|
|
@ -111,6 +111,13 @@ bool Stepper::abort_current_block; |
|
|
|
bool Stepper::locked_z_motor = false, Stepper::locked_z2_motor = false; |
|
|
|
#endif |
|
|
|
|
|
|
|
/**
|
|
|
|
* Marlin uses the Bresenham algorithm. For a detailed explanation of theory and |
|
|
|
* method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
|
|
|
|
* |
|
|
|
* The implementation used here additionally rounds up the starting seed. |
|
|
|
*/ |
|
|
|
|
|
|
|
int32_t Stepper::counter_X = 0, |
|
|
|
Stepper::counter_Y = 0, |
|
|
|
Stepper::counter_Z = 0, |
|
|
@ -1174,7 +1181,7 @@ hal_timer_t Stepper::isr_scheduler() { |
|
|
|
|
|
|
|
// Limit the amount of iterations
|
|
|
|
uint8_t max_loops = 10; |
|
|
|
|
|
|
|
|
|
|
|
// We need this variable here to be able to use it in the following loop
|
|
|
|
hal_timer_t min_ticks; |
|
|
|
do { |
|
|
@ -1294,12 +1301,12 @@ void Stepper::stepper_pulse_phase_isr() { |
|
|
|
// Advance the Bresenham counter; start a pulse if the axis needs a step
|
|
|
|
#define PULSE_START(AXIS) do{ \ |
|
|
|
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \ |
|
|
|
if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), 0); } \ |
|
|
|
if (_COUNTER(AXIS) >= 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), 0); } \ |
|
|
|
}while(0) |
|
|
|
|
|
|
|
// Advance the Bresenham counter; start a pulse if the axis needs a step
|
|
|
|
#define STEP_TICK(AXIS) do { \ |
|
|
|
if (_COUNTER(AXIS) > 0) { \ |
|
|
|
if (_COUNTER(AXIS) >= 0) { \ |
|
|
|
_COUNTER(AXIS) -= current_block->step_event_count; \ |
|
|
|
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ |
|
|
|
} \ |
|
|
@ -1387,7 +1394,7 @@ void Stepper::stepper_pulse_phase_isr() { |
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE) |
|
|
|
counter_E += current_block->steps[E_AXIS]; |
|
|
|
if (counter_E > 0) { |
|
|
|
if (counter_E >= 0) { |
|
|
|
#if DISABLED(MIXING_EXTRUDER) |
|
|
|
// Don't step E here for mixing extruder
|
|
|
|
motor_direction(E_AXIS) ? --e_steps : ++e_steps; |
|
|
@ -1399,7 +1406,7 @@ void Stepper::stepper_pulse_phase_isr() { |
|
|
|
const bool dir = motor_direction(E_AXIS); |
|
|
|
MIXING_STEPPERS_LOOP(j) { |
|
|
|
counter_m[j] += current_block->steps[E_AXIS]; |
|
|
|
if (counter_m[j] > 0) { |
|
|
|
if (counter_m[j] >= 0) { |
|
|
|
counter_m[j] -= current_block->mix_event_count[j]; |
|
|
|
dir ? --e_steps[j] : ++e_steps[j]; |
|
|
|
} |
|
|
@ -1416,7 +1423,7 @@ void Stepper::stepper_pulse_phase_isr() { |
|
|
|
// Step mixing steppers (proportionally)
|
|
|
|
counter