFileprint()
if(cardOK)
{
sdprinting = true;
}
}
@ -521,19 +522,24 @@ void CardReader::chdir(const char * relpath)
}
else
{
workDirParentParent=workDirParent;
workDirParent=*parent;
if (workDirDepth < MAX_DIR_DEPTH) {
for (int d = ++workDirDepth; d--;)
workDirParents[d+1] = workDirParents[d];
workDirParents[0]=*parent;
}
workDir=newfile;
}
}
void CardReader::updir()
{
if(!workDir.isRoot())
if(workDirDepth > 0)
{
workDir=workDirParent;
workDirParent=workDirParentParent;
--workDirDepth;
workDir = workDirParents[0];
int d;
for (int d = 0; d < workDirDepth; d++)
workDirParents[d] = workDirParents[d+1];
}
}

5
Marlin/cardreader.h

@ -3,6 +3,8 @@
#ifdef SDSUPPORT
#define MAX_DIR_DEPTH 10
#include "SdFile.h"
enum LsAction {LS_SerialPrint,LS_Count,LS_GetFilename};
class CardReader
@ -53,7 +55,8 @@ public:
bool filenameIsDir;
int lastnr; //last number of the autostart;
private:
SdFile root,*curDir,workDir,workDirParent,workDirParentParent;
SdFile root,*curDir,workDir,workDirParents[MAX_DIR_DEPTH];
uint16_t workDirDepth;
Sd2Card card;
SdVolume volume;
SdFile file;

42
Marlin/dogm_lcd_implementation.h

@ -19,12 +19,25 @@
* Implementation of the LCD display routines for a DOGM128 graphic display. These are common LCD 128x64 pixel graphic displays.
**/
#ifdef ULTIPANEL
#define BLEN_A 0
#define BLEN_B 1
#define BLEN_C 2
#define EN_A (1<<BLEN_A)
#define EN_B (1<<BLEN_B)
#define EN_C (1<<BLEN_C)
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#define LCD_CLICKED (buttons&EN_C)
#endif
// CHANGE_DE begin ***
#include <U8glib.h> // DE_U8glib
#include <U8glib.h>
#include "DOGMbitmaps.h"
#include "dogm_font_data_marlin.h"
#include "ultralcd.h"
#include "ultralcd_st7920_u8glib_rrd.h"
/* Russian language not supported yet, needs custom font
@ -61,17 +74,28 @@
#define FONT_STATUSMENU u8g_font_6x9
int lcd_contrast;
// LCD selection
#ifdef U8GLIB_ST7920
// SPI Com: SCK = en = (D4), MOSI = rw = (RS), CS = di = (ENABLE)
U8GLIB_ST7920_128X64_1X u8g(LCD_PINS_D4, LCD_PINS_ENABLE, LCD_PINS_RS);
//U8GLIB_ST7920_128X64_RRD u8g(0,0,0);
U8GLIB_ST7920_128X64_RRD u8g(0);
#elif defined(MAKRPANEL)
// The MaKrPanel display, ST7565 controller as well
U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);
#else
// for regular DOGM128 display with HW-SPI
U8GLIB_DOGM128 u8g(DOGLCD_CS, DOGLCD_A0); // HW-SPI Com: CS, A0
#endif
static void lcd_implementation_init()
{
#ifdef LCD_PIN_BL
pinMode(LCD_PIN_BL, OUTPUT); // Enable LCD backlight
digitalWrite(LCD_PIN_BL, HIGH);
#endif
u8g.setContrast(lcd_contrast);
// Uncomment this if you have the first generation (V1.10) of STBs board
// pinMode(17, OUTPUT); // Enable LCD backlight
// digitalWrite(17, HIGH);
@ -88,11 +112,11 @@ static void lcd_implementation_init()
u8g.setRot90(); // Rotate screen by 90°
#endif
#ifdef LCD_SCREEN_ROT_180;
#ifdef LCD_SCREEN_ROT_180
u8g.setRot180(); // Rotate screen by 180°
#endif
#ifdef LCD_SCREEN_ROT_270;
#ifdef LCD_SCREEN_ROT_270
u8g.setRot270(); // Rotate screen by 270°
#endif
@ -105,14 +129,14 @@ static void lcd_implementation_init()
u8g.setFont(u8g_font_6x10_marlin);
u8g.drawStr(62,10,"MARLIN");
u8g.setFont(u8g_font_5x8);
u8g.drawStr(62,19,"V1.0.0 RC2");
u8g.drawStr(62,19,"V1.0.0 RC2-mm");
u8g.setFont(u8g_font_6x10_marlin);
u8g.drawStr(62,28,"by ErikZalm");
u8g.drawStr(62,41,"DOGM128 LCD");
u8g.setFont(u8g_font_5x8);
u8g.drawStr(62,48,"enhancements");
u8g.setFont(u8g_font_5x8);
u8g.drawStr(62,55,"by STB");
u8g.drawStr(62,55,"by STB, MM");
u8g.drawStr(62,61,"uses u");
u8g.drawStr90(92,57,"8");
u8g.drawStr(100,61,"glib");
@ -266,7 +290,7 @@ static void lcd_implementation_status_screen()
// Fan
u8g.setFont(FONT_STATUSMENU);
u8g.setPrintPos(104,27);
#if FAN_PIN > 0
#if defined(FAN_PIN) && FAN_PIN > -1
u8g.print(itostr3(int((fanSpeed*100)/256 + 1)));
u8g.print("%");
#else

585
Marlin/example_configurations/delta/Configuration.h

@ -0,0 +1,585 @@
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time
#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
// SERIAL_PORT selects which serial port should be used for communication with the host.
// This allows the connection of wireless adapters (for instance) to non-default port pins.
// Serial port 0 is still used by the Arduino bootloader regardless of this setting.
#define SERIAL_PORT 0
// This determines the communication speed of the printer
#define BAUDRATE 250000
//#define BAUDRATE 115200
//// The following define selects which electronics board you have. Please choose the one that matches your setup
// 10 = Gen7 custom (Alfons3 Version) "https://github.com/Alfons3/Generation_7_Electronics"
// 11 = Gen7 v1.1, v1.2 = 11
// 12 = Gen7 v1.3
// 13 = Gen7 v1.4
// 3 = MEGA/RAMPS up to 1.2 = 3
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
// 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
// 35 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Fan)
// 4 = Duemilanove w/ ATMega328P pin assignment
// 5 = Gen6
// 51 = Gen6 deluxe
// 6 = Sanguinololu < 1.2
// 62 = Sanguinololu 1.2 and above
// 63 = Melzi
// 64 = STB V1.1
// 65 = Azteeg X1
// 66 = Melzi with ATmega1284 (MaKr3d version)
// 7 = Ultimaker
// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
// 77 = 3Drag Controller
// 8 = Teensylu
// 80 = Rumba
// 81 = Printrboard (AT90USB1286)
// 82 = Brainwave (AT90USB646)
// 9 = Gen3+
// 70 = Megatronics
// 701= Megatronics v2.0
// 702= Minitronics v1.0
// 90 = Alpha OMCA board
// 91 = Final OMCA board
// 301 = Rambo
// 21 = Elefu Ra Board (v3)
#ifndef MOTHERBOARD
#define MOTHERBOARD 33
#endif
// Define this to set a custom name for your generic Mendel,
// #define CUSTOM_MENDEL_NAME "This Mendel"
// This defines the number of extruders
#define EXTRUDERS 1
//// The following define selects which power supply you have. Please choose the one that matches your setup
// 1 = ATX
// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
#define POWER_SUPPLY 1
//===========================================================================
//============================== Delta Settings =============================
//===========================================================================
// Enable DELTA kinematics and most of the default configuration for Deltas
#define DELTA
// Make delta curves from many straight lines (linear interpolation).
// This is a trade-off between visible corners (not enough segments)
// and processor overload (too many expensive sqrt calls).
#define DELTA_SEGMENTS_PER_SECOND 200
// Center-to-center distance of the holes in the diagonal push rods.
#define DELTA_DIAGONAL_ROD 250.0 // mm
// Horizontal offset from middle of printer to smooth rod center.
#define DELTA_SMOOTH_ROD_OFFSET 175.0 // mm
// Horizontal offset of the universal joints on the end effector.
#define DELTA_EFFECTOR_OFFSET 33.0 // mm
// Horizontal offset of the universal joints on the carriages.
#define DELTA_CARRIAGE_OFFSET 18.0 // mm
// Effective horizontal distance bridged by diagonal push rods.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
// Effective X/Y positions of the three vertical towers.
#define SIN_60 0.8660254037844386
#define COS_60 0.5
#define DELTA_TOWER1_X -SIN_60*DELTA_RADIUS // front left tower
#define DELTA_TOWER1_Y -COS_60*DELTA_RADIUS
#define DELTA_TOWER2_X SIN_60*DELTA_RADIUS // front right tower
#define DELTA_TOWER2_Y -COS_60*DELTA_RADIUS
#define DELTA_TOWER3_X 0.0 // back middle tower
#define DELTA_TOWER3_Y DELTA_RADIUS
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
//
//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
//
//// Temperature sensor settings:
// -2 is thermocouple with MAX6675 (only for sensor 0)
// -1 is thermocouple with AD595
// 0 is not used
// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
// 3 is mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan) (4.7k pullup)
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 60 is 100k Maker's Tool Works Kapton Bed Thermister
//
// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
// (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan) (1k pullup)
#define TEMP_SENSOR_0 -1
#define TEMP_SENSOR_1 -1
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_BED 0
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
// Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define BED_MAXTEMP 150
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
// average current. The value should be an integer and the heat bed will be turned on for 1 interval of
// HEATER_BED_DUTY_CYCLE_DIVIDER intervals.
//#define HEATER_BED_DUTY_CYCLE_DIVIDER 4
// PID settings:
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
#define K1 0.95 //smoothing factor within the PID
#define PID_dT ((16.0 * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a preconfigured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
#define DEFAULT_Kp 22.2
#define DEFAULT_Ki 1.08
#define DEFAULT_Kd 114
// Makergear
// #define DEFAULT_Kp 7.0
// #define DEFAULT_Ki 0.1
// #define DEFAULT_Kd 12
// Mendel Parts V9 on 12V
// #define DEFAULT_Kp 63.0
// #define DEFAULT_Ki 2.25
// #define DEFAULT_Kd 440
#endif // PIDTEMP
// Bed Temperature Control
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//
//#define BED_LIMIT_SWITCHING
// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
#ifdef PIDTEMPBED
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
// #define DEFAULT_bedKp 97.1
// #define DEFAULT_bedKi 1.41
// #define DEFAULT_bedKd 1675.16
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED
//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by
#define PREVENT_DANGEROUS_EXTRUDE
//if PREVENT_DANGEROUS_EXTRUDE is on, you can still disable (uncomment) very long bits of extrusion separately.
#define PREVENT_LENGTHY_EXTRUDE
#define EXTRUDE_MINTEMP 170
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//===========================================================================
//=============================Mechanical Settings===========================
//===========================================================================
// Uncomment the following line to enable CoreXY kinematics
// #define COREXY
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
#ifndef ENDSTOPPULLUPS
// fine Enstop settings: Individual Pullups. will be ignored if ENDSTOPPULLUPS is defined
// #define ENDSTOPPULLUP_XMAX
// #define ENDSTOPPULLUP_YMAX
// #define ENDSTOPPULLUP_ZMAX
// #define ENDSTOPPULLUP_XMIN
// #define ENDSTOPPULLUP_YMIN
// #define ENDSTOPPULLUP_ZMIN
#endif
#ifdef ENDSTOPPULLUPS
#define ENDSTOPPULLUP_XMAX
#define ENDSTOPPULLUP_YMAX
#define ENDSTOPPULLUP_ZMAX
#define ENDSTOPPULLUP_XMIN
#define ENDSTOPPULLUP_YMIN
#define ENDSTOPPULLUP_ZMIN
#endif
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool X_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
const bool Y_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
// deltas never have min endstops
#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders
// Disables axis when it's not being used.
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
#define DISABLE_E false // For all extruders
#define INVERT_X_DIR false // DELTA does not invert
#define INVERT_Y_DIR false
#define INVERT_Z_DIR false
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
// deltas always home to max
#define X_HOME_DIR 1
#define Y_HOME_DIR 1
#define Z_HOME_DIR 1
#define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below.
// Travel limits after homing
#define X_MAX_POS 90
#define X_MIN_POS -90
#define Y_MAX_POS 90
#define Y_MIN_POS -90
#define Z_MAX_POS MANUAL_Z_HOME_POS
#define Z_MIN_POS 0
#define X_MAX_LENGTH (X_MAX_POS - X_MIN_POS)
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
// The position of the homing switches
//#define MANUAL_HOME_POSITIONS // If defined, MANUAL_*_HOME_POS below will be used
//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
//Manual homing switch locations:
#define MANUAL_HOME_POSITIONS // MANUAL_*_HOME_POS below will be used
// For deltabots this means top and center of the cartesian print volume.
#define MANUAL_X_HOME_POS 0
#define MANUAL_Y_HOME_POS 0
#define MANUAL_Z_HOME_POS 250 // For delta: Distance between nozzle and print surface after homing.
//// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
// delta homing speeds must be the same on xyz
#define HOMING_FEEDRATE {200*60, 200*60, 200*60, 0} // set the homing speeds (mm/min)
// default settings
// delta speeds must be the same on xyz
#define DEFAULT_AXIS_STEPS_PER_UNIT {80, 80, 80, 760*1.1} // default steps per unit for Kossel (GT2, 20 tooth)
#define DEFAULT_MAX_FEEDRATE {500, 500, 500, 25} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {9000,9000,9000,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for retracts
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
// #define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
// #define EXTRUDER_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XYJERK 20.0 // (mm/sec)
#define DEFAULT_ZJERK 20.0 // (mm/sec) Must be same as XY for delta
#define DEFAULT_EJERK 5.0 // (mm/sec)
//===========================================================================
//=============================Additional Features===========================
//===========================================================================
// EEPROM
// the microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores paramters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//define this to enable eeprom support
//#define EEPROM_SETTINGS
//to disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
// please keep turned on if you can.
//#define EEPROM_CHITCHAT
// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 180
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
#define ABS_PREHEAT_HOTEND_TEMP 240
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//LCD and SD support
//#define ULTRA_LCD //general lcd support, also 16x2
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define ULTIMAKERCONTROLLER //as available from the ultimaker online store.
//#define ULTIPANEL //the ultipanel as on thingiverse
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
// The GADGETS3D G3D LCD/SD Controller (blue PCB)
// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel
//#define G3D_PANEL
// The RepRapDiscount FULL GRAPHIC Smart Controller (quadratic white PCB)
// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller
//
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER
// The RepRapWorld REPRAPWORLD_KEYPAD v1.1
// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // how much should be moved when a key is pressed, eg 10.0 means 10mm per click
// The Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=product/product&product_id=53
// REMEMBER TO INSTALL LiquidCrystal_I2C.h in your ARUDINO library folder: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//#define RA_CONTROL_PANEL
//automatic expansion
#if defined (MAKRPANEL)
#define DOGLCD
#define SDSUPPORT
#define ULTIPANEL
#define NEWPANEL
#define DEFAULT_LCD_CONTRAST 17
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920
#define REPRAP_DISCOUNT_SMART_CONTROLLER
#endif
#if defined(ULTIMAKERCONTROLLER) || defined(REPRAP_DISCOUNT_SMART_CONTROLLER) || defined(G3D_PANEL)
#define ULTIPANEL
#define NEWPANEL
#endif
#if defined(REPRAPWORLD_KEYPAD)
#define NEWPANEL
#define ULTIPANEL
#endif
#if defined(RA_CONTROL_PANEL)
#define ULTIPANEL
#define NEWPANEL
#define LCD_I2C_TYPE_PCA8574
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#endif
//I2C PANELS
//#define LCD_I2C_SAINSMART_YWROBOT
#ifdef LCD_I2C_SAINSMART_YWROBOT
// This uses the LiquidCrystal_I2C library ( https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home )
// Make sure it is placed in the Arduino libraries directory.
#define LCD_I2C_TYPE_PCF8575
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#define NEWPANEL
#define ULTIPANEL
#endif
// PANELOLU2 LCD with status LEDs, separate encoder and click inputs
//#define LCD_I2C_PANELOLU2
#ifdef LCD_I2C_PANELOLU2
// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
// (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file)
// Note: The PANELOLU2 encoder click input can either be directly connected to a pin
// (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
#define LCD_I2C_TYPE_MCP23017
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD
#define NEWPANEL
#define ULTIPANEL
#endif
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
#ifdef LCD_I2C_VIKI
// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
// Note: The pause/stop/resume LCD button pin should be connected to the Arduino
// BTN_ENC pin (or set BTN_ENC to -1 if not used)
#define LCD_I2C_TYPE_MCP23017
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later)
#define NEWPANEL
#define ULTIPANEL
#endif
#ifdef ULTIPANEL
// #define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
#define LCD_HEIGHT 4
#endif
#else //no panel but just lcd
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16
#define LCD_HEIGHT 2
#endif
#endif
#endif
// default LCD contrast for dogm-like LCD displays
#ifdef DOGLCD
# ifndef DEFAULT_LCD_CONTRAST
# define DEFAULT_LCD_CONTRAST 32
# endif
#endif
// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN
// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not ass annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM
// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0
// M240 Triggers a camera by emulating a Canon RC-1 Remote
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
// #define PHOTOGRAPH_PIN 23
// SF send wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX
// Support for the BariCUDA Paste Extruder.
//#define BARICUDA
/*********************************************************************\
* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas
**********************************************************************/
// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command
// Servo Endstops
//
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M206 command to correct for switch height offset to actual nozzle height. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
//#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles
#include "Configuration_adv.h"
#include "thermistortables.h"
#endif //__CONFIGURATION_H

