|
|
@ -191,8 +191,10 @@ void Config_Postprocess() { |
|
|
|
#if ENABLED(EEPROM_SETTINGS) |
|
|
|
|
|
|
|
#define DUMMY_PID_VALUE 3000.0f |
|
|
|
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value)) |
|
|
|
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value)) |
|
|
|
#define EEPROM_START() int eeprom_index = EEPROM_OFFSET |
|
|
|
#define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR) |
|
|
|
#define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR)) |
|
|
|
#define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR)) |
|
|
|
|
|
|
|
/**
|
|
|
|
* M500 - Store Configuration |
|
|
@ -200,26 +202,27 @@ void Config_Postprocess() { |
|
|
|
void Config_StoreSettings() { |
|
|
|
float dummy = 0.0f; |
|
|
|
char ver[4] = "000"; |
|
|
|
int i = EEPROM_OFFSET; |
|
|
|
|
|
|
|
EEPROM_WRITE_VAR(i, ver); // invalidate data first
|
|
|
|
i += sizeof(eeprom_checksum); // Skip the checksum slot
|
|
|
|
EEPROM_START(); |
|
|
|
|
|
|
|
EEPROM_WRITE(ver); // invalidate data first
|
|
|
|
EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
|
|
|
|
|
|
|
|
eeprom_checksum = 0; // clear before first "real data"
|
|
|
|
|
|
|
|
EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm); |
|
|
|
EEPROM_WRITE_VAR(i, planner.max_feedrate_mm_s); |
|
|
|
EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2); |
|
|
|
EEPROM_WRITE_VAR(i, planner.acceleration); |
|
|
|
EEPROM_WRITE_VAR(i, planner.retract_acceleration); |
|
|
|
EEPROM_WRITE_VAR(i, planner.travel_acceleration); |
|
|
|
EEPROM_WRITE_VAR(i, planner.min_feedrate_mm_s); |
|
|
|
EEPROM_WRITE_VAR(i, planner.min_travel_feedrate_mm_s); |
|
|
|
EEPROM_WRITE_VAR(i, planner.min_segment_time); |
|
|
|
EEPROM_WRITE_VAR(i, planner.max_xy_jerk); |
|
|
|
EEPROM_WRITE_VAR(i, planner.max_z_jerk); |
|
|
|
EEPROM_WRITE_VAR(i, planner.max_e_jerk); |
|
|
|
EEPROM_WRITE_VAR(i, home_offset); |
|
|
|
EEPROM_WRITE(planner.axis_steps_per_mm); |
|
|
|
EEPROM_WRITE(planner.max_feedrate_mm_s); |
|
|
|
EEPROM_WRITE(planner.max_acceleration_mm_per_s2); |
|
|
|
EEPROM_WRITE(planner.acceleration); |
|
|
|
EEPROM_WRITE(planner.retract_acceleration); |
|
|
|
EEPROM_WRITE(planner.travel_acceleration); |
|
|
|
EEPROM_WRITE(planner.min_feedrate_mm_s); |
|
|
|
EEPROM_WRITE(planner.min_travel_feedrate_mm_s); |
|
|
|
EEPROM_WRITE(planner.min_segment_time); |
|
|
|
EEPROM_WRITE(planner.max_xy_jerk); |
|
|
|
EEPROM_WRITE(planner.max_z_jerk); |
|
|
|
EEPROM_WRITE(planner.max_e_jerk); |
|
|
|
EEPROM_WRITE(home_offset); |
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
|
// Compile time test that sizeof(mbl.z_values) is as expected
|
|
|
@ -227,45 +230,45 @@ void Config_StoreSettings() { |
|
|
|
uint8_t mesh_num_x = MESH_NUM_X_POINTS, |
|
|
|
mesh_num_y = MESH_NUM_Y_POINTS, |