396
Marlin/example_configurations/delta/Configuration_adv.h

@ -0,0 +1,396 @@
#ifndef CONFIGURATION_ADV_H
#define CONFIGURATION_ADV_H
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
#ifdef BED_LIMIT_SWITCHING
#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check:
// This waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
// If the temperature has not increased at the end of that period, the target temperature is set to zero.
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature
// differ by at least 2x WATCH_TEMP_INCREASE
//#define WATCH_TEMP_PERIOD 40000 //40 seconds
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
#ifdef PIDTEMP
// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
// if Kc is choosen well, the additional required power due to increased melting should be compensated.
#define PID_ADD_EXTRUSION_RATE
#ifdef PID_ADD_EXTRUSION_RATE
#define DEFAULT_Kc (1) //heatingpower=Kc*(e_speed)
#endif
#endif
//automatic temperature: The hot end target temperature is calculated by all the buffered lines of gcode.
//The maximum buffered steps/sec of the extruder motor are called "se".
//You enter the autotemp mode by a M109 S<mintemp> T<maxtemp> F<factor>
// the target temperature is set to mintemp+factor*se[steps/sec] and limited by mintemp and maxtemp
// you exit the value by any M109 without F*
// Also, if the temperature is set to a value <mintemp, it is not changed by autotemp.
// on an ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
#define AUTOTEMP
#ifdef AUTOTEMP
#define AUTOTEMP_OLDWEIGHT 0.98
#endif
// extruder run-out prevention.
//if the machine is idle, and the temperature over MINTEMP, every couple of SECONDS some filament is extruded
//#define EXTRUDER_RUNOUT_PREVENT
#define EXTRUDER_RUNOUT_MINTEMP 190
#define EXTRUDER_RUNOUT_SECONDS 30.
#define EXTRUDER_RUNOUT_ESTEPS 14. //mm filament
#define EXTRUDER_RUNOUT_SPEED 1500. //extrusion speed
#define EXTRUDER_RUNOUT_EXTRUDE 100
//These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements.
//The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET"
#define TEMP_SENSOR_AD595_OFFSET 0.0
#define TEMP_SENSOR_AD595_GAIN 1.0
//This is for controlling a fan to cool down the stepper drivers
//it will turn on when any driver is enabled
//and turn off after the set amount of seconds from last driver being disabled again
#define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)
#define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run
#define CONTROLLERFAN_SPEED 255 // == full speed
// When first starting the main fan, run it at full speed for the
// given number of milliseconds. This gets the fan spinning reliably
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
//#define FAN_KICKSTART_TIME 100
// Extruder cooling fans
// Configure fan pin outputs to automatically turn on/off when the associated
// extruder temperature is above/below EXTRUDER_AUTO_FAN_TEMPERATURE.
// Multiple extruders can be assigned to the same pin in which case
// the fan will turn on when any selected extruder is above the threshold.
#define EXTRUDER_0_AUTO_FAN_PIN -1
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
//===========================================================================
//=============================Mechanical Settings===========================
//===========================================================================
#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
//// AUTOSET LOCATIONS OF LIMIT SWITCHES
//// Added by ZetaPhoenix 09-15-2012
#ifdef MANUAL_HOME_POSITIONS // Use manual limit switch locations
#define X_HOME_POS MANUAL_X_HOME_POS
#define Y_HOME_POS MANUAL_Y_HOME_POS
#define Z_HOME_POS MANUAL_Z_HOME_POS
#else //Set min/max homing switch positions based upon homing direction and min/max travel limits
//X axis
#if X_HOME_DIR == -1
#ifdef BED_CENTER_AT_0_0
#define X_HOME_POS X_MAX_LENGTH * -0.5
#else
#define X_HOME_POS X_MIN_POS
#endif //BED_CENTER_AT_0_0
#else
#ifdef BED_CENTER_AT_0_0
#define X_HOME_POS X_MAX_LENGTH * 0.5
#else
#define X_HOME_POS X_MAX_POS
#endif //BED_CENTER_AT_0_0
#endif //X_HOME_DIR == -1
//Y axis
#if Y_HOME_DIR == -1
#ifdef BED_CENTER_AT_0_0
#define Y_HOME_POS Y_MAX_LENGTH * -0.5
#else
#define Y_HOME_POS Y_MIN_POS
#endif //BED_CENTER_AT_0_0
#else
#ifdef BED_CENTER_AT_0_0
#define Y_HOME_POS Y_MAX_LENGTH * 0.5
#else
#define Y_HOME_POS Y_MAX_POS
#endif //BED_CENTER_AT_0_0
#endif //Y_HOME_DIR == -1
// Z axis
#if Z_HOME_DIR == -1 //BED_CENTER_AT_0_0 not used
#define Z_HOME_POS Z_MIN_POS
#else
#define Z_HOME_POS Z_MAX_POS
#endif //Z_HOME_DIR == -1
#endif //End auto min/max positions
//END AUTOSET LOCATIONS OF LIMIT SWITCHES -ZP
//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.
// A single Z stepper driver is usually used to drive 2 stepper motors.
// Uncomment this define to utilize a separate stepper driver for each Z axis motor.
// Only a few motherboards support this, like RAMPS, which have dual extruder support (the 2nd, often unused, extruder driver is used
// to control the 2nd Z axis stepper motor). The pins are currently only defined for a RAMPS motherboards.
// On a RAMPS (or other 5 driver) motherboard, using this feature will limit you to using 1 extruder.
//#define Z_DUAL_STEPPER_DRIVERS
#ifdef Z_DUAL_STEPPER_DRIVERS
#undef EXTRUDERS
#define EXTRUDERS 1
#endif
// Enable this for dual x-carriage printers.
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// allowing faster printing speeds.
//#define DUAL_X_CARRIAGE
#ifdef DUAL_X_CARRIAGE
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 88 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 350.45 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// without modifying the firmware (through the "M218 T1 X???" command).
// Remember: you should set the second extruder x-offset to 0 in your slicer.
// Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h)
#define X2_ENABLE_PIN 29
#define X2_STEP_PIN 25
#define X2_DIR_PIN 23
#endif // DUAL_X_CARRIAGE
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_RETRACT_MM 5
#define Y_HOME_RETRACT_MM 5
#define Z_HOME_RETRACT_MM 5 // deltas need the same for all three axis
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
#define AXIS_RELATIVE_MODES {false, false, false, false}
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
//By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
#define INVERT_X_STEP_PIN false
#define INVERT_Y_STEP_PIN false
#define INVERT_Z_STEP_PIN false
#define INVERT_E_STEP_PIN false
//default stepper release if idle
#define DEFAULT_STEPPER_DEACTIVE_TIME 60
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
#define DEFAULT_MINSEGMENTTIME 20000
// If defined the movements slow down when the look ahead buffer is only half full
// (don't use SLOWDOWN with DELTA because DELTA generates hundreds of segments per second)
//#define SLOWDOWN
// Frequency limit
// See nophead's blog for more info
// Not working O
//#define XY_FREQUENCY_LIMIT 15
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec)
// MS1 MS2 Stepper Driver Microstepping mode table
#define MICROSTEP1 LOW,LOW
#define MICROSTEP2 HIGH,LOW
#define MICROSTEP4 LOW,HIGH
#define MICROSTEP8 HIGH,HIGH
#define MICROSTEP16 HIGH,HIGH
// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU.
#define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16]
// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
//===========================================================================
//=============================Additional Features===========================
//===========================================================================
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.
// The hardware watchdog should reset the Microcontroller disabling all outputs, in case the firmware gets stuck and doesn't do temperature regulation.
//#define USE_WATCHDOG
#ifdef USE_WATCHDOG
// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on.
// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset.
// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.
//#define WATCHDOG_RESET_MANUAL
#endif
// Enable the option to stop SD printing when hitting and endstops, needs to be enabled from the LCD menu when this option is enabled.
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
//
// hooke's law says: force = k * distance
// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#ifdef ADVANCE
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#define STEPS_MM_E 836
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
#endif // ADVANCE
// Arc interpretation settings:
#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25
const unsigned int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement
// If you are using a RAMPS board or cheap E-bay purchased boards that do not detect when an SD card is inserted
// You can get round this by connecting a push button or single throw switch to the pin defined as SDCARDCARDDETECT
// in the pins.h file. When using a push button pulling the pin to ground this will need inverted. This setting should
// be commented out otherwise
#define SDCARDDETECTINVERTED
#ifdef ULTIPANEL
#undef SDCARDDETECTINVERTED
#endif
// Power Signal Control Definitions
// By default use ATX definition
#ifndef POWER_SUPPLY
#define POWER_SUPPLY 1
#endif
// 1 = ATX
#if (POWER_SUPPLY == 1)
#define PS_ON_AWAKE LOW
#define PS_ON_ASLEEP HIGH
#endif
// 2 = X-Box 360 203W
#if (POWER_SUPPLY == 2)
#define PS_ON_AWAKE HIGH
#define PS_ON_ASLEEP LOW
#endif
//===========================================================================
//=============================Buffers ============================
//===========================================================================
// The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering.
#if defined SDSUPPORT
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif
//The ASCII buffer for recieving from the serial:
#define MAX_CMD_SIZE 96
#define BUFSIZE 4
// Firmware based and LCD controled retract
// M207 and M208 can be used to define parameters for the retraction.
// The retraction can be called by the slicer using G10 and G11
// until then, intended retractions can be detected by moves that only extrude and the direction.
// the moves are than replaced by the firmware controlled ones.
// #define FWRETRACT //ONLY PARTIALLY TESTED
#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt
//adds support for experimental filament exchange support M600; requires display
#ifdef ULTIPANEL
//#define FILAMENTCHANGEENABLE
#ifdef FILAMENTCHANGEENABLE
#define FILAMENTCHANGE_XPOS 3
#define FILAMENTCHANGE_YPOS 3
#define FILAMENTCHANGE_ZADD 10
#define FILAMENTCHANGE_FIRSTRETRACT -2
#define FILAMENTCHANGE_FINALRETRACT -100
#endif
#endif
//===========================================================================
//============================= Define Defines ============================
//===========================================================================
#if EXTRUDERS > 1 && defined TEMP_SENSOR_1_AS_REDUNDANT
#error "You cannot use TEMP_SENSOR_1_AS_REDUNDANT if EXTRUDERS > 1"
#endif
#if TEMP_SENSOR_0 > 0
#define THERMISTORHEATER_0 TEMP_SENSOR_0
#define HEATER_0_USES_THERMISTOR
#endif
#if TEMP_SENSOR_1 > 0
#define THERMISTORHEATER_1 TEMP_SENSOR_1
#define HEATER_1_USES_THERMISTOR
#endif
#if TEMP_SENSOR_2 > 0
#define THERMISTORHEATER_2 TEMP_SENSOR_2
#define HEATER_2_USES_THERMISTOR
#endif
#if TEMP_SENSOR_BED > 0
#define THERMISTORBED TEMP_SENSOR_BED
#define BED_USES_THERMISTOR
#endif
#if TEMP_SENSOR_0 == -1
#define HEATER_0_USES_AD595
#endif
#if TEMP_SENSOR_1 == -1
#define HEATER_1_USES_AD595
#endif
#if TEMP_SENSOR_2 == -1
#define HEATER_2_USES_AD595
#endif
#if TEMP_SENSOR_BED == -1
#define BED_USES_AD595
#endif
#if TEMP_SENSOR_0 == -2
#define HEATER_0_USES_MAX6675
#endif
#if TEMP_SENSOR_0 == 0
#undef HEATER_0_MINTEMP
#undef HEATER_0_MAXTEMP
#endif
#if TEMP_SENSOR_1 == 0
#undef HEATER_1_MINTEMP
#undef HEATER_1_MAXTEMP
#endif
#if TEMP_SENSOR_2 == 0
#undef HEATER_2_MINTEMP
#undef HEATER_2_MAXTEMP
#endif
#if TEMP_SENSOR_BED == 0
#undef BED_MINTEMP
#undef BED_MAXTEMP
#endif
#endif //__CONFIGURATION_ADV_H

696
Marlin/fastio.h

@ -2575,8 +2575,702 @@ pins
#define PF7_DDR DDRF
#endif
#if defined (__AVR_ATmega1281__) || defined (__AVR_ATmega2561__)
// UART
#define RXD DIO0
#define TXD DIO1
// SPI
#define SCK DIO10
#define MISO DIO12
#define MOSI DIO11
#define SS DIO16
// TWI (I2C)
#define SCL DIO17
#define SDA DIO18
// timers and PWM
#define OC0A DIO9
#define OC0B DIO4
#define OC1A DIO7
#define OC1B DIO8
#define OC2A DIO6
#define OC3A DIO5
#define OC3B DIO2
#define OC3C DIO3
// change for your board
#define DEBUG_LED DIO46
/*
pins
*/
#define DIO0_PIN PINE0
#define DIO0_RPORT PINE
#define DIO0_WPORT PORTE
#define DIO0_DDR DDRE
#define DIO0_PWM NULL
#define DIO1_PIN PINE1
#define DIO1_RPORT PINE
#define DIO1_WPORT PORTE
#define DIO1_DDR DDRE
#define DIO1_PWM NULL
#define DIO2_PIN PINE4
#define DIO2_RPORT PINE
#define DIO2_WPORT PORTE
#define DIO2_DDR DDRE
#define DIO2_PWM &OCR3BL
#define DIO3_PIN PINE5
#define DIO3_RPORT PINE
#define DIO3_WPORT PORTE
#define DIO3_DDR DDRE
#define DIO3_PWM &OCR3CL
#define DIO4_PIN PING5
#define DIO4_RPORT PING
#define DIO4_WPORT PORTG
#define DIO4_DDR DDRG
#define DIO4_PWM &OCR0B
#define DIO5_PIN PINE3
#define DIO5_RPORT PINE
#define DIO5_WPORT PORTE
#define DIO5_DDR DDRE
#define DIO5_PWM &OCR3AL
#define DIO6_PIN PINB4
#define DIO6_RPORT PINB
#define DIO6_WPORT PORTB
#define DIO6_DDR DDRB
#define DIO6_PWM &OCR2AL
#define DIO7_PIN PINB5
#define DIO7_RPORT PINB
#define DIO7_WPORT PORTB
#define DIO7_DDR DDRB
#define DIO7_PWM &OCR1AL
#define DIO8_PIN PINB6
#define DIO8_RPORT PINB
#define DIO8_WPORT PORTB
#define DIO8_DDR DDRB
#define DIO8_PWM &OCR1BL
#define DIO9_PIN PINB7
#define DIO9_RPORT PINB
#define DIO9_WPORT PORTB
#define DIO9_DDR DDRB
#define DIO9_PWM &OCR0AL
#define DIO10_PIN PINB1
#define DIO10_RPORT PINB
#define DIO10_WPORT PORTB
#define DIO10_DDR DDRB
#define DIO10_PWM NULL
#define DIO11_PIN PINB2
#define DIO11_RPORT PINB
#define DIO11_WPORT PORTB
#define DIO11_DDR DDRB
#define DIO11_PWM NULL
#define DIO12_PIN PINB3
#define DIO12_RPORT PINB
#define DIO12_WPORT PORTB
#define DIO12_DDR DDRB
#define DIO12_PWM NULL
#define DIO13_PIN PINE2
#define DIO13_RPORT PINE
#define DIO13_WPORT PORTE
#define DIO13_DDR DDRE
#define DIO13_PWM NULL
#define DIO14_PIN PINE6
#define DIO14_RPORT PINE
#define DIO14_WPORT PORTE
#define DIO14_DDR DDRE
#define DIO14_PWM NULL
#define DIO15_PIN PINE7
#define DIO15_RPORT PINE
#define DIO15_WPORT PORTE
#define DIO15_DDR DDRE
#define DIO15_PWM NULL
#define DIO16_PIN PINB0
#define DIO16_RPORT PINB
#define DIO16_WPORT PORTB
#define DIO16_DDR DDRB
#define DIO16_PWM NULL
#define DIO17_PIN PIND0
#define DIO17_RPORT PIND
#define DIO17_WPORT PORTD
#define DIO17_DDR DDRD
#define DIO17_PWM NULL
#define DIO18_PIN PIND1
#define DIO18_RPORT PIND
#define DIO18_WPORT PORTD
#define DIO18_DDR DDRD
#define DIO18_PWM NULL
#define DIO19_PIN PIND2
#define DIO19_RPORT PIND
#define DIO19_WPORT PORTD
#define DIO19_DDR DDRD
#define DIO19_PWM NULL
#define DIO20_PIN PIND3
#define DIO20_RPORT PIND
#define DIO20_WPORT PORTD
#define DIO20_DDR DDRD
#define DIO20_PWM NULL
#define DIO21_PIN PIND4
#define DIO21_RPORT PIND
#define DIO21_WPORT PORTD
#define DIO21_DDR DDRD
#define DIO21_PWM NULL
#define DIO22_PIN PIND5
#define DIO22_RPORT PIND
#define DIO22_WPORT PORTD
#define DIO22_DDR DDRD
#define DIO22_PWM NULL
#define DIO23_PIN PIND6
#define DIO23_RPORT PIND
#define DIO23_WPORT PORTD
#define DIO23_DDR DDRD
#define DIO23_PWM NULL
#define DIO24_PIN PIND7
#define DIO24_RPORT PIND
#define DIO24_WPORT PORTD
#define DIO24_DDR DDRD
#define DIO24_PWM NULL
#define DIO25_PIN PING0
#define DIO25_RPORT PING
#define DIO25_WPORT PORTG
#define DIO25_DDR DDRG
#define DIO25_PWM NULL
#define DIO26_PIN PING1
#define DIO26_RPORT PING
#define DIO26_WPORT PORTG
#define DIO26_DDR DDRG
#define DIO26_PWM NULL
#define DIO27_PIN PING2
#define DIO27_RPORT PING
#define DIO27_WPORT PORTG
#define DIO27_DDR DDRG
#define DIO27_PWM NULL
#define DIO28_PIN PING3
#define DIO28_RPORT PING
#define DIO28_WPORT PORTG
#define DIO28_DDR DDRG
#define DIO28_PWM NULL
#define DIO29_PIN PING4
#define DIO29_RPORT PING
#define DIO29_WPORT PORTG
#define DIO29_DDR DDRG
#define DIO29_PWM NULL
#define DIO30_PIN PINC0
#define DIO30_RPORT PINC
#define DIO30_WPORT PORTC
#define DIO30_DDR DDRC
#define DIO30_PWM NULL
#define DIO31_PIN PINC1
#define DIO31_RPORT PINC
#define DIO31_WPORT PORTC
#define DIO31_DDR DDRC
#define DIO31_PWM NULL
#define DIO32_PIN PINC2
#define DIO32_RPORT PINC
#define DIO32_WPORT PORTC
#define DIO32_DDR DDRC
#define DIO32_PWM NULL
#define DIO33_PIN PINC3
#define DIO33_RPORT PINC
#define DIO33_WPORT PORTC
#define DIO33_DDR DDRC
#define DIO33_PWM NULL
#define DIO34_PIN PINC4
#define DIO34_RPORT PINC
#define DIO34_WPORT PORTC
#define DIO34_DDR DDRC
#define DIO34_PWM NULL
#define DIO35_PIN PINC5
#define DIO35_RPORT PINC
#define DIO35_WPORT PORTC
#define DIO35_DDR DDRC
#define DIO35_PWM NULL
#define DIO36_PIN PINC6
#define DIO36_RPORT PINC
#define DIO36_WPORT PORTC
#define DIO36_DDR DDRC
#define DIO36_PWM NULL
#define DIO37_PIN PINC7
#define DIO37_RPORT PINC
#define DIO37_WPORT PORTC
#define DIO37_DDR DDRC
#define DIO37_PWM NULL
#define DIO38_PIN PINA0
#define DIO38_RPORT PINA
#define DIO38_WPORT PORTA
#define DIO38_DDR DDRA
#define DIO38_PWM NULL
#define DIO39_PIN PINA1
#define DIO39_RPORT PINA
#define DIO39_WPORT PORTA
#define DIO39_DDR DDRA
#define DIO39_PWM NULL
#define DIO40_PIN PINA2
#define DIO40_RPORT PINA
#define DIO40_WPORT PORTA
#define DIO40_DDR DDRA
#define DIO40_PWM NULL
#define DIO41_PIN PINA3
#define DIO41_RPORT PINA
#define DIO41_WPORT PORTA
#define DIO41_DDR DDRA
#define DIO41_PWM NULL
#define DIO42_PIN PINA4
#define DIO42_RPORT PINA
#define DIO42_WPORT PORTA
#define DIO42_DDR DDRA
#define DIO42_PWM NULL
#define DIO43_PIN PINA5
#define DIO43_RPORT PINA
#define DIO43_WPORT PORTA
#define DIO43_DDR DDRA
#define DIO43_PWM NULL
#define DIO44_PIN PINA6
#define DIO44_RPORT PINA
#define DIO44_WPORT PORTA
#define DIO44_DDR DDRA
#define DIO44_PWM NULL
#define DIO45_PIN PINA7
#define DIO45_RPORT PINA
#define DIO45_WPORT PORTA
#define DIO45_DDR DDRA
#define DIO45_PWM NULL
#define DIO46_PIN PINF0
#define DIO46_RPORT PINF
#define DIO46_WPORT PORTF
#define DIO46_DDR DDRF
#define DIO46_PWM NULL
#define DIO47_PIN PINF1
#define DIO47_RPORT PINF
#define DIO47_WPORT PORTF
#define DIO47_DDR DDRF
#define DIO47_PWM NULL
#define DIO48_PIN PINF2
#define DIO48_RPORT PINF
#define DIO48_WPORT PORTF
#define DIO48_DDR DDRF
#define DIO48_PWM NULL
#define DIO49_PIN PINF3
#define DIO49_RPORT PINF
#define DIO49_WPORT PORTF
#define DIO49_DDR DDRF
#define DIO49_PWM NULL
#define DIO50_PIN PINF4
#define DIO50_RPORT PINF
#define DIO50_WPORT PORTF
#define DIO50_DDR DDRF
#define DIO50_PWM NULL
#define DIO51_PIN PINF5
#define DIO51_RPORT PINF
#define DIO51_WPORT PORTF
#define DIO51_DDR DDRF
#define DIO51_PWM NULL
#define DIO52_PIN PINF6
#define DIO52_RPORT PINF
#define DIO52_WPORT PORTF
#define DIO52_DDR DDRF
#define DIO52_PWM NULL
#define DIO53_PIN PINF7
#define DIO53_RPORT PINF
#define DIO53_WPORT PORTF
#define DIO53_DDR DDRF
#define DIO53_PWM NULL
#undef PA0
#define PA0_PIN PINA0
#define PA0_RPORT PINA
#define PA0_WPORT PORTA
#define PA0_DDR DDRA
#define PA0_PWM NULL
#undef PA1
#define PA1_PIN PINA1
#define PA1_RPORT PINA
#define PA1_WPORT PORTA
#define PA1_DDR DDRA
#define PA1_PWM NULL
#undef PA2
#define PA2_PIN PINA2
#define PA2_RPORT PINA
#define PA2_WPORT PORTA
#define PA2_DDR DDRA
#define PA2_PWM NULL
#undef PA3
#define PA3_PIN PINA3
#define PA3_RPORT PINA
#define PA3_WPORT PORTA
#define PA3_DDR DDRA
#define PA3_PWM NULL
#undef PA4
#define PA4_PIN PINA4
#define PA4_RPORT PINA
#define PA4_WPORT PORTA
#define PA4_DDR DDRA
#define PA4_PWM NULL
#undef PA5
#define PA5_PIN PINA5
#define PA5_RPORT PINA
#define PA5_WPORT PORTA
#define PA5_DDR DDRA
#define PA5_PWM NULL
#undef PA6
#define PA6_PIN PINA6
#define PA6_RPORT PINA
#define PA6_WPORT PORTA
#define PA6_DDR DDRA
#define PA6_PWM NULL
#undef PA7
#define PA7_PIN PINA7
#define PA7_RPORT PINA
#define PA7_WPORT PORTA
#define PA7_DDR DDRA
#define PA7_PWM NULL
#undef PB0
#define PB0_PIN PINB0
#define PB0_RPORT PINB
#define PB0_WPORT PORTB
#define PB0_DDR DDRB
#define PB0_PWM NULL
#undef PB1
#define PB1_PIN PINB1
#define PB1_RPORT PINB
#define PB1_WPORT PORTB
#define PB1_DDR DDRB
#define PB1_PWM NULL
#undef PB2
#define PB2_PIN PINB2
#define PB2_RPORT PINB
#define PB2_WPORT PORTB
#define PB2_DDR DDRB
#define PB2_PWM NULL
#undef PB3
#define PB3_PIN PINB3
#define PB3_RPORT PINB
#define PB3_WPORT PORTB
#define PB3_DDR DDRB
#define PB3_PWM NULL
#undef PB4
#define PB4_PIN PINB4
#define PB4_RPORT PINB
#define PB4_WPORT PORTB
#define PB4_DDR DDRB
#define PB4_PWM &OCR2A
#undef PB5
#define PB5_PIN PINB5
#define PB5_RPORT PINB
#define PB5_WPORT PORTB
#define PB5_DDR DDRB
#define PB5_PWM NULL
#undef PB6
#define PB6_PIN PINB6
#define PB6_RPORT PINB
#define PB6_WPORT PORTB
#define PB6_DDR DDRB
#define PB6_PWM NULL
#undef PB7
#define PB7_PIN PINB7
#define PB7_RPORT PINB
#define PB7_WPORT PORTB
#define PB7_DDR DDRB
#define PB7_PWM &OCR0A
#undef PC0
#define PC0_PIN PINC0
#define PC0_RPORT PINC
#define PC0_WPORT PORTC
#define PC0_DDR DDRC
#define PC0_PWM NULL
#undef PC1
#define PC1_PIN PINC1
#define PC1_RPORT PINC
#define PC1_WPORT PORTC
#define PC1_DDR DDRC
#define PC1_PWM NULL
#undef PC2
#define PC2_PIN PINC2
#define PC2_RPORT PINC
#define PC2_WPORT PORTC
#define PC2_DDR DDRC
#define PC2_PWM NULL
#undef PC3
#define PC3_PIN PINC3
#define PC3_RPORT PINC
#define PC3_WPORT PORTC
#define PC3_DDR DDRC
#define PC3_PWM NULL
#undef PC4
#define PC4_PIN PINC4
#define PC4_RPORT PINC
#define PC4_WPORT PORTC
#define PC4_DDR DDRC
#define PC4_PWM NULL
#undef PC5
#define PC5_PIN PINC5
#define PC5_RPORT PINC
#define PC5_WPORT PORTC
#define PC5_DDR DDRC
#define PC5_PWM NULL
#undef PC6
#define PC6_PIN PINC6
#define PC6_RPORT PINC
#define PC6_WPORT PORTC
#define PC6_DDR DDRC
#define PC6_PWM NULL
#undef PC7
#define PC7_PIN PINC7
#define PC7_RPORT PINC
#define PC7_WPORT PORTC
#define PC7_DDR DDRC
#define PC7_PWM NULL
#undef PD0
#define PD0_PIN PIND0
#define PD0_RPORT PIND
#define PD0_WPORT PORTD
#define PD0_DDR DDRD
#define PD0_PWM NULL
#undef PD1
#define PD1_PIN PIND1
#define PD1_RPORT PIND
#define PD1_WPORT PORTD
#define PD1_DDR DDRD
#define PD1_PWM NULL
#undef PD2
#define PD2_PIN PIND2
#define PD2_RPORT PIND
#define PD2_WPORT PORTD
#define PD2_DDR DDRD
#define PD2_PWM NULL
#undef PD3
#define PD3_PIN PIND3
#define PD3_RPORT PIND
#define PD3_WPORT PORTD
#define PD3_DDR DDRD
#define PD3_PWM NULL
#undef PD4
#define PD4_PIN PIND4
#define PD4_RPORT PIND
#define PD4_WPORT PORTD
#define PD4_DDR DDRD
#define PD4_PWM NULL
#undef PD5
#define PD5_PIN PIND5
#define PD5_RPORT PIND
#define PD5_WPORT PORTD
#define PD5_DDR DDRD
#define PD5_PWM NULL
#undef PD6
#define PD6_PIN PIND6
#define PD6_RPORT PIND
#define PD6_WPORT PORTD
#define PD6_DDR DDRD
#define PD6_PWM NULL
#undef PD7
#define PD7_PIN PIND7
#define PD7_RPORT PIND
#define PD7_WPORT PORTD
#define PD7_DDR DDRD
#define PD7_PWM NULL
#undef PE0
#define PE0_PIN PINE0
#define PE0_RPORT PINE
#define PE0_WPORT PORTE
#define PE0_DDR DDRE
#define PE0_PWM NULL
#undef PE1
#define PE1_PIN PINE1
#define PE1_RPORT PINE
#define PE1_WPORT PORTE
#define PE1_DDR DDRE
#define PE1_PWM NULL
#undef PE2
#define PE2_PIN PINE2
#define PE2_RPORT PINE
#define PE2_WPORT PORTE
#define PE2_DDR DDRE
#define PE2_PWM NULL
#undef PE3
#define PE3_PIN PINE3
#define PE3_RPORT PINE
#define PE3_WPORT PORTE
#define PE3_DDR DDRE
#define PE3_PWM &OCR3AL
#undef PE4
#define PE4_PIN PINE4
#define PE4_RPORT PINE
#define PE4_WPORT PORTE
#define PE4_DDR DDRE
#define PE4_PWM &OCR3BL
#undef PE5
#define PE5_PIN PINE5
#define PE5_RPORT PINE
#define PE5_WPORT PORTE
#define PE5_DDR DDRE
#define PE5_PWM &OCR3CL
#undef PE6
#define PE6_PIN PINE6
#define PE6_RPORT PINE
#define PE6_WPORT PORTE
#define PE6_DDR DDRE
#define PE6_PWM NULL
#undef PE7
#define PE7_PIN PINE7
#define PE7_RPORT PINE
#define PE7_WPORT PORTE
#define PE7_DDR DDRE
#define PE7_PWM NULL
#undef PF0
#define PF0_PIN PINF0
#define PF0_RPORT PINF
#define PF0_WPORT PORTF
#define PF0_DDR DDRF
#define PF0_PWM NULL
#undef PF1
#define PF1_PIN PINF1
#define PF1_RPORT PINF
#define PF1_WPORT PORTF
#define PF1_DDR DDRF
#define PF1_PWM NULL
#undef PF2
#define PF2_PIN PINF2
#define PF2_RPORT PINF
#define PF2_WPORT PORTF
#define PF2_DDR DDRF
#define PF2_PWM NULL
#undef PF3
#define PF3_PIN PINF3
#define PF3_RPORT PINF
#define PF3_WPORT PORTF
#define PF3_DDR DDRF
#define PF3_PWM NULL
#undef PF4
#define PF4_PIN PINF4
#define PF4_RPORT PINF
#define PF4_WPORT PORTF
#define PF4_DDR DDRF
#define PF4_PWM NULL
#undef PF5
#define PF5_PIN PINF5
#define PF5_RPORT PINF
#define PF5_WPORT PORTF
#define PF5_DDR DDRF
#define PF5_PWM NULL
#undef PF6
#define PF6_PIN PINF6
#define PF6_RPORT PINF
#define PF6_WPORT PORTF
#define PF6_DDR DDRF
#define PF6_PWM NULL
#undef PF7
#define PF7_PIN PINF7
#define PF7_RPORT PINF
#define PF7_WPORT PORTF
#define PF7_DDR DDRF
#define PF7_PWM NULL
#undef PG0
#define PG0_PIN PING0
#define PG0_RPORT PING
#define PG0_WPORT PORTG
#define PG0_DDR DDRG
#define PG0_PWM NULL
#undef PG1
#define PG1_PIN PING1
#define PG1_RPORT PING
#define PG1_WPORT PORTG
#define PG1_DDR DDRG
#define PG1_PWM NULL
#undef PG2
#define PG2_PIN PING2
#define PG2_RPORT PING
#define PG2_WPORT PORTG
#define PG2_DDR DDRG
#define PG2_PWM NULL
#undef PG3
#define PG3_PIN PING3
#define PG3_RPORT PING
#define PG3_WPORT PORTG
#define PG3_DDR DDRG
#define PG3_PWM NULL
#undef PG4
#define PG4_PIN PING4
#define PG4_RPORT PING
#define PG4_WPORT PORTG
#define PG4_DDR DDRG
#define PG4_PWM NULL
#undef PG5
#define PG5_PIN PING5
#define PG5_RPORT PING
#define PG5_WPORT PORTG
#define PG5_DDR DDRG
#define PG5_PWM &OCR0B
#endif
#ifndef DIO0_PIN
#error pins for this chip not defined in arduino.h! If you write an appropriate pin definition and have this firmware work on your chip, please submit a pull request
#endif
#endif /* _FASTIO_ARDUINO_H */
#endif /* _FASTIO_ARDUINO_H */