|
|
|
dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT); |
|
|
|
EEPROM_WRITE_VAR(i, dummy_uint8); |
|
|
|
EEPROM_WRITE_VAR(i, mbl.z_offset); |
|
|
|
EEPROM_WRITE_VAR(i, mesh_num_x); |
|
|
|
EEPROM_WRITE_VAR(i, mesh_num_y); |
|
|
|
EEPROM_WRITE_VAR(i, mbl.z_values); |
|
|
|
EEPROM_WRITE(dummy_uint8); |
|
|
|
EEPROM_WRITE(mbl.z_offset); |
|
|
|
EEPROM_WRITE(mesh_num_x); |
|
|
|
EEPROM_WRITE(mesh_num_y); |
|
|
|
EEPROM_WRITE(mbl.z_values); |
|
|
|
#else |
|
|
|
// For disabled MBL write a default mesh
|
|
|
|
uint8_t mesh_num_x = 3, |
|
|
|
mesh_num_y = 3, |
|
|
|
dummy_uint8 = 0; |
|
|
|
dummy = 0.0f; |
|
|
|
EEPROM_WRITE_VAR(i, dummy_uint8); |
|
|
|
EEPROM_WRITE_VAR(i, dummy); |
|
|
|
EEPROM_WRITE_VAR(i, mesh_num_x); |
|
|
|
EEPROM_WRITE_VAR(i, mesh_num_y); |
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy); |
|
|
|
EEPROM_WRITE(dummy_uint8); |
|
|
|
EEPROM_WRITE(dummy); |
|
|
|
EEPROM_WRITE(mesh_num_x); |
|
|
|
EEPROM_WRITE(mesh_num_y); |
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy); |
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
#if !HAS_BED_PROBE |
|
|
|
float zprobe_zoffset = 0; |
|
|
|
#endif |
|
|
|
EEPROM_WRITE_VAR(i, zprobe_zoffset); |
|
|
|
EEPROM_WRITE(zprobe_zoffset); |
|
|
|
|
|
|
|
// 9 floats for DELTA / Z_DUAL_ENDSTOPS
|
|
|
|
#if ENABLED(DELTA) |
|
|
|
EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
|
|
|
|
EEPROM_WRITE_VAR(i, delta_radius); // 1 float
|
|
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
|
|
|
|
EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
|
|
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
EEPROM_WRITE(endstop_adj); // 3 floats
|
|
|
|
EEPROM_WRITE(delta_radius); // 1 float
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod); // 1 float
|
|
|
|
EEPROM_WRITE(delta_segments_per_second); // 1 float
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS) |
|
|
|
EEPROM_WRITE_VAR(i, z_endstop_adj); // 1 float
|
|
|
|
EEPROM_WRITE(z_endstop_adj); // 1 float
|
|
|
|
dummy = 0.0f; |
|
|
|
for (uint8_t q = 8; q--;) EEPROM_WRITE_VAR(i, dummy); |
|
|
|
for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy); |
|
|
|
#else |
|
|
|
dummy = 0.0f; |
|
|
|
for (uint8_t q = 9; q--;) EEPROM_WRITE_VAR(i, dummy); |
|
|
|
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if DISABLED(ULTIPANEL) |
|
|
@ -273,34 +276,34 @@ void Config_StoreSettings() { |
|
|
|
preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED; |
|
|
|
#endif // !ULTIPANEL
|
|
|
|
|
|
|
|
EEPROM_WRITE_VAR(i, preheatHotendTemp1); |
|
|
|
EEPROM_WRITE_VAR(i, preheatBedTemp1); |
|
|
|
EEPROM_WRITE_VAR(i, preheatFanSpeed1); |
|
|
|
EEPROM_WRITE_VAR(i, preheatHotendTemp2); |
|
|
|
EEPROM_WRITE_VAR(i, preheatBedTemp2); |
|