2996
Marlin/language.h

File diff suppressed because it is too large

1034
Marlin/pins.h

File diff suppressed because it is too large

104
Marlin/planner.cpp

@ -98,7 +98,7 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro
//=============================private variables ============================
//===========================================================================
#ifdef PREVENT_DANGEROUS_EXTRUDE
bool allow_cold_extrude=false;
float extrude_min_temp=EXTRUDE_MINTEMP;
#endif
#ifdef XY_FREQUENCY_LIMIT
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
@ -439,12 +439,20 @@ void check_axes_activity()
unsigned char z_active = 0;
unsigned char e_active = 0;
unsigned char tail_fan_speed = fanSpeed;
#ifdef BARICUDA
unsigned char tail_valve_pressure = ValvePressure;
unsigned char tail_e_to_p_pressure = EtoPPressure;
#endif
block_t *block;
if(block_buffer_tail != block_buffer_head)
{
uint8_t block_index = block_buffer_tail;
tail_fan_speed = block_buffer[block_index].fan_speed;
#ifdef BARICUDA
tail_valve_pressure = block_buffer[block_index].valve_pressure;
tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
#endif
while(block_index != block_buffer_head)
{
block = &block_buffer[block_index];
@ -464,28 +472,40 @@ void check_axes_activity()
disable_e1();
disable_e2();
}
#if FAN_PIN > -1
#ifndef FAN_SOFT_PWM
#ifdef FAN_KICKSTART_TIME
static unsigned long fan_kick_end;
if (tail_fan_speed) {
if (fan_kick_end == 0) {
// Just starting up fan - run at full power.
fan_kick_end = millis() + FAN_KICKSTART_TIME;
tail_fan_speed = 255;
} else if (fan_kick_end > millis())
// Fan still spinning up.
tail_fan_speed = 255;
} else {
fan_kick_end = 0;
}
#endif//FAN_KICKSTART_TIME
analogWrite(FAN_PIN,tail_fan_speed);
#if defined(FAN_PIN) && FAN_PIN > -1
#ifdef FAN_KICKSTART_TIME
static unsigned long fan_kick_end;
if (tail_fan_speed) {
if (fan_kick_end == 0) {
// Just starting up fan - run at full power.
fan_kick_end = millis() + FAN_KICKSTART_TIME;
tail_fan_speed = 255;
} else if (fan_kick_end > millis())
// Fan still spinning up.
tail_fan_speed = 255;
} else {
fan_kick_end = 0;
}
#endif//FAN_KICKSTART_TIME
#ifdef FAN_SOFT_PWM
fanSpeedSoftPwm = tail_fan_speed;
#else
analogWrite(FAN_PIN,tail_fan_speed);
#endif//!FAN_SOFT_PWM
#endif//FAN_PIN > -1
#ifdef AUTOTEMP
getHighESpeed();
#endif
#ifdef BARICUDA
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
analogWrite(HEATER_1_PIN,tail_valve_pressure);
#endif
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
#endif
#endif
}
@ -519,7 +539,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
#ifdef PREVENT_DANGEROUS_EXTRUDE
if(target[E_AXIS]!=position[E_AXIS])
{
if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
if(degHotend(active_extruder)<extrude_min_temp)
{
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
@ -544,8 +564,16 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->busy = false;
// Number of steps for each axis
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
#ifndef COREXY
// default non-h-bot planning
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
#else
// corexy planning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
#endif
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
block->steps_e *= extrudemultiply;
@ -559,9 +587,14 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
}
block->fan_speed = fanSpeed;
#ifdef BARICUDA
block->valve_pressure = ValvePressure;
block->e_to_p_pressure = EtoPPressure;
#endif
// Compute direction bits for this block
block->direction_bits = 0;
#ifndef COREXY
if (target[X_AXIS] < position[X_AXIS])
{
block->direction_bits |= (1<<X_AXIS);
@ -570,6 +603,16 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
{
block->direction_bits |= (1<<Y_AXIS);
}
#else
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
{
block->direction_bits |= (1<<X_AXIS);
}
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
{
block->direction_bits |= (1<<Y_AXIS);
}
#endif
if (target[Z_AXIS] < position[Z_AXIS])
{
block->direction_bits |= (1<<Z_AXIS);
@ -614,8 +657,13 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
}
float delta_mm[4];
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
#ifndef COREXY
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
#else
delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
#endif
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
@ -735,7 +783,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
}
block->acceleration = block->acceleration_st / steps_per_mm;
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
#if 0 // Use old jerk for now
// Compute path unit vector
@ -896,12 +944,12 @@ uint8_t movesplanned()
return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
}
void allow_cold_extrudes(bool allow)
{
#ifdef PREVENT_DANGEROUS_EXTRUDE
allow_cold_extrude=allow;
#endif
void set_extrude_min_temp(float temp)
{
extrude_min_temp=temp;
}
#endif
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s
void reset_acceleration_rates()

8
Marlin/planner.h

@ -60,6 +60,10 @@ typedef struct {
unsigned long final_rate; // The minimal rate at exit
unsigned long acceleration_st; // acceleration steps/sec^2
unsigned long fan_speed;
#ifdef BARICUDA
unsigned long valve_pressure;
unsigned long e_to_p_pressure;
#endif
volatile char busy;
} block_t;
@ -135,7 +139,9 @@ FORCE_INLINE bool blocks_queued()
return true;
}
void allow_cold_extrudes(bool allow);
#ifdef PREVENT_DANGEROUS_EXTRUDE
void set_extrude_min_temp(float temp);
#endif
void reset_acceleration_rates();
#endif

287
Marlin/stepper.cpp

@ -29,7 +29,7 @@
#include "language.h"
#include "cardreader.h"
#include "speed_lookuptable.h"
#if DIGIPOTSS_PIN > -1
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include <SPI.h>
#endif
@ -69,9 +69,9 @@ volatile long endstops_stepsTotal,endstops_stepsDone;
static volatile bool endstop_x_hit=false;
static volatile bool endstop_y_hit=false;
static volatile bool endstop_z_hit=false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false;
#endif
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false;
#endif
static bool old_x_min_endstop=false;
static bool old_x_max_endstop=false;
@ -184,20 +184,20 @@ void checkHitEndstops()
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
}
SERIAL_ECHOLN("");
SERIAL_ECHOLN("");
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
if (abort_on_endstop_hit)
{
endstop_z_hit=false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
if (abort_on_endstop_hit)
{
card.sdprinting = false;
card.closefile();
quickStop();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
}
}
#endif
}
}
@ -272,7 +272,7 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
return timer;
}
@ -345,53 +345,89 @@ ISR(TIMER1_COMPA_vect)
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits;
// Set direction en check limit switches
if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
#if !defined COREXY //NOT COREXY
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1<<X_AXIS))!=0){
#ifdef DUAL_X_CARRIAGE
if (active_extruder != 0)
WRITE(X2_DIR_PIN,INVERT_X_DIR);
else
#endif
WRITE(X_DIR_PIN, INVERT_X_DIR);
#endif
count_direction[X_AXIS]=-1;
}
else{
#ifdef DUAL_X_CARRIAGE
if (active_extruder != 0)
WRITE(X2_DIR_PIN,!INVERT_X_DIR);
else
#endif
WRITE(X_DIR_PIN, !INVERT_X_DIR);
count_direction[X_AXIS]=1;
}
if((out_bits & (1<<Y_AXIS))!=0){
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
count_direction[Y_AXIS]=-1;
}
else{
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
count_direction[Y_AXIS]=1;
}
// Set direction en check limit switches
#ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
#endif
CHECK_ENDSTOPS
{
#if X_MIN_PIN > -1
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_min_endstop = x_min_endstop;
#endif
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((active_extruder == 0 && X_HOME_DIR == -1) || (active_extruder != 0 && X2_HOME_DIR == -1))
#endif
{
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_min_endstop = x_min_endstop;
#endif
}
}
}
else { // +direction
#if !defined COREXY //NOT COREXY
WRITE(X_DIR_PIN,!INVERT_X_DIR);
#endif
count_direction[X_AXIS]=1;
CHECK_ENDSTOPS
{
#if X_MAX_PIN > -1
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_max_endstop = x_max_endstop;
#endif
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((active_extruder == 0 && X_HOME_DIR == 1) || (active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_max_endstop = x_max_endstop;
#endif
}
}
}
#ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
#if !defined COREXY //NOT COREXY
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
#endif
count_direction[Y_AXIS]=-1;
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
#endif
CHECK_ENDSTOPS
{
#if Y_MIN_PIN > -1
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
@ -403,13 +439,9 @@ ISR(TIMER1_COMPA_vect)
}
}
else { // +direction
#if !defined COREXY //NOT COREXY
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
#endif
count_direction[Y_AXIS]=1;
CHECK_ENDSTOPS
{
#if Y_MAX_PIN > -1
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
@ -420,28 +452,7 @@ ISR(TIMER1_COMPA_vect)
#endif
}
}
#ifdef COREXY //coreXY kinematics defined
if((current_block->steps_x >= current_block->steps_y)&&((out_bits & (1<<X_AXIS)) == 0)){ //+X is major axis
WRITE(X_DIR_PIN, !INVERT_X_DIR);
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
}
if((current_block->steps_x >= current_block->steps_y)&&((out_bits & (1<<X_AXIS)) != 0)){ //-X is major axis
WRITE(X_DIR_PIN, INVERT_X_DIR);
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
}
if((current_block->steps_y > current_block->steps_x)&&((out_bits & (1<<Y_AXIS)) == 0)){ //+Y is major axis
WRITE(X_DIR_PIN, !INVERT_X_DIR);
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
}
if((current_block->steps_y > current_block->steps_x)&&((out_bits & (1<<Y_AXIS)) != 0)){ //-Y is major axis
WRITE(X_DIR_PIN, INVERT_X_DIR);
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
}
#endif //coreXY
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
@ -452,7 +463,7 @@ ISR(TIMER1_COMPA_vect)
count_direction[Z_AXIS]=-1;
CHECK_ENDSTOPS
{
#if Z_MIN_PIN > -1
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
@ -473,7 +484,7 @@ ISR(TIMER1_COMPA_vect)
count_direction[Z_AXIS]=1;
CHECK_ENDSTOPS
{
#if Z_MAX_PIN > -1
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
@ -516,13 +527,22 @@ ISR(TIMER1_COMPA_vect)
}
#endif //ADVANCE
#if !defined COREXY
counter_x += current_block->steps_x;
if (counter_x > 0) {
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
#ifdef DUAL_X_CARRIAGE
if (active_extruder != 0)
WRITE(X2_STEP_PIN,!INVERT_X_STEP_PIN);
else
#endif
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
#ifdef DUAL_X_CARRIAGE
if (active_extruder != 0)
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
else
#endif
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
}
counter_y += current_block->steps_y;
@ -532,56 +552,7 @@ ISR(TIMER1_COMPA_vect)
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
}
#endif
#ifdef COREXY
counter_x += current_block->steps_x;
counter_y += current_block->steps_y;
if ((counter_x > 0)&&!(counter_y>0)){ //X step only
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
}
if (!(counter_x > 0)&&(counter_y>0)){ //Y step only
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_y -= current_block->step_event_count;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
}
if ((counter_x > 0)&&(counter_y>0)){ //step in both axes
if (((out_bits & (1<<X_AXIS)) == 0)^((out_bits & (1<<Y_AXIS)) == 0)){ //X and Y in different directions
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_x -= current_block->step_event_count;
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
step_wait();
count_position[X_AXIS]+=count_direction[X_AXIS];
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_y -= current_block->step_event_count;
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
}
else{ //X and Y in same direction
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
counter_x -= current_block->step_event_count;
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN) ;
step_wait();
count_position[X_AXIS]+=count_direction[X_AXIS];
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
counter_y -= current_block->step_event_count;
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
}
}
#endif //corexy
counter_z += current_block->steps_z;
if (counter_z > 0) {
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
@ -743,20 +714,23 @@ void st_init()
microstep_init(); //Initialize Microstepping Pins
//Initialize Dir Pins
#if X_DIR_PIN > -1
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN);
#endif
#if Y_DIR_PIN > -1
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
SET_OUTPUT(X2_DIR_PIN);
#endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
#endif
#if Z_DIR_PIN > -1
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && (Z2_DIR_PIN > -1)
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
SET_OUTPUT(Z2_DIR_PIN);
#endif
#endif
#if E0_DIR_PIN > -1
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
SET_OUTPUT(E0_DIR_PIN);
#endif
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
@ -768,24 +742,28 @@ void st_init()
//Initialize Enable Pins - steppers default to disabled.
#if (X_ENABLE_PIN > -1)
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif
#if (Y_ENABLE_PIN > -1)
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
SET_OUTPUT(X2_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
#endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#endif
#if (Z_ENABLE_PIN > -1)
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#if defined(Z_DUAL_STEPPER_DRIVERS) && (Z2_ENABLE_PIN > -1)
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
SET_OUTPUT(Z2_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
#endif
#endif
#if (E0_ENABLE_PIN > -1)
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
SET_OUTPUT(E0_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
#endif
@ -800,42 +778,42 @@ void st_init()
//endstops and pullups
#if X_MIN_PIN > -1
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
#ifdef ENDSTOPPULLUP_XMIN
WRITE(X_MIN_PIN,HIGH);
#endif
#endif
#if Y_MIN_PIN > -1
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
#ifdef ENDSTOPPULLUP_YMIN
WRITE(Y_MIN_PIN,HIGH);
#endif
#endif
#if Z_MIN_PIN > -1
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
#ifdef ENDSTOPPULLUP_ZMIN
WRITE(Z_MIN_PIN,HIGH);
#endif
#endif
#if X_MAX_PIN > -1
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
#ifdef ENDSTOPPULLUP_XMAX
WRITE(X_MAX_PIN,HIGH);
#endif
#endif
#if Y_MAX_PIN > -1
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
#ifdef ENDSTOPPULLUP_YMAX
WRITE(Y_MAX_PIN,HIGH);
#endif
#endif
#if Z_MAX_PIN > -1
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
#ifdef ENDSTOPPULLUP_ZMAX
WRITE(Z_MAX_PIN,HIGH);
@ -844,26 +822,31 @@ void st_init()
//Initialize Step Pins
#if (X_STEP_PIN > -1)
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN);
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
disable_x();
#endif
#if (Y_STEP_PIN > -1)
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
SET_OUTPUT(X2_STEP_PIN);
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN);
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
disable_y();
#endif
#if (Z_STEP_PIN > -1)
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN);
WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && (Z2_STEP_PIN > -1)
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
SET_OUTPUT(Z2_STEP_PIN);
WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
#endif
disable_z();
#endif
#if (E0_STEP_PIN > -1)
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
SET_OUTPUT(E0_STEP_PIN);
WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
disable_e0();
@ -879,10 +862,6 @@ void st_init()
disable_e2();
#endif
#ifdef CONTROLLERFAN_PIN
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12);
@ -978,7 +957,7 @@ void quickStop()
void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
{
#if DIGIPOTSS_PIN > -1
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
SPI.transfer(address); // send in the address and value via SPI:
SPI.transfer(value);
@ -989,7 +968,7 @@ void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl e
void digipot_init() //Initialize Digipot Motor Current
{
#if DIGIPOTSS_PIN > -1
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
SPI.begin();
@ -1002,7 +981,7 @@ void digipot_init() //Initialize Digipot Motor Current
void digipot_current(uint8_t driver, int current)
{
#if DIGIPOTSS_PIN > -1
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
digitalPotWrite(digipot_ch[driver], current);
#endif
@ -1010,7 +989,7 @@ void digipot_current(uint8_t driver, int current)
void microstep_init()
{
#if X_MS1_PIN > -1
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
const uint8_t microstep_modes[] = MICROSTEP_MODES;
pinMode(X_MS2_PIN,OUTPUT);
pinMode(Y_MS2_PIN,OUTPUT);

295
Marlin/temperature.cpp

@ -40,10 +40,13 @@
int target_temperature[EXTRUDERS] = { 0 };
int target_temperature_bed = 0;
int current_temperature_raw[EXTRUDERS] = { 0 };
float current_temperature[EXTRUDERS] = { 0 };
float current_temperature[EXTRUDERS] = { 0.0 };
int current_temperature_bed_raw = 0;
float current_temperature_bed = 0;
float current_temperature_bed = 0.0;
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
int redundant_temperature_raw = 0;
float redundant_temperature = 0.0;
#endif
#ifdef PIDTEMP
float Kp=DEFAULT_Kp;
float Ki=(DEFAULT_Ki*PID_dT);
@ -59,6 +62,9 @@ float current_temperature_bed = 0;
float bedKd=(DEFAULT_bedKd/PID_dT);
#endif //PIDTEMPBED
#ifdef FAN_SOFT_PWM
unsigned char fanSpeedSoftPwm;
#endif
//===========================================================================
//=============================private variables============================
@ -99,17 +105,20 @@ static volatile bool temp_meas_ready = false;
#ifdef FAN_SOFT_PWM
static unsigned char soft_pwm_fan;
#endif
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
static unsigned long extruder_autofan_last_check;
#endif
#if EXTRUDERS > 3
# error Unsupported number of extruders
# error Unsupported number of extruders
#elif EXTRUDERS > 2
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
#elif EXTRUDERS > 1
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
#else
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
#endif
// Init min and max temp with extreme values to prevent false errors during startup
@ -121,8 +130,14 @@ static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
#ifdef BED_MAXTEMP
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
#else
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
#endif
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
@ -133,6 +148,10 @@ int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
#endif //WATCH_TEMP_PERIOD
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
//===========================================================================
//============================= functions ============================
//===========================================================================
@ -154,28 +173,28 @@ void PID_autotune(float temp, int extruder, int ncycles)
float Kp, Ki, Kd;
float max = 0, min = 10000;
if ((extruder > EXTRUDERS)
if ((extruder > EXTRUDERS)
#if (TEMP_BED_PIN <= -1)
||(extruder < 0)
#endif
){
SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
return;
}
||(extruder < 0)
#endif
){
SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
return;
}
SERIAL_ECHOLN("PID Autotune start");
disable_heater(); // switch off all heaters.
if (extruder<0)
{
soft_pwm_bed = (MAX_BED_POWER)/2;
bias = d = (MAX_BED_POWER)/2;
}
else
{
soft_pwm[extruder] = (PID_MAX)/2;
bias = d = (PID_MAX)/2;
if (extruder<0)
{
soft_pwm_bed = (MAX_BED_POWER)/2;
bias = d = (MAX_BED_POWER)/2;
}
else
{
soft_pwm[extruder] = (PID_MAX)/2;
bias = d = (PID_MAX)/2;
}
@ -193,10 +212,10 @@ void PID_autotune(float temp, int extruder, int ncycles)
if(heating == true && input > temp) {
if(millis() - t2 > 5000) {
heating=false;
if (extruder<0)
soft_pwm_bed = (bias - d) >> 1;
else
soft_pwm[extruder] = (bias - d) >> 1;
if (extruder<0)
soft_pwm_bed = (bias - d) >> 1;
else
soft_pwm[extruder] = (bias - d) >> 1;
t1=millis();
t_high=t1 - t2;
max=temp;
@ -247,28 +266,28 @@ void PID_autotune(float temp, int extruder, int ncycles)
*/
}
}
if (extruder<0)
soft_pwm_bed = (bias + d) >> 1;
else
soft_pwm[extruder] = (bias + d) >> 1;
if (extruder<0)
soft_pwm_bed = (bias + d) >> 1;
else
soft_pwm[extruder] = (bias + d) >> 1;
cycles++;
min=temp;
}
}
}
if(input > (temp + 20)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature to high");
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
return;
}
if(millis() - temp_millis > 2000) {
int p;
if (extruder<0){
p=soft_pwm_bed;
SERIAL_PROTOCOLPGM("ok B:");
}else{
p=soft_pwm[extruder];
SERIAL_PROTOCOLPGM("ok T:");
}
int p;
if (extruder<0){
p=soft_pwm_bed;
SERIAL_PROTOCOLPGM("ok B:");
}else{
p=soft_pwm[extruder];
SERIAL_PROTOCOLPGM("ok T:");
}
SERIAL_PROTOCOL(input);
SERIAL_PROTOCOLPGM(" @:");
@ -281,7 +300,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
return;
}
if(cycles > ncycles) {
SERIAL_PROTOCOLLNPGM("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h");
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the Kp, Ki and Kd constants into Configuration.h");
return;
}
lcd_update();
@ -306,6 +325,78 @@ int getHeaterPower(int heater) {
return soft_pwm[heater];
}
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
#if defined(FAN_PIN) && FAN_PIN > -1
#if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#endif
void setExtruderAutoFanState(int pin, bool state)
{
unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
// this idiom allows both digital and PWM fan outputs (see M42 handling).
pinMode(pin, OUTPUT);
digitalWrite(pin, newFanSpeed);
analogWrite(pin, newFanSpeed);
}
void checkExtruderAutoFans()
{
uint8_t fanState = 0;
// which fan pins need to be turned on?
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
fanState |= 1;
#endif
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else
fanState |= 2;
}
#endif
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
fanState |= 2;
else
fanState |= 4;
}
#endif
// update extruder auto fan states
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
#endif
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
#endif
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
#endif
}
#endif // any extruder auto fan pins set
void manage_heater()
{
float pid_input;
@ -396,10 +487,31 @@ void manage_heater()
}
}
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
disable_heater();
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
}
#endif
} // End extruder for loop
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
if(millis() - extruder_autofan_last_check > 2500) // only need to check fan state very infrequently
{
checkExtruderAutoFans();
extruder_autofan_last_check = millis();
}
#endif
#ifndef PIDTEMPBED
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return;
@ -481,7 +593,11 @@ void manage_heater()
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
static float analog2temp(int raw, uint8_t e) {
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
if(e > EXTRUDERS)
#else
if(e >= EXTRUDERS)
#endif
{
SERIAL_ERROR_START;
SERIAL_ERROR((int)e);
@ -560,7 +676,9 @@ static void updateTemperaturesFromRawValues()
current_temperature[e] = analog2temp(current_temperature_raw[e], e);
}
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature = analog2temp(redundant_temperature_raw, 1);
#endif
//Reset the watchdog after we know we have a temperature measurement.
watchdog_reset();
@ -571,6 +689,12 @@ static void updateTemperaturesFromRawValues()
void tp_init()
{
#if (MOTHERBOARD == 80) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=(1<<JTD);
MCUCR=(1<<JTD);
#endif
// Finish init of mult extruder arrays
for(int e = 0; e < EXTRUDERS; e++) {
// populate with the first value
@ -585,26 +709,26 @@ void tp_init()
#endif //PIDTEMPBED
}
#if (HEATER_0_PIN > -1)
#if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN);
#endif
#if (HEATER_1_PIN > -1)
#if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
#endif
#if (HEATER_2_PIN > -1)
#if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
SET_OUTPUT(HEATER_2_PIN);
#endif
#if (HEATER_BED_PIN > -1)
#if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
SET_OUTPUT(HEATER_BED_PIN);
#endif
#if (FAN_PIN > -1)
#if defined(FAN_PIN) && (FAN_PIN > -1)
SET_OUTPUT(FAN_PIN);
#ifdef FAST_PWM_FAN
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan=(unsigned char)fanSpeed;
#endif
soft_pwm_fan = fanSpeedSoftPwm / 2;
#endif
#endif
#ifdef HEATER_0_USES_MAX6675
@ -629,28 +753,28 @@ void tp_init()
#ifdef DIDR2
DIDR2 = 0;
#endif
#if (TEMP_0_PIN > -1)
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
#if TEMP_0_PIN < 8
DIDR0 |= 1 << TEMP_0_PIN;
#else
DIDR2 |= 1<<(TEMP_0_PIN - 8);
#endif
#endif
#if (TEMP_1_PIN > -1)
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
#if TEMP_1_PIN < 8
DIDR0 |= 1<<TEMP_1_PIN;
#else
DIDR2 |= 1<<(TEMP_1_PIN - 8);
#endif
#endif
#if (TEMP_2_PIN > -1)
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
#if TEMP_2_PIN < 8
DIDR0 |= 1 << TEMP_2_PIN;
#else
DIDR2 = 1<<(TEMP_2_PIN - 8);
DIDR2 |= 1<<(TEMP_2_PIN - 8);
#endif
#endif
#if (TEMP_BED_PIN > -1)
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
#if TEMP_BED_PIN < 8
DIDR0 |= 1<<TEMP_BED_PIN;
#else
@ -689,7 +813,7 @@ void tp_init()
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
minttemp[1] = HEATER_1_MINTEMP;
while(analog2temp(minttemp_raw[1], 1) > HEATER_1_MINTEMP) {
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
minttemp_raw[1] += OVERSAMPLENR;
#else
@ -710,7 +834,7 @@ void tp_init()
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
minttemp[2] = HEATER_2_MINTEMP;
while(analog2temp(minttemp_raw[2], 2) > HEATER_2_MINTEMP) {
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
minttemp_raw[2] += OVERSAMPLENR;
#else
@ -771,34 +895,34 @@ void disable_heater()
for(int i=0;i<EXTRUDERS;i++)
setTargetHotend(0,i);
setTargetBed(0);
#if TEMP_0_PIN > -1
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
target_temperature[0]=0;
soft_pwm[0]=0;
#if HEATER_0_PIN > -1
#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
WRITE(HEATER_0_PIN,LOW);
#endif
#endif
#if TEMP_1_PIN > -1
#if defined(TEMP_1_PIN) && TEMP_1_PIN > -1
target_temperature[1]=0;
soft_pwm[1]=0;
#if HEATER_1_PIN > -1
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
WRITE(HEATER_1_PIN,LOW);
#endif
#endif
#if TEMP_2_PIN > -1
#if defined(TEMP_2_PIN) && TEMP_2_PIN > -1
target_temperature[2]=0;
soft_pwm[2]=0;
#if HEATER_2_PIN > -1
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
WRITE(HEATER_2_PIN,LOW);
#endif
#endif
#if TEMP_BED_PIN > -1
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
target_temperature_bed=0;
soft_pwm_bed=0;
#if HEATER_BED_PIN > -1
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
WRITE(HEATER_BED_PIN,LOW);
#endif
#endif
@ -904,14 +1028,14 @@ int read_max6675()
// Timer 0 is shared with millies
ISR(TIMER0_COMPB_vect)
{
//these variables are only accesible from the ISR, but static, so they don't loose their value
//these variables are only accesible from the ISR, but static, so they don't lose their value
static unsigned char temp_count = 0;
static unsigned long raw_temp_0_value = 0;
static unsigned long raw_temp_1_value = 0;
static unsigned long raw_temp_2_value = 0;
static unsigned long raw_temp_bed_value = 0;
static unsigned char temp_state = 0;
static unsigned char pwm_count = 1;
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
static unsigned char soft_pwm_0;
#if EXTRUDERS > 1
static unsigned char soft_pwm_1;
@ -934,12 +1058,12 @@ ISR(TIMER0_COMPB_vect)
soft_pwm_2 = soft_pwm[2];
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1);
#endif
#if HEATER_BED_PIN > -1
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
soft_pwm_b = soft_pwm_bed;
if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1);
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan =(unsigned char) fanSpeed;
soft_pwm_fan = fanSpeedSoftPwm / 2;
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1);
#endif
}
@ -950,19 +1074,19 @@ ISR(TIMER0_COMPB_vect)
#if EXTRUDERS > 2
if(soft_pwm_2 <= pwm_count) WRITE(HEATER_2_PIN,0);
#endif
#if HEATER_BED_PIN > -1
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
if(soft_pwm_b <= pwm_count) WRITE(HEATER_BED_PIN,0);
#endif
#ifdef FAN_SOFT_PWM
if(soft_pwm_fan <= pwm_count) WRITE(FAN_PIN,0);
#endif
pwm_count++;
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
switch(temp_state) {
case 0: // Prepare TEMP_0
#if (TEMP_0_PIN > -1)
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
#if TEMP_0_PIN > 7
ADCSRB = 1<<MUX5;
#else
@ -975,7 +1099,7 @@ ISR(TIMER0_COMPB_vect)
temp_state = 1;
break;
case 1: // Measure TEMP_0
#if (TEMP_0_PIN > -1)
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
raw_temp_0_value += ADC;
#endif
#ifdef HEATER_0_USES_MAX6675 // TODO remove the blocking
@ -984,7 +1108,7 @@ ISR(TIMER0_COMPB_vect)
temp_state = 2;
break;
case 2: // Prepare TEMP_BED
#if (TEMP_BED_PIN > -1)
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
#if TEMP_BED_PIN > 7
ADCSRB = 1<<MUX5;
#else
@ -997,13 +1121,13 @@ ISR(TIMER0_COMPB_vect)
temp_state = 3;
break;
case 3: // Measure TEMP_BED
#if (TEMP_BED_PIN > -1)
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
raw_temp_bed_value += ADC;
#endif
temp_state = 4;
break;
case 4: // Prepare TEMP_1
#if (TEMP_1_PIN > -1)
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
#if TEMP_1_PIN > 7
ADCSRB = 1<<MUX5;
#else
@ -1016,13 +1140,13 @@ ISR(TIMER0_COMPB_vect)
temp_state = 5;
break;
case 5: // Measure TEMP_1
#if (TEMP_1_PIN > -1)
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
raw_temp_1_value += ADC;
#endif
temp_state = 6;
break;
case 6: // Prepare TEMP_2
#if (TEMP_2_PIN > -1)
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
#if TEMP_2_PIN > 7
ADCSRB = 1<<MUX5;
#else
@ -1035,7 +1159,7 @@ ISR(TIMER0_COMPB_vect)
temp_state = 7;
break;
case 7: // Measure TEMP_2
#if (TEMP_2_PIN > -1)
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
raw_temp_2_value += ADC;
#endif
temp_state = 0;
@ -1055,6 +1179,9 @@ ISR(TIMER0_COMPB_vect)
#if EXTRUDERS > 1
current_temperature_raw[1] = raw_temp_1_value;
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature_raw = raw_temp_1_value;
#endif
#if EXTRUDERS > 2
current_temperature_raw[2] = raw_temp_2_value;
#endif

3
Marlin/temperature.h

@ -37,6 +37,9 @@ extern int target_temperature[EXTRUDERS];
extern float current_temperature[EXTRUDERS];
extern int target_temperature_bed;
extern float current_temperature_bed;
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
extern float redundant_temperature;
#endif
#ifdef PIDTEMP
extern float Kp,Ki,Kd,Kc;