|
|
EEPROM_WRITE_VAR(i, preheatFanSpeed2); |
|
|
|
EEPROM_WRITE(preheatHotendTemp1); |
|
|
|
EEPROM_WRITE(preheatBedTemp1); |
|
|
|
EEPROM_WRITE(preheatFanSpeed1); |
|
|
|
EEPROM_WRITE(preheatHotendTemp2); |
|
|
|
EEPROM_WRITE(preheatBedTemp2); |
|
|
|
EEPROM_WRITE(preheatFanSpeed2); |
|
|
|
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) { |
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP) |
|
|
|
if (e < HOTENDS) { |
|
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e)); |
|
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e)); |
|
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e)); |
|
|
|
EEPROM_WRITE(PID_PARAM(Kp, e)); |
|
|
|
EEPROM_WRITE(PID_PARAM(Ki, e)); |
|
|
|
EEPROM_WRITE(PID_PARAM(Kd, e)); |
|
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE) |
|
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e)); |
|
|
|
EEPROM_WRITE(PID_PARAM(Kc, e)); |
|
|
|
#else |
|
|
|
dummy = 1.0f; // 1.0 = default kc
|
|
|
|
EEPROM_WRITE_VAR(i, dummy); |
|
|
|
EEPROM_WRITE(dummy); |
|
|
|
#endif |
|
|
|
} |
|
|
|
else |
|
|
|
#endif // !PIDTEMP
|
|
|
|
{ |
|
|
|
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
|
|
|
|
EEPROM_WRITE_VAR(i, dummy); // Kp
|
|
|
|
EEPROM_WRITE(dummy); // Kp
|
|
|
|
dummy = 0.0f; |
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); // Ki, Kd, Kc
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
|
|
|
|
} |
|
|
|
|
|
|
|
} // Hotends Loop
|
|
|
@ -308,67 +311,68 @@ void Config_StoreSettings() { |
|
|
|
#if DISABLED(PID_ADD_EXTRUSION_RATE) |
|
|
|
int lpq_len = 20; |
|
|
|
#endif |
|
|
|
EEPROM_WRITE_VAR(i, lpq_len); |
|
|
|
EEPROM_WRITE(lpq_len); |
|
|
|
|
|
|
|
#if DISABLED(PIDTEMPBED) |
|
|
|
dummy = DUMMY_PID_VALUE; |
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); |
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); |
|
|
|
#else |
|
|
|
EEPROM_WRITE_VAR(i, thermalManager.bedKp); |
|
|
|
EEPROM_WRITE_VAR(i, thermalManager.bedKi); |
|
|
|
EEPROM_WRITE_VAR(i, thermalManager.bedKd); |
|
|
|
EEPROM_WRITE(thermalManager.bedKp); |
|
|
|
EEPROM_WRITE(thermalManager.bedKi); |
|
|
|
EEPROM_WRITE(thermalManager.bedKd); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if !HAS_LCD_CONTRAST |
|
|
|
const int lcd_contrast = 32; |
|
|
|
#endif |
|
|
|
EEPROM_WRITE_VAR(i, lcd_contrast); |
|
|
|
EEPROM_WRITE(lcd_contrast); |
|
|
|
|
|
|
|
#if ENABLED(SCARA) |
|
|
|
EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
|
|
|
|
EEPROM_WRITE(axis_scaling); // 3 floats
|
|
|
|
#else |
|
|
|
dummy = 1.0f; |
|
|
|
EEPROM_WRITE_VAR(i, dummy); |
|
|
|
EEPROM_WRITE(dummy); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT) |
|
|
|
EEPROM_WRITE_VAR(i, autoretract_enabled); |
|
|
|
EEPROM_WRITE_VAR(i, retract_length); |
|
|
|