292
Marlin/ultralcd.cpp

@ -8,6 +8,8 @@
#include "stepper.h"
#include "ConfigurationStore.h"
int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */
/* Configuration settings */
int plaPreheatHotendTemp;
int plaPreheatHPBTemp;
@ -38,6 +40,7 @@ void copy_and_scalePID_d();
/* Different menus */
static void lcd_status_screen();
#ifdef ULTIPANEL
extern bool powersupply;
static void lcd_main_menu();
static void lcd_tune_menu();
static void lcd_prepare_menu();
@ -47,6 +50,9 @@ static void lcd_control_temperature_menu();
static void lcd_control_temperature_preheat_pla_settings_menu();
static void lcd_control_temperature_preheat_abs_settings_menu();
static void lcd_control_motion_menu();
#ifdef DOGLCD
static void lcd_set_contrast();
#endif
static void lcd_control_retract_menu();
static void lcd_sdcard_menu();
@ -76,7 +82,14 @@ static void menu_action_setting_edit_callback_float51(const char* pstr, float* p
static void menu_action_setting_edit_callback_float52(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue, menuFunc_t callbackFunc);
#define ENCODER_STEPS_PER_MENU_ITEM 5
#define ENCODER_FEEDRATE_DEADZONE 10
#if !defined(LCD_I2C_VIKI)
#define ENCODER_STEPS_PER_MENU_ITEM 5
#else
#define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation
#endif
/* Helper macros for menus */
#define START_MENU() do { \
@ -112,14 +125,16 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
} } while(0)
/** Used variables to keep track of the menu */
#ifndef REPRAPWORLD_KEYPAD
volatile uint8_t buttons;//Contains the bits of the currently pressed buttons.
#else
volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shiftregister values
#endif
uint8_t currentMenuViewOffset; /* scroll offset in the current menu */
uint32_t blocking_enc;
uint8_t lastEncoderBits;
int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */
uint32_t encoderPosition;
#if (SDCARDDETECT > -1)
#if (SDCARDDETECT > 0)
bool lcd_oldcardstatus;
#endif
#endif//ULTIPANEL
@ -157,10 +172,34 @@ static void lcd_status_screen()
if (LCD_CLICKED)
{
currentMenu = lcd_main_menu;
encoderPosition = 0;
lcd_quick_feedback();
}
feedmultiply += int(encoderPosition);
encoderPosition = 0;
// Dead zone at 100% feedrate
if ((feedmultiply < 100 && (feedmultiply + int(encoderPosition)) > 100) ||
(feedmultiply > 100 && (feedmultiply + int(encoderPosition)) < 100))
{
encoderPosition = 0;
feedmultiply = 100;
}
if (feedmultiply == 100 && int(encoderPosition) > ENCODER_FEEDRATE_DEADZONE)
{
feedmultiply += int(encoderPosition) - ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
}
else if (feedmultiply == 100 && int(encoderPosition) < -ENCODER_FEEDRATE_DEADZONE)
{
feedmultiply += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
}
else if (feedmultiply != 100)
{
feedmultiply += int(encoderPosition);
encoderPosition = 0;
}
if (feedmultiply < 10)
feedmultiply = 10;
if (feedmultiply > 999)
@ -221,14 +260,14 @@ static void lcd_main_menu()
}else{
MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu);
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user
#endif
MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user
#endif
}
}else{
MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu);
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
#endif
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
#endif
}
#endif
END_MENU();
@ -251,6 +290,7 @@ void lcd_preheat_pla()
setTargetBed(plaPreheatHPBTemp);
fanSpeed = plaPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs()
@ -261,6 +301,16 @@ void lcd_preheat_abs()
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
static void lcd_cooldown()
{
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
setTargetBed(0);
lcd_return_to_status();
}
static void lcd_tune_menu()
@ -298,7 +348,15 @@ static void lcd_prepare_menu()
//MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0"));
MENU_ITEM(function, MSG_PREHEAT_PLA, lcd_preheat_pla);
MENU_ITEM(function, MSG_PREHEAT_ABS, lcd_preheat_abs);
MENU_ITEM(gcode, MSG_COOLDOWN, PSTR("M104 S0\nM140 S0"));
MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
#if PS_ON_PIN > -1
if (powersupply)
{
MENU_ITEM(gcode, MSG_SWITCH_PS_OFF, PSTR("M81"));
}else{
MENU_ITEM(gcode, MSG_SWITCH_PS_ON, PSTR("M80"));
}
#endif
MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu);
END_MENU();
}
@ -311,9 +369,9 @@ static void lcd_move_x()
if (encoderPosition != 0)
{
current_position[X_AXIS] += float((int)encoderPosition) * move_menu_scale;
if (current_position[X_AXIS] < X_MIN_POS)
if (min_software_endstops && current_position[X_AXIS] < X_MIN_POS)
current_position[X_AXIS] = X_MIN_POS;
if (current_position[X_AXIS] > X_MAX_POS)
if (max_software_endstops && current_position[X_AXIS] > X_MAX_POS)
current_position[X_AXIS] = X_MAX_POS;
encoderPosition = 0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600, active_extruder);
@ -335,9 +393,9 @@ static void lcd_move_y()
if (encoderPosition != 0)
{
current_position[Y_AXIS] += float((int)encoderPosition) * move_menu_scale;
if (current_position[Y_AXIS] < Y_MIN_POS)
if (min_software_endstops && current_position[Y_AXIS] < Y_MIN_POS)
current_position[Y_AXIS] = Y_MIN_POS;
if (current_position[Y_AXIS] > Y_MAX_POS)
if (max_software_endstops && current_position[Y_AXIS] > Y_MAX_POS)
current_position[Y_AXIS] = Y_MAX_POS;
encoderPosition = 0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600, active_extruder);
@ -359,12 +417,12 @@ static void lcd_move_z()
if (encoderPosition != 0)
{
current_position[Z_AXIS] += float((int)encoderPosition) * move_menu_scale;
if (current_position[Z_AXIS] < Z_MIN_POS)
if (min_software_endstops && current_position[Z_AXIS] < Z_MIN_POS)
current_position[Z_AXIS] = Z_MIN_POS;
if (current_position[Z_AXIS] > Z_MAX_POS)
if (max_software_endstops && current_position[Z_AXIS] > Z_MAX_POS)
current_position[Z_AXIS] = Z_MAX_POS;
encoderPosition = 0;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 60, active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
lcdDrawUpdate = 1;
}
if (lcdDrawUpdate)
@ -446,6 +504,10 @@ static void lcd_control_menu()
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu);
MENU_ITEM(submenu, MSG_MOTION, lcd_control_motion_menu);
#ifdef DOGLCD
// MENU_ITEM_EDIT(int3, MSG_CONTRAST, &lcd_contrast, 0, 63);
MENU_ITEM(submenu, MSG_CONTRAST, lcd_set_contrast);
#endif
#ifdef FWRETRACT
MENU_ITEM(submenu, MSG_RETRACT, lcd_control_retract_menu);
#endif
@ -459,10 +521,12 @@ static void lcd_control_menu()
static void lcd_control_temperature_menu()
{
// set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(Ki);
raw_Kd = unscalePID_d(Kd);
#ifdef PIDTEMP
// set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(Ki);
raw_Kd = unscalePID_d(Kd);
#endif
START_MENU();
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
@ -484,7 +548,7 @@ static void lcd_control_temperature_menu()
#endif
#ifdef PIDTEMP
MENU_ITEM_EDIT(float52, MSG_PID_P, &Kp, 1, 9990);
// i is typically a small value so allows values below 1
// i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I, &raw_Ki, 0.01, 9990, copy_and_scalePID_i);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D, &raw_Kd, 1, 9990, copy_and_scalePID_d);
# ifdef PID_ADD_EXTRUSION_RATE
@ -555,6 +619,31 @@ static void lcd_control_motion_menu()
END_MENU();
}
#ifdef DOGLCD
static void lcd_set_contrast()
{
if (encoderPosition != 0)
{
lcd_contrast -= encoderPosition;
if (lcd_contrast < 0) lcd_contrast = 0;
else if (lcd_contrast > 63) lcd_contrast = 63;
encoderPosition = 0;
lcdDrawUpdate = 1;
u8g.setContrast(lcd_contrast);
}
if (lcdDrawUpdate)
{
lcd_implementation_drawedit(PSTR("Contrast"), itostr2(lcd_contrast));
}
if (LCD_CLICKED)
{
lcd_quick_feedback();
currentMenu = lcd_control_menu;
encoderPosition = 0;
}
}
#endif
#ifdef FWRETRACT
static void lcd_control_retract_menu()
{
@ -687,6 +776,42 @@ menu_edit_type(float, float51, ftostr51, 10)
menu_edit_type(float, float52, ftostr52, 100)
menu_edit_type(unsigned long, long5, ftostr5, 0.01)
#ifdef REPRAPWORLD_KEYPAD
static void reprapworld_keypad_move_z_up() {
encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_z();
}
static void reprapworld_keypad_move_z_down() {
encoderPosition = -1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_z();
}
static void reprapworld_keypad_move_x_left() {
encoderPosition = -1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_x();
}
static void reprapworld_keypad_move_x_right() {
encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_x();
}
static void reprapworld_keypad_move_y_down() {
encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_y();
}
static void reprapworld_keypad_move_y_up() {
encoderPosition = -1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_y();
}
static void reprapworld_keypad_move_home() {
enquecommand_P((PSTR("G28"))); // move all axis home
}
#endif
/** End of menus **/
static void lcd_quick_feedback()
@ -745,11 +870,20 @@ void lcd_init()
#ifdef NEWPANEL
pinMode(BTN_EN1,INPUT);
pinMode(BTN_EN2,INPUT);
pinMode(BTN_ENC,INPUT);
pinMode(SDCARDDETECT,INPUT);
WRITE(BTN_EN1,HIGH);
WRITE(BTN_EN2,HIGH);
#if BTN_ENC > 0
pinMode(BTN_ENC,INPUT);
WRITE(BTN_ENC,HIGH);
#endif
#ifdef REPRAPWORLD_KEYPAD
pinMode(SHIFT_CLK,OUTPUT);
pinMode(SHIFT_LD,OUTPUT);
pinMode(SHIFT_OUT,INPUT);
WRITE(SHIFT_OUT,HIGH);
WRITE(SHIFT_LD,HIGH);
#endif
#else
pinMode(SHIFT_CLK,OUTPUT);
pinMode(SHIFT_LD,OUTPUT);
@ -759,12 +893,14 @@ void lcd_init()
WRITE(SHIFT_LD,HIGH);
WRITE(SHIFT_EN,LOW);
#endif//!NEWPANEL
#if (SDCARDDETECT > -1)
#if (SDCARDDETECT > 0)
WRITE(SDCARDDETECT, HIGH);
lcd_oldcardstatus = IS_SD_INSERTED;
#endif//(SDCARDDETECT > -1)
#endif//(SDCARDDETECT > 0)
lcd_buttons_update();
#ifdef ULTIPANEL
encoderDiff = 0;
#endif
}
void lcd_update()
@ -773,7 +909,11 @@ void lcd_update()
lcd_buttons_update();
#if (SDCARDDETECT > -1)
#ifdef LCD_HAS_SLOW_BUTTONS
buttons |= lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif
#if (SDCARDDETECT > 0)
if((IS_SD_INSERTED != lcd_oldcardstatus))
{
lcdDrawUpdate = 2;
@ -796,6 +936,29 @@ void lcd_update()
if (lcd_next_update_millis < millis())
{
#ifdef ULTIPANEL
#ifdef REPRAPWORLD_KEYPAD
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) {
reprapworld_keypad_move_z_up();
}
if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) {
reprapworld_keypad_move_z_down();
}
if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) {
reprapworld_keypad_move_x_left();
}
if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) {
reprapworld_keypad_move_x_right();
}
if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) {
reprapworld_keypad_move_y_down();
}
if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) {
reprapworld_keypad_move_y_up();
}
if (REPRAPWORLD_KEYPAD_MOVE_HOME) {
reprapworld_keypad_move_home();
}
#endif
if (encoderDiff)
{
lcdDrawUpdate = 1;
@ -808,21 +971,26 @@ void lcd_update()
#endif//ULTIPANEL
#ifdef DOGLCD // Changes due to different driver architecture of the DOGM display
blink++; // Variable for fan animation and alive dot
u8g.firstPage();
do {
u8g.setFont(u8g_font_6x10_marlin);
u8g.setPrintPos(125,0);
if (blink % 2) u8g.setColorIndex(1); else u8g.setColorIndex(0); // Set color for the alive dot
u8g.drawPixel(127,63); // draw alive dot
u8g.setColorIndex(1); // black on white
(*currentMenu)();
if (!lcdDrawUpdate) break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next()
} while( u8g.nextPage() );
blink++; // Variable for fan animation and alive dot
u8g.firstPage();
do
{
u8g.setFont(u8g_font_6x10_marlin);
u8g.setPrintPos(125,0);
if (blink % 2) u8g.setColorIndex(1); else u8g.setColorIndex(0); // Set color for the alive dot
u8g.drawPixel(127,63); // draw alive dot
u8g.setColorIndex(1); // black on white
(*currentMenu)();
if (!lcdDrawUpdate) break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next()
} while( u8g.nextPage() );
#else
(*currentMenu)();
#endif
#ifdef LCD_HAS_STATUS_INDICATORS
lcd_implementation_update_indicators();
#endif
#ifdef ULTIPANEL
if(timeoutToStatus < millis() && currentMenu != lcd_status_screen)
{
@ -865,6 +1033,14 @@ void lcd_reset_alert_level()
lcd_status_message_level = 0;
}
#ifdef DOGLCD
void lcd_setcontrast(uint8_t value)
{
lcd_contrast = value & 63;
u8g.setContrast(lcd_contrast);
}
#endif
#ifdef ULTIPANEL
/* Warning: This function is called from interrupt context */
void lcd_buttons_update()
@ -873,9 +1049,25 @@ void lcd_buttons_update()
uint8_t newbutton=0;
if(READ(BTN_EN1)==0) newbutton|=EN_A;
if(READ(BTN_EN2)==0) newbutton|=EN_B;
#if BTN_ENC > 0
if((blocking_enc<millis()) && (READ(BTN_ENC)==0))
newbutton |= EN_C;
#endif
buttons = newbutton;
#ifdef REPRAPWORLD_KEYPAD
// for the reprapworld_keypad
uint8_t newbutton_reprapworld_keypad=0;
WRITE(SHIFT_LD,LOW);
WRITE(SHIFT_LD,HIGH);
for(int8_t i=0;i<8;i++) {
newbutton_reprapworld_keypad = newbutton_reprapworld_keypad>>1;
if(READ(SHIFT_OUT))
newbutton_reprapworld_keypad|=(1<<7);
WRITE(SHIFT_CLK,HIGH);
WRITE(SHIFT_CLK,LOW);
}
buttons_reprapworld_keypad=~newbutton_reprapworld_keypad; //invert it, because a pressed switch produces a logical 0
#endif
#else //read it from the shift register
uint8_t newbutton=0;
WRITE(SHIFT_LD,LOW);
@ -930,6 +1122,18 @@ void lcd_buttons_update()
}
lastEncoderBits = enc;
}
void lcd_buzz(long duration, uint16_t freq)
{
#ifdef LCD_USE_I2C_BUZZER
lcd.buzz(duration,freq);
#endif
}
bool lcd_clicked()
{
return LCD_CLICKED;
}
#endif//ULTIPANEL
/********************************/
@ -1129,16 +1333,20 @@ char *ftostr52(const float &x)
// grab the pid i value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_i()
{
#ifdef PIDTEMP
Ki = scalePID_i(raw_Ki);
updatePID();
}
#endif
}
// Callback for after editing PID d value
// grab the pid d value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_d()
{
#ifdef PIDTEMP
Kd = scalePID_d(raw_Kd);
updatePID();
}
#endif
}
#endif //ULTRA_LCD