EEPROM_WRITE(autoretract_enabled); |
|
|
|
EEPROM_WRITE(retract_length); |
|
|
|
#if EXTRUDERS > 1 |
|
|
|
EEPROM_WRITE_VAR(i, retract_length_swap); |
|
|
|
EEPROM_WRITE(retract_length_swap); |
|
|
|
#else |
|
|
|
dummy = 0.0f; |
|
|
|
EEPROM_WRITE_VAR(i, dummy); |
|
|
|
EEPROM_WRITE(dummy); |
|
|
|
#endif |
|
|
|
EEPROM_WRITE_VAR(i, retract_feedrate_mm_s); |
|
|
|
EEPROM_WRITE_VAR(i, retract_zlift); |
|
|
|
EEPROM_WRITE_VAR(i, retract_recover_length); |
|
|
|
EEPROM_WRITE(retract_feedrate_mm_s); |
|
|
|
EEPROM_WRITE(retract_zlift); |
|
|
|
EEPROM_WRITE(retract_recover_length); |
|
|
|
#if EXTRUDERS > 1 |
|
|
|
EEPROM_WRITE_VAR(i, retract_recover_length_swap); |
|
|
|
EEPROM_WRITE(retract_recover_length_swap); |
|
|
|
#else |
|
|
|
dummy = 0.0f; |
|
|
|
EEPROM_WRITE_VAR(i, dummy); |
|
|
|
EEPROM_WRITE(dummy); |
|
|
|
#endif |
|
|
|
EEPROM_WRITE_VAR(i, retract_recover_feedrate_mm_s); |
|
|
|
EEPROM_WRITE(retract_recover_feedrate_mm_s); |
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
EEPROM_WRITE_VAR(i, volumetric_enabled); |
|
|
|
EEPROM_WRITE(volumetric_enabled); |
|
|
|
|
|
|
|
// Save filament sizes
|
|
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { |
|
|
|
if (q < COUNT(filament_size)) dummy = filament_size[q]; |
|
|
|
EEPROM_WRITE_VAR(i, dummy); |
|
|
|
EEPROM_WRITE(dummy); |
|
|
|
} |
|
|
|
|
|
|
|
uint16_t final_checksum = eeprom_checksum; |
|
|
|
uint16_t final_checksum = eeprom_checksum, |
|
|
|
eeprom_size = eeprom_index; |
|
|
|
|
|
|
|
int j = EEPROM_OFFSET; |
|
|
|
EEPROM_WRITE_VAR(j, version); |
|
|
|
EEPROM_WRITE_VAR(j, final_checksum); |
|
|
|
eeprom_index = EEPROM_OFFSET; |
|
|
|
EEPROM_WRITE(version); |
|
|
|
EEPROM_WRITE(final_checksum); |
|
|
|
|
|
|
|
// Report storage size
|
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_ECHOPAIR("Settings Stored (", i); |
|
|
|
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size); |
|
|
|
SERIAL_ECHOLNPGM(" bytes)"); |
|
|
|
} |
|
|
|
|
|
|
@ -376,11 +380,15 @@ void Config_StoreSettings() { |
|
|
|
* M501 - Retrieve Configuration |
|
|
|
*/ |
|
|
|
void Config_RetrieveSettings() { |
|
|
|
int i = EEPROM_OFFSET; |
|
|
|
|
|
|
|
EEPROM_START(); |
|
|
|
|
|
|
|
char stored_ver[4]; |
|
|
|
EEPROM_READ(stored_ver); |
|
|
|
|
|
|
|
uint16_t stored_checksum; |
|
|
|
EEPROM_READ_VAR(i, stored_ver); |
|
|
|
EEPROM_READ_VAR(i, stored_checksum); |
|
|
|
EEPROM_READ(stored_checksum); |
|
|
|
|
|
|
|
// SERIAL_ECHOPAIR("Version: [", ver);
|
|
|
|
// SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
|
|
|
|
// SERIAL_ECHOLNPGM("]");
|
|
|
@ -394,63 +402,63 @@ void Config_RetrieveSettings() { |
|
|
|
eeprom_checksum = 0; // clear before reading first "real data"
|
|
|
|
|
|
|
|
// version number match
|
|
|
|