33
Marlin/ultralcd.h

@ -11,7 +11,12 @@
void lcd_setstatuspgm(const char* message);
void lcd_setalertstatuspgm(const char* message);
void lcd_reset_alert_level();
#ifdef DOGLCD
extern int lcd_contrast;
void lcd_setcontrast(uint8_t value);
#endif
static unsigned char blink = 0; // Variable for visualisation of fan rotation in GLCD
#define LCD_MESSAGEPGM(x) lcd_setstatuspgm(PSTR(x))
@ -23,6 +28,9 @@
#ifdef ULTIPANEL
void lcd_buttons_update();
extern volatile uint8_t buttons; //the last checked buttons in a bit array.
#ifdef REPRAPWORLD_KEYPAD
extern volatile uint8_t buttons_reprapworld_keypad; // to store the keypad shiftregister values
#endif
#else
FORCE_INLINE void lcd_buttons_update() {}
#endif
@ -35,12 +43,34 @@
extern int absPreheatHPBTemp;
extern int absPreheatFanSpeed;
void lcd_buzz(long duration,uint16_t freq);
bool lcd_clicked();
#ifdef NEWPANEL
#define EN_C (1<<BLEN_C)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
#define LCD_CLICKED (buttons&EN_C)
#ifdef REPRAPWORLD_KEYPAD
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<BLEN_REPRAPWORLD_KEYPAD_F3)
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<BLEN_REPRAPWORLD_KEYPAD_F2)
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<BLEN_REPRAPWORLD_KEYPAD_F1)
#define EN_REPRAPWORLD_KEYPAD_UP (1<<BLEN_REPRAPWORLD_KEYPAD_UP)
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<BLEN_REPRAPWORLD_KEYPAD_RIGHT)
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<BLEN_REPRAPWORLD_KEYPAD_MIDDLE)
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<BLEN_REPRAPWORLD_KEYPAD_DOWN)
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<BLEN_REPRAPWORLD_KEYPAD_LEFT)
#define LCD_CLICKED ((buttons&EN_C) || (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F1))
#define REPRAPWORLD_KEYPAD_MOVE_Z_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F2)
#define REPRAPWORLD_KEYPAD_MOVE_Z_DOWN (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F3)
#define REPRAPWORLD_KEYPAD_MOVE_X_LEFT (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_LEFT)
#define REPRAPWORLD_KEYPAD_MOVE_X_RIGHT (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_RIGHT)
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_DOWN)
#define REPRAPWORLD_KEYPAD_MOVE_Y_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_UP)
#define REPRAPWORLD_KEYPAD_MOVE_HOME (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_MIDDLE)
#endif //REPRAPWORLD_KEYPAD
#else
//atomatic, do not change
#define B_LE (1<<BL_LE)
@ -61,6 +91,7 @@
FORCE_INLINE void lcd_setstatus(const char* message) {}
FORCE_INLINE void lcd_buttons_update() {}
FORCE_INLINE void lcd_reset_alert_level() {}
FORCE_INLINE void lcd_buzz(long duration,uint16_t freq) {}
#define LCD_MESSAGEPGM(x)
#define LCD_ALERTMESSAGEPGM(x)

294
Marlin/ultralcd_implementation_hitachi_HD44780.h

@ -6,12 +6,196 @@
* When selecting the rusian language, a slightly different LCD implementation is used to handle UTF8 characters.
**/
#if LANGUAGE_CHOICE == 6
#include "LiquidCrystalRus.h"
#define LCD_CLASS LiquidCrystalRus
#ifndef REPRAPWORLD_KEYPAD
extern volatile uint8_t buttons; //the last checked buttons in a bit array.
#else
#include <LiquidCrystal.h>
#define LCD_CLASS LiquidCrystal
extern volatile uint16_t buttons; //an extended version of the last checked buttons in a bit array.
#endif
////////////////////////////////////
// Setup button and encode mappings for each panel (into 'buttons' variable
//
// This is just to map common functions (across different panels) onto the same
// macro name. The mapping is independent of whether the button is directly connected or
// via a shift/i2c register.
#ifdef ULTIPANEL
// All Ultipanels might have an encoder - so this is always be mapped onto first two bits
#define BLEN_B 1
#define BLEN_A 0
#define EN_B (1<<BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2
#define EN_A (1<<BLEN_A)
#if defined(BTN_ENC) && BTN_ENC > -1
// encoder click is directly connected
#define BLEN_C 2
#define EN_C (1<<BLEN_C)
#endif
//
// Setup other button mappings of each panel
//
#if defined(LCD_I2C_VIKI)
#define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C)
// button and encoder bit positions within 'buttons'
#define B_LE (BUTTON_LEFT<<B_I2C_BTN_OFFSET) // The remaining normalized buttons are all read via I2C
#define B_UP (BUTTON_UP<<B_I2C_BTN_OFFSET)
#define B_MI (BUTTON_SELECT<<B_I2C_BTN_OFFSET)
#define B_DW (BUTTON_DOWN<<B_I2C_BTN_OFFSET)
#define B_RI (BUTTON_RIGHT<<B_I2C_BTN_OFFSET)
#if defined(BTN_ENC) && BTN_ENC > -1
// the pause/stop/restart button is connected to BTN_ENC when used
#define B_ST (EN_C) // Map the pause/stop/resume button into its normalized functional name
#define LCD_CLICKED (buttons&(B_MI|B_RI|B_ST)) // pause/stop button also acts as click until we implement proper pause/stop.
#else
#define LCD_CLICKED (buttons&(B_MI|B_RI))
#endif
// I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update
#define LCD_HAS_SLOW_BUTTONS
#elif defined(LCD_I2C_PANELOLU2)
// encoder click can be read through I2C if not directly connected
#if BTN_ENC <= 0
#define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C)
#define B_MI (PANELOLU2_ENCODER_C<<B_I2C_BTN_OFFSET) // requires LiquidTWI2 library v1.2.3 or later
#define LCD_CLICKED (buttons&B_MI)
// I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update
#define LCD_HAS_SLOW_BUTTONS
#else
#define LCD_CLICKED (buttons&EN_C)
#endif
#elif defined(REPRAPWORLD_KEYPAD)
// define register bit values, don't change it
#define BLEN_REPRAPWORLD_KEYPAD_F3 0
#define BLEN_REPRAPWORLD_KEYPAD_F2 1
#define BLEN_REPRAPWORLD_KEYPAD_F1 2
#define BLEN_REPRAPWORLD_KEYPAD_UP 3
#define BLEN_REPRAPWORLD_KEYPAD_RIGHT 4
#define BLEN_REPRAPWORLD_KEYPAD_MIDDLE 5
#define BLEN_REPRAPWORLD_KEYPAD_DOWN 6
#define BLEN_REPRAPWORLD_KEYPAD_LEFT 7
#define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<(BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<(BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<(BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_UP (1<<(BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<(BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<(BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<(BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<(BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1))
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN)
#define REPRAPWORLD_KEYPAD_MOVE_Y_UP (buttons&EN_REPRAPWORLD_KEYPAD_UP)
#define REPRAPWORLD_KEYPAD_MOVE_HOME (buttons&EN_REPRAPWORLD_KEYPAD_MIDDLE)
#elif defined(NEWPANEL)
#define LCD_CLICKED (buttons&EN_C)
#else // old style ULTIPANEL
//bits in the shift register that carry the buttons for:
// left up center down right red(stop)
#define BL_LE 7
#define BL_UP 6
#define BL_MI 5
#define BL_DW 4
#define BL_RI 3
#define BL_ST 2
//automatic, do not change
#define B_LE (1<<BL_LE)
#define B_UP (1<<BL_UP)
#define B_MI (1<<BL_MI)
#define B_DW (1<<BL_DW)
#define B_RI (1<<BL_RI)
#define B_ST (1<<BL_ST)
#define LCD_CLICKED (buttons&(B_MI|B_ST))
#endif
////////////////////////
// Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)
// These values are independent of which pins are used for EN_A and EN_B indications
// The rotary encoder part is also independent to the chipset used for the LCD
#if defined(EN_A) && defined(EN_B)
#ifndef ULTIMAKERCONTROLLER
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#else
#define encrot0 0
#define encrot1 1
#define encrot2 3
#define encrot3 2
#endif
#endif
#endif //ULTIPANEL
////////////////////////////////////
// Create LCD class instance and chipset-specific information
#if defined(LCD_I2C_TYPE_PCF8575)
// note: these are register mapped pins on the PCF8575 controller not Arduino pins
#define LCD_I2C_PIN_BL 3
#define LCD_I2C_PIN_EN 2
#define LCD_I2C_PIN_RW 1
#define LCD_I2C_PIN_RS 0
#define LCD_I2C_PIN_D4 4
#define LCD_I2C_PIN_D5 5
#define LCD_I2C_PIN_D6 6
#define LCD_I2C_PIN_D7 7
#include <Wire.h>
#include <LCD.h>
#include <LiquidCrystal_I2C.h>
#define LCD_CLASS LiquidCrystal_I2C
LCD_CLASS lcd(LCD_I2C_ADDRESS,LCD_I2C_PIN_EN,LCD_I2C_PIN_RW,LCD_I2C_PIN_RS,LCD_I2C_PIN_D4,LCD_I2C_PIN_D5,LCD_I2C_PIN_D6,LCD_I2C_PIN_D7);
#elif defined(LCD_I2C_TYPE_MCP23017)
//for the LED indicators (which maybe mapped to different things in lcd_implementation_update_indicators())
#define LED_A 0x04 //100
#define LED_B 0x02 //010
#define LED_C 0x01 //001
#define LCD_HAS_STATUS_INDICATORS
#include <Wire.h>
#include <LiquidTWI2.h>
#define LCD_CLASS LiquidTWI2
LCD_CLASS lcd(LCD_I2C_ADDRESS);
#elif defined(LCD_I2C_TYPE_MCP23008)
#include <Wire.h>
#include <LiquidTWI2.h>
#define LCD_CLASS LiquidTWI2
LCD_CLASS lcd(LCD_I2C_ADDRESS);
#elif defined(LCD_I2C_TYPE_PCA8574)
#include <LiquidCrystal_I2C.h>
#define LCD_CLASS LiquidCrystal_I2C
LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_WIDTH, LCD_HEIGHT);
#else
// Standard directly connected LCD implementations
#if LANGUAGE_CHOICE == 6
#include "LiquidCrystalRus.h"
#define LCD_CLASS LiquidCrystalRus
#else
#include <LiquidCrystal.h>
#define LCD_CLASS LiquidCrystal
#endif
LCD_CLASS lcd(LCD_PINS_RS, LCD_PINS_ENABLE, LCD_PINS_D4, LCD_PINS_D5,LCD_PINS_D6,LCD_PINS_D7); //RS,Enable,D4,D5,D6,D7
#endif
/* Custom characters defined in the first 8 characters of the LCD */
@ -25,7 +209,6 @@
#define LCD_STR_CLOCK "\x07"
#define LCD_STR_ARROW_RIGHT "\x7E" /* from the default character set */
LCD_CLASS lcd(LCD_PINS_RS, LCD_PINS_ENABLE, LCD_PINS_D4, LCD_PINS_D5,LCD_PINS_D6,LCD_PINS_D7); //RS,Enable,D4,D5,D6,D7
static void lcd_implementation_init()
{
byte bedTemp[8] =
@ -111,7 +294,31 @@ static void lcd_implementation_init()
B00000,
B00000
}; //thanks Sonny Mounicou
#if defined(LCDI2C_TYPE_PCF8575)
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#ifdef LCD_I2C_PIN_BL
lcd.setBacklightPin(LCD_I2C_PIN_BL,POSITIVE);
lcd.setBacklight(HIGH);
#endif
#elif defined(LCD_I2C_TYPE_MCP23017)
lcd.setMCPType(LTI_TYPE_MCP23017);
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
lcd.setBacklight(0); //set all the LEDs off to begin with
#elif defined(LCD_I2C_TYPE_MCP23008)
lcd.setMCPType(LTI_TYPE_MCP23008);
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#elif defined(LCD_I2C_TYPE_PCA8574)
lcd.init();
lcd.backlight();
#else
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#endif
lcd.createChar(LCD_STR_BEDTEMP[0], bedTemp);
lcd.createChar(LCD_STR_DEGREE[0], degree);
lcd.createChar(LCD_STR_THERMOMETER[0], thermometer);
@ -299,13 +506,13 @@ static void lcd_implementation_drawmenu_generic(uint8_t row, const char* pstr, c
char c;
//Use all characters in narrow LCDs
#if LCD_WIDTH < 20
uint8_t n = LCD_WIDTH - 1 - 1;
uint8_t n = LCD_WIDTH - 1 - 1;
#else
uint8_t n = LCD_WIDTH - 1 - 2;
uint8_t n = LCD_WIDTH - 1 - 2;
#endif
lcd.setCursor(0, row);
lcd.print(pre_char);
while((c = pgm_read_byte(pstr)) != '\0')
while( ((c = pgm_read_byte(pstr)) != '\0') && (n>0) )
{
lcd.print(c);
pstr++;
@ -321,13 +528,13 @@ static void lcd_implementation_drawmenu_setting_edit_generic(uint8_t row, const
char c;
//Use all characters in narrow LCDs
#if LCD_WIDTH < 20
uint8_t n = LCD_WIDTH - 1 - 1 - strlen(data);
uint8_t n = LCD_WIDTH - 1 - 1 - strlen(data);
#else
uint8_t n = LCD_WIDTH - 1 - 2 - strlen(data);
uint8_t n = LCD_WIDTH - 1 - 2 - strlen(data);
#endif
lcd.setCursor(0, row);
lcd.print(pre_char);
while((c = pgm_read_byte(pstr)) != '\0')
while( ((c = pgm_read_byte(pstr)) != '\0') && (n>0) )
{
lcd.print(c);
pstr++;
@ -343,13 +550,13 @@ static void lcd_implementation_drawmenu_setting_edit_generic_P(uint8_t row, cons
char c;
//Use all characters in narrow LCDs
#if LCD_WIDTH < 20
uint8_t n = LCD_WIDTH - 1 - 1 - strlen_P(data);
uint8_t n = LCD_WIDTH - 1 - 1 - strlen_P(data);
#else
uint8_t n = LCD_WIDTH - 1 - 2 - strlen_P(data);
uint8_t n = LCD_WIDTH - 1 - 2 - strlen_P(data);
#endif
lcd.setCursor(0, row);
lcd.print(pre_char);
while((c = pgm_read_byte(pstr)) != '\0')
while( ((c = pgm_read_byte(pstr)) != '\0') && (n>0) )
{
lcd.print(c);
pstr++;
@ -402,9 +609,9 @@ void lcd_implementation_drawedit(const char* pstr, char* value)
lcd_printPGM(pstr);
lcd.print(':');
#if LCD_WIDTH < 20
lcd.setCursor(LCD_WIDTH - strlen(value), 1);
lcd.setCursor(LCD_WIDTH - strlen(value), 1);
#else
lcd.setCursor(LCD_WIDTH -1 - strlen(value), 1);
lcd.setCursor(LCD_WIDTH -1 - strlen(value), 1);
#endif
lcd.print(value);
}
@ -419,7 +626,7 @@ static void lcd_implementation_drawmenu_sdfile_selected(uint8_t row, const char*
filename = longFilename;
longFilename[LCD_WIDTH-1] = '\0';
}
while((c = *filename) != '\0')
while( ((c = *filename) != '\0') && (n>0) )
{
lcd.print(c);
filename++;
@ -439,7 +646,7 @@ static void lcd_implementation_drawmenu_sdfile(uint8_t row, const char* pstr, co
filename = longFilename;
longFilename[LCD_WIDTH-1] = '\0';
}
while((c = *filename) != '\0')
while( ((c = *filename) != '\0') && (n>0) )
{
lcd.print(c);
filename++;
@ -460,7 +667,7 @@ static void lcd_implementation_drawmenu_sddirectory_selected(uint8_t row, const
filename = longFilename;
longFilename[LCD_WIDTH-2] = '\0';
}
while((c = *filename) != '\0')
while( ((c = *filename) != '\0') && (n>0) )
{
lcd.print(c);
filename++;
@ -481,7 +688,7 @@ static void lcd_implementation_drawmenu_sddirectory(uint8_t row, const char* pst
filename = longFilename;
longFilename[LCD_WIDTH-2] = '\0';
}
while((c = *filename) != '\0')
while( ((c = *filename) != '\0') && (n>0) )
{
lcd.print(c);
filename++;
@ -501,15 +708,50 @@ static void lcd_implementation_drawmenu_sddirectory(uint8_t row, const char* pst
static void lcd_implementation_quick_feedback()
{
#if BEEPER > -1
#ifdef LCD_USE_I2C_BUZZER
lcd.buzz(60,1000/6);
#elif defined(BEEPER) && BEEPER > -1
SET_OUTPUT(BEEPER);
for(int8_t i=0;i<10;i++)
{
WRITE(BEEPER,HIGH);
delay(3);
WRITE(BEEPER,LOW);
delay(3);
WRITE(BEEPER,HIGH);
delayMicroseconds(100);
WRITE(BEEPER,LOW);
delayMicroseconds(100);
}
#endif
}
#ifdef LCD_HAS_STATUS_INDICATORS
static void lcd_implementation_update_indicators()
{
#if defined(LCD_I2C_PANELOLU2) || defined(LCD_I2C_VIKI)
//set the LEDS - referred to as backlights by the LiquidTWI2 library
static uint8_t ledsprev = 0;
uint8_t leds = 0;
if (target_temperature_bed > 0) leds |= LED_A;
if (target_temperature[0] > 0) leds |= LED_B;
if (fanSpeed) leds |= LED_C;
#if EXTRUDERS > 1
if (target_temperature[1] > 0) leds |= LED_C;
#endif
if (leds != ledsprev) {
lcd.setBacklight(leds);
ledsprev = leds;
}
#endif
}
#endif
#ifdef LCD_HAS_SLOW_BUTTONS
static uint8_t lcd_implementation_read_slow_buttons()
{
#ifdef LCD_I2C_TYPE_MCP23017
// Reading these buttons this is likely to be too slow to call inside interrupt context
// so they are called during normal lcd_update
return lcd.readButtons() << B_I2C_BTN_OFFSET;
#endif
}
#endif
#endif//ULTRA_LCD_IMPLEMENTATION_HITACHI_HD44780_H