EEPROM_READ_VAR(i, planner.axis_steps_per_mm); |
|
|
|
EEPROM_READ_VAR(i, planner.max_feedrate_mm_s); |
|
|
|
EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2); |
|
|
|
|
|
|
|
EEPROM_READ_VAR(i, planner.acceleration); |
|
|
|
EEPROM_READ_VAR(i, planner.retract_acceleration); |
|
|
|
EEPROM_READ_VAR(i, planner.travel_acceleration); |
|
|
|
EEPROM_READ_VAR(i, planner.min_feedrate_mm_s); |
|
|
|
EEPROM_READ_VAR(i, planner.min_travel_feedrate_mm_s); |
|
|
|
EEPROM_READ_VAR(i, planner.min_segment_time); |
|
|
|
EEPROM_READ_VAR(i, planner.max_xy_jerk); |
|
|
|
EEPROM_READ_VAR(i, planner.max_z_jerk); |
|
|
|
EEPROM_READ_VAR(i, planner.max_e_jerk); |
|
|
|
EEPROM_READ_VAR(i, home_offset); |
|
|
|
EEPROM_READ(planner.axis_steps_per_mm); |
|
|
|
EEPROM_READ(planner.max_feedrate_mm_s); |
|
|
|
EEPROM_READ(planner.max_acceleration_mm_per_s2); |
|
|
|
|
|
|
|
EEPROM_READ(planner.acceleration); |
|
|
|
EEPROM_READ(planner.retract_acceleration); |
|
|
|
EEPROM_READ(planner.travel_acceleration); |
|
|
|
EEPROM_READ(planner.min_feedrate_mm_s); |
|
|
|
EEPROM_READ(planner.min_travel_feedrate_mm_s); |
|
|
|
EEPROM_READ(planner.min_segment_time); |
|
|
|
EEPROM_READ(planner.max_xy_jerk); |
|
|
|
EEPROM_READ(planner.max_z_jerk); |
|
|
|
EEPROM_READ(planner.max_e_jerk); |
|
|
|
EEPROM_READ(home_offset); |
|
|
|
|
|
|
|
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0; |
|
|
|
EEPROM_READ_VAR(i, dummy_uint8); |
|
|
|
EEPROM_READ_VAR(i, dummy); |
|
|
|
EEPROM_READ_VAR(i, mesh_num_x); |
|
|
|
EEPROM_READ_VAR(i, mesh_num_y); |
|
|
|
EEPROM_READ(dummy_uint8); |
|
|
|
EEPROM_READ(dummy); |
|
|
|
EEPROM_READ(mesh_num_x); |
|
|
|
EEPROM_READ(mesh_num_y); |
|
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
|
mbl.status = dummy_uint8; |
|
|
|
mbl.z_offset = dummy; |
|
|
|
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) { |
|
|
|
// EEPROM data fits the current mesh
|
|
|
|
EEPROM_READ_VAR(i, mbl.z_values); |
|
|
|
EEPROM_READ(mbl.z_values); |
|
|
|
} |
|
|
|
else { |
|
|
|
// EEPROM data is stale
|
|
|
|
mbl.reset(); |
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy); |
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy); |
|
|
|
} |
|
|
|
#else |
|
|
|
// MBL is disabled - skip the stored data
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy); |
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy); |
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
#if !HAS_BED_PROBE |
|
|
|
float zprobe_zoffset = 0; |
|
|
|
#endif |
|
|
|
EEPROM_READ_VAR(i, zprobe_zoffset); |
|
|
|
EEPROM_READ(zprobe_zoffset); |
|
|
|
|
|
|
|
#if ENABLED(DELTA) |
|
|
|
EEPROM_READ_VAR(i, endstop_adj); // 3 floats
|
|
|
|
EEPROM_READ_VAR(i, delta_radius); // 1 float
|
|
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