131
Marlin/ultralcd_st7920_u8glib_rrd.h

@ -0,0 +1,131 @@
#ifndef ULCDST7920_H
#define ULCDST7920_H
#include "Marlin.h"
#ifdef U8GLIB_ST7920
//set optimization so ARDUINO optimizes this file
#pragma GCC optimize (3)
#define ST7920_CLK_PIN LCD_PINS_D4
#define ST7920_DAT_PIN LCD_PINS_ENABLE
#define ST7920_CS_PIN LCD_PINS_RS
//#define PAGE_HEIGHT 8 //128 byte frambuffer
//#define PAGE_HEIGHT 16 //256 byte frambuffer
#define PAGE_HEIGHT 32 //512 byte framebuffer
#define WIDTH 128
#define HEIGHT 64
#include <U8glib.h>
static void ST7920_SWSPI_SND_8BIT(uint8_t val)
{
uint8_t i;
for( i=0; i<8; i++ )
{
WRITE(ST7920_CLK_PIN,0);
WRITE(ST7920_DAT_PIN,val&0x80);
val<<=1;
WRITE(ST7920_CLK_PIN,1);
}
}
#define ST7920_CS() {WRITE(ST7920_CS_PIN,1);u8g_10MicroDelay();}
#define ST7920_NCS() {WRITE(ST7920_CS_PIN,0);}
#define ST7920_SET_CMD() {ST7920_SWSPI_SND_8BIT(0xf8);u8g_10MicroDelay();}
#define ST7920_SET_DAT() {ST7920_SWSPI_SND_8BIT(0xfa);u8g_10MicroDelay();}
#define ST7920_WRITE_BYTE(a) {ST7920_SWSPI_SND_8BIT((a)&0xf0);ST7920_SWSPI_SND_8BIT((a)<<4);u8g_10MicroDelay();}
#define ST7920_WRITE_BYTES(p,l) {uint8_t i;for(i=0;i<l;i++){ST7920_SWSPI_SND_8BIT(*p&0xf0);ST7920_SWSPI_SND_8BIT(*p<<4);p++;}u8g_10MicroDelay();}
uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg)
{
uint8_t i,y;
switch(msg)
{
case U8G_DEV_MSG_INIT:
{
SET_OUTPUT(ST7920_CS_PIN);
WRITE(ST7920_CS_PIN,0);
SET_OUTPUT(ST7920_DAT_PIN);
WRITE(ST7920_DAT_PIN,0);
SET_OUTPUT(ST7920_CLK_PIN);
WRITE(ST7920_CLK_PIN,1);
ST7920_CS();
u8g_Delay(90); //initial delay for boot up
ST7920_SET_CMD();
ST7920_WRITE_BYTE(0x08); //display off, cursor+blink off
ST7920_WRITE_BYTE(0x01); //clear CGRAM ram
u8g_Delay(10); //delay for cgram clear
ST7920_WRITE_BYTE(0x3E); //extended mode + gdram active
for(y=0;y<HEIGHT/2;y++) //clear GDRAM
{
ST7920_WRITE_BYTE(0x80|y); //set y
ST7920_WRITE_BYTE(0x80); //set x = 0
ST7920_SET_DAT();
for(i=0;i<2*WIDTH/8;i++) //2x width clears both segments
ST7920_WRITE_BYTE(0);
ST7920_SET_CMD();
}
ST7920_WRITE_BYTE(0x0C); //display on, cursor+blink off
ST7920_NCS();
}
break;
case U8G_DEV_MSG_STOP:
break;
case U8G_DEV_MSG_PAGE_NEXT:
{
uint8_t *ptr;
u8g_pb_t *pb = (u8g_pb_t *)(dev->dev_mem);
y = pb->p.page_y0;
ptr = (uint8_t*)pb->buf;
ST7920_CS();
for( i = 0; i < PAGE_HEIGHT; i ++ )
{
ST7920_SET_CMD();
if ( y < 32 )
{
ST7920_WRITE_BYTE(0x80 | y); //y
ST7920_WRITE_BYTE(0x80); //x=0
}
else
{
ST7920_WRITE_BYTE(0x80 | (y-32)); //y
ST7920_WRITE_BYTE(0x80 | 8); //x=64
}
ST7920_SET_DAT();
ST7920_WRITE_BYTES(ptr,WIDTH/8); //ptr is incremented inside of macro
y++;
}
ST7920_NCS();
}
break;
}
#if PAGE_HEIGHT == 8
return u8g_dev_pb8h1_base_fn(u8g, dev, msg, arg);
#elif PAGE_HEIGHT == 16
return u8g_dev_pb16h1_base_fn(u8g, dev, msg, arg);
#else
return u8g_dev_pb32h1_base_fn(u8g, dev, msg, arg);
#endif
}
uint8_t u8g_dev_st7920_128x64_rrd_buf[WIDTH*(PAGE_HEIGHT/8)] U8G_NOCOMMON;
u8g_pb_t u8g_dev_st7920_128x64_rrd_pb = {{PAGE_HEIGHT,HEIGHT,0,0,0},WIDTH,u8g_dev_st7920_128x64_rrd_buf};
u8g_dev_t u8g_dev_st7920_128x64_rrd_sw_spi = {u8g_dev_rrd_st7920_128x64_fn,&u8g_dev_st7920_128x64_rrd_pb,&u8g_com_null_fn};
class U8GLIB_ST7920_128X64_RRD : public U8GLIB
{
public:
U8GLIB_ST7920_128X64_RRD(uint8_t dummy) : U8GLIB(&u8g_dev_st7920_128x64_rrd_sw_spi) {}
};
#endif //U8GLIB_ST7920
#endif //ULCDST7920_H

189
README.md

@ -1,12 +1,8 @@
WARNING:
--------
THIS IS RELEASE CANDIDATE 2 FOR MARLIN 1.0.0
==========================
Marlin 3D Printer Firmware
==========================
The configuration is now split in two files
Configuration.h for the normal settings
Configuration_adv.h for the advanced settings
Gen7T is not supported.
[![Flattr this git repo](http://api.flattr.com/button/flattr-badge-large.png)](https://flattr.com/submit/auto?user_id=ErikZalm&url=https://github.com/ErikZalm/Marlin&title=Marlin&language=&tags=github&category=software)
Quick Information
===================
@ -26,14 +22,14 @@ Features:
* High steprate
* Look ahead (Keep the speed high when possible. High cornering speed)
* Interrupt based temperature protection
* preliminary support for Matthew Roberts advance algorithm
* preliminary support for Matthew Roberts advance algorithm
For more info see: http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
* Full endstop support
* SD Card support
* SD Card folders (works in pronterface)
* SD Card autostart support
* LCD support (ideally 20x4)
* LCD menu system for autonomous SD card printing, controlled by an click-encoder.
* LCD support (ideally 20x4)
* LCD menu system for autonomous SD card printing, controlled by an click-encoder.
* EEPROM storage of e.g. max-velocity, max-acceleration, and similar variables
* many small but handy things originating from bkubicek's fork.
* Arc support
@ -45,7 +41,11 @@ Features:
* Heater power reporting. Useful for PID monitoring.
* PID tuning
* CoreXY kinematics (www.corexy.com/theory.html)
* Delta kinematics
* Dual X-carriage support for multiple extruder systems
* Configurable serial port to support connection of wireless adaptors.
* Automatic operation of extruder/cold-end cooling fans based on nozzle temperature
* RC Servo Support, specify angle or duration for continuous rotation servos.
The default baudrate is 250000. This baudrate has less jitter and hence errors than the usual 115200 baud, but is less supported by drivers and host-environments.
@ -55,17 +55,17 @@ Differences and additions to the already good Sprinter firmware:
*Look-ahead:*
Marlin has look-ahead. While sprinter has to break and re-accelerate at each corner,
lookahead will only decelerate and accelerate to a velocity,
Marlin has look-ahead. While sprinter has to break and re-accelerate at each corner,
lookahead will only decelerate and accelerate to a velocity,
so that the change in vectorial velocity magnitude is less than the xy_jerk_velocity.
This is only possible, if some future moves are already processed, hence the name.
This is only possible, if some future moves are already processed, hence the name.
It leads to less over-deposition at corners, especially at flat angles.
*Arc support:*
Slic3r can find curves that, although broken into segments, were ment to describe an arc.
Marlin is able to print those arcs. The advantage is the firmware can choose the resolution,
and can perform the arc with nearly constant velocity, resulting in a nice finish.
and can perform the arc with nearly constant velocity, resulting in a nice finish.
Also, less serial communication is needed.
*Temperature Oversampling:*
@ -94,7 +94,7 @@ After each reboot, it will magically load them from EEPROM, independent what you
If your hardware supports it, you can build yourself a LCD-CardReader+Click+encoder combination. It will enable you to realtime tune temperatures,
accelerations, velocities, flow rates, select and print files from the SD card, preheat, disable the steppers, and do other fancy stuff.
One working hardware is documented here: http://www.thingiverse.com/thing:12663
One working hardware is documented here: http://www.thingiverse.com/thing:12663
Also, with just a 20x4 or 16x2 display, useful data is shown.
*SD card folders:*
@ -129,57 +129,98 @@ necessary for backwards compatibility.
An interrupt is used to manage ADC conversions, and enforce checking for critical temperatures.
This leads to less blocking in the heater management routine.
Implemented G Codes:
====================
* G0 -> G1
* G1 - Coordinated Movement X Y Z E
* G2 - CW ARC
* G3 - CCW ARC
* G4 - Dwell S<seconds> or P<milliseconds>
* G10 - retract filament according to settings of M207
* G11 - retract recover filament according to settings of M208
* G28 - Home all Axis
* G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates
* G92 - Set current position to cordinates given
M Codes
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
* M1 - Same as M0
* M17 - Enable/Power all stepper motors
* M18 - Disable all stepper motors; same as M84
* M20 - List SD card
* M21 - Init SD card
* M22 - Release SD card
* M23 - Select SD file (M23 filename.g)
* M24 - Start/resume SD print
* M25 - Pause SD print
* M26 - Set SD position in bytes (M26 S12345)
* M27 - Report SD print status
* M28 - Start SD write (M28 filename.g)
* M29 - Stop SD write
* M30 - Delete file from SD (M30 filename.g)
* M31 - Output time since last M109 or SD card start to serial
* M32 - Select file and start SD print (Can be used when printing from SD card)
* M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
* M80 - Turn on Power Supply
* M81 - Turn off Power Supply
* M82 - Set E codes absolute (default)
* M83 - Set E codes relative while in Absolute Coordinates (G90) mode
* M84 - Disable steppers until next move, or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
* M92 - Set axis_steps_per_unit - same syntax as G92
* M104 - Set extruder target temp
* M105 - Read current temp
* M106 - Fan on
* M107 - Fan off
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
* M114 - Output current position to serial port
* M115 - Capabilities string
* M117 - display message
* M119 - Output Endstop status to serial port
* M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
* M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
* M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M140 - Set bed target temp
* M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
* M200 - Set filament diameter
* M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
* M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
* M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
* M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
* M206 - set additional homeing offset
* M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
* M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
* M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
* M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
* M220 S<factor in percent>- set speed factor override percentage
* M221 S<factor in percent>- set extrude factor override percentage
* M240 - Trigger a camera to take a photograph
* M280 - Position an RC Servo P<index> S<angle/microseconds>, ommit S to report back current angle
* M300 - Play beepsound S<frequency Hz> P<duration ms>
* M301 - Set PID parameters P I and D
* M302 - Allow cold extrudes
* M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
* M304 - Set bed PID parameters P I and D
* M400 - Finish all moves
* M500 - stores paramters in EEPROM
* M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
* M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
* M503 - print the current settings (from memory not from eeprom)
* M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
* M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
* M907 - Set digital trimpot motor current using axis codes.
* M908 - Control digital trimpot directly.
* M350 - Set microstepping mode.
* M351 - Toggle MS1 MS2 pins directly.
* M928 - Start SD logging (M928 filename.g) - ended by M29
* M999 - Restart after being stopped by error
Non-standard M-Codes, different to an old version of sprinter:
==============================================================
Movement:
* G2 - CW ARC
* G3 - CCW ARC
General:
* M17 - Enable/Power all stepper motors. Compatibility to ReplicatorG.
* M18 - Disable all stepper motors; same as M84.Compatibility to ReplicatorG.
* M30 - Print time since last M109 or SD card start to serial
* M42 - Change pin status via gcode
* M80 - Turn on Power Supply
* M81 - Turn off Power Supply
* M114 - Output current position to serial port
* M119 - Output Endstop status to serial port
Movement variables:
* M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
* M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
* M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
* M206 - set home offsets. This sets the X,Y,Z coordinates of the endstops (and is added to the {X,Y,Z}_HOME_POS configuration options (and is also added to the coordinates, if any, provided to G82, as with earlier firmware)
* M220 - set build speed mulitplying S:factor in percent ; aka "realtime tuneing in the gcode". So you can slow down if you have islands in one height-range, and speed up otherwise.
* M221 - set the extrude multiplying S:factor in percent
* M400 - Finish all buffered moves.
Temperature variables:
* M301 - Set PID parameters P I and D
* M302 - Allow cold extrudes
* M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
Advance:
* M200 - Set filament diameter for advance
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
EEPROM:
* M500 - stores paramters in EEPROM. This parameters are stored: axis_steps_per_unit, max_feedrate, max_acceleration ,acceleration,retract_acceleration,
minimumfeedrate,mintravelfeedrate,minsegmenttime, jerk velocities, PID
* M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
* M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
* M503 - print the current settings (from memory not from eeprom)
MISC:
* M240 - Trigger a camera to take a photograph
* M999 - Restart after being stopped by error
Configuring and compilation:
============================
@ -190,12 +231,7 @@ Install the arduino software IDE/toolset v23 (Some configurations also work with
For gen6/gen7 and sanguinololu the Sanguino directory in the Marlin dir needs to be copied to the arduino environment.
copy ArduinoAddons\Arduino_x.x.x\sanguino <arduino home>\hardware\Sanguino
Install Ultimaker's RepG 25 build
http://software.ultimaker.com
For SD handling and as better substitute (apart from stl manipulation) download
the very nice Kliment's printrun/pronterface https://github.com/kliment/Printrun
Copy the Ultimaker Marlin firmware
Copy the Marlin firmware
https://github.com/ErikZalm/Marlin/tree/Marlin_v1
(Use the download button)
@ -209,15 +245,8 @@ Click the Verify/Compile button
Click the Upload button
If all goes well the firmware is uploading
Start Ultimaker's Custom RepG 25
Make sure Show Experimental Profiles is enabled in Preferences
Select Sprinter as the Driver
Press the Connect button.
KNOWN ISSUES: RepG will display: Unknown: marlin x.y.z
That's ok. Enjoy Silky Smooth Printing.

Loading…
Cancel
Save