|
|
|
|
EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
|
|
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
EEPROM_READ(endstop_adj); // 3 floats
|
|
|
|
EEPROM_READ(delta_radius); // 1 float
|
|
|
|
EEPROM_READ(delta_diagonal_rod); // 1 float
|
|
|
|
EEPROM_READ(delta_segments_per_second); // 1 float
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS) |
|
|
|
EEPROM_READ_VAR(i, z_endstop_adj); |
|
|
|
EEPROM_READ(z_endstop_adj); |
|
|
|
dummy = 0.0f; |
|
|
|
for (uint8_t q=8; q--;) EEPROM_READ_VAR(i, dummy); |
|
|
|
for (uint8_t q=8; q--;) EEPROM_READ(dummy); |
|
|
|
#else |
|
|
|
dummy = 0.0f; |
|
|
|
for (uint8_t q=9; q--;) EEPROM_READ_VAR(i, dummy); |
|
|
|
for (uint8_t q=9; q--;) EEPROM_READ(dummy); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if DISABLED(ULTIPANEL) |
|
|
@ -458,86 +466,86 @@ void Config_RetrieveSettings() { |
|
|
|
preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2; |
|
|
|
#endif |
|
|
|
|
|
|
|
EEPROM_READ_VAR(i, preheatHotendTemp1); |
|
|
|
EEPROM_READ_VAR(i, preheatBedTemp1); |
|
|
|
EEPROM_READ_VAR(i, preheatFanSpeed1); |
|
|
|
EEPROM_READ_VAR(i, preheatHotendTemp2); |
|
|
|
EEPROM_READ_VAR(i, preheatBedTemp2); |
|
|
|
EEPROM_READ_VAR(i, preheatFanSpeed2); |
|
|
|
EEPROM_READ(preheatHotendTemp1); |
|
|
|
EEPROM_READ(preheatBedTemp1); |
|
|
|
EEPROM_READ(preheatFanSpeed1); |
|
|
|
EEPROM_READ(preheatHotendTemp2); |
|
|
|
EEPROM_READ(preheatBedTemp2); |
|
|
|
EEPROM_READ(preheatFanSpeed2); |
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP) |
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) { |
|
|
|
EEPROM_READ_VAR(i, dummy); // Kp
|
|
|
|
EEPROM_READ(dummy); // Kp
|
|
|
|
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) { |
|
|
|
// do not need to scale PID values as the values in EEPROM are already scaled
|
|
|
|
PID_PARAM(Kp, e) = dummy; |
|
|
|
EEPROM_READ_VAR(i, PID_PARAM(Ki, e)); |
|
|
|
EEPROM_READ_VAR(i, PID_PARAM(Kd, e)); |
|
|
|
EEPROM_READ(PID_PARAM(Ki, e)); |
|
|
|
EEPROM_READ(PID_PARAM(Kd, e)); |
|
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE) |
|
|
|
EEPROM_READ_VAR(i, PID_PARAM(Kc, e)); |
|
|
|
EEPROM_READ(PID_PARAM(Kc, e)); |
|
|
|
#else |
|
|
|
EEPROM_READ_VAR(i, dummy); |
|
|
|
EEPROM_READ(dummy); |
|
|
|
#endif |
|
|
|
} |
|
|
|
else { |
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
|
|
|
|
} |
|
|
|
} |
|
|
|
#else // !PIDTEMP
|
|
|
|
// 4 x 4 = 16 slots for PID parameters
|
|
|
|
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ_VAR(i, dummy); // Kp, Ki, Kd, Kc
|
|
|
|
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
|
|
|
|
#endif // !PIDTEMP
|
|
|
|
|
|
|
|
#if DISABLED(PID_ADD_EXTRUSION_RATE) |
|
|
|
int lpq_len; |
|
|
|
#endif |
|
|
|
EEPROM_READ_VAR(i, lpq_len); |
|
|
|
EEPROM_READ(lpq_len); |
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED) |
|
|
|
EEPROM_READ_VAR(i, dummy); // bedKp
|
|
|
|
EEPROM_READ(dummy); // bedKp
|
|
|
|
if (dummy != DUMMY_PID_VALUE) { |
|
|
|
thermalManager.bedKp = dummy; |
|
|
|
EEPROM_READ_VAR(i, thermalManager.bedKi); |
|
|
|
EEPROM_READ_VAR(i, thermalManager.bedKd); |
|
|
|
EEPROM_READ(thermalManager.bedKi); |
|
|
|
EEPROM_READ(thermalManager.bedKd); |
|
|
|
} |
|
|
|
#else |
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // bedKp, bedKi, bedKd
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
|
|
|
|
#endif |
|
|
|
|
|
|
|
#if !HAS_LCD_CONTRAST |
|
|
|
int lcd_contrast; |
|
|
|
#endif |
|
|
|
EEPROM_READ_VAR(i, lcd_contrast); |
|
|
|
EEPROM_READ(lcd_contrast); |
|
|
|
|
|
|
|
#if ENABLED(SCARA) |
|
|
|
EEPROM_READ_VAR(i, axis_scaling); // 3 floats
|
|
|
|
EEPROM_READ(axis_scaling); // 3 floats
|
|
|
|
#else |
|
|
|
EEPROM_READ_VAR(i, dummy); |
|
|
|
EEPROM_READ(dummy); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT) |
|
|
|
EEPROM_READ_VAR(i, autoretract_enabled); |
|
|
|
EEPROM_READ_VAR(i, retract_length); |
|
|
|
EEPROM_READ(autoretract_enabled); |
|
|
|
EEPROM_READ(retract_length); |
|
|
|
#if EXTRUDERS > 1 |
|
|
|
EEPROM_READ_VAR(i, retract_length_swap); |
|
|
|
EEPROM_READ(retract_length_swap); |
|
|
|
#else |
|
|
|
EEPROM_READ_VAR(i, dummy); |
|
|
|
EEPROM_READ(dummy); |
|
|
|
#endif |
|
|
|
EEPROM_READ_VAR(i, retract_feedrate_mm_s); |
|
|
|
EEPROM_READ_VAR(i, retract_zlift); |
|
|
|
EEPROM_READ_VAR(i, retract_recover_length); |
|
|
|
EEPROM_READ(retract_feedrate_mm_s); |
|
|
|
EEPROM_READ(retract_zlift); |
|
|
|
EEPROM_READ(retract_recover_length); |
|
|
|
#if EXTRUDERS > 1 |
|
|
|
EEPROM_READ_VAR(i, retract_recover_length_swap); |
|
|
|
EEPROM_READ(retract_recover_length_swap); |
|
|
|
#else |
|
|
|
EEPROM_READ_VAR(i, dummy); |
|
|
|
EEPROM_READ(dummy); |
|
|
|
#endif |
|
|
|
EEPROM_READ_VAR(i, retract_recover_feedrate_mm_s); |
|
|
|
EEPROM_READ(retract_recover_feedrate_mm_s); |
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
EEPROM_READ_VAR(i, volumetric_enabled); |
|
|
|
EEPROM_READ(volumetric_enabled); |
|
|
|
|
|
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { |
|
|
|
EEPROM_READ_VAR(i, dummy); |
|
|
|
EEPROM_READ(dummy); |
|
|
|
if (q < COUNT(filament_size)) filament_size[q] = dummy; |
|
|
|
} |
|
|
|
|
|
|
@ -545,7 +553,7 @@ void Config_RetrieveSettings() { |
|
|
|
Config_Postprocess(); |
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_ECHO(version); |
|
|
|
SERIAL_ECHOPAIR(" stored settings retrieved (", i); |
|
|
|
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index); |
|
|
|
SERIAL_ECHOLNPGM(" bytes)"); |
|
|
|
} |
|
|
|
else { |
|
|
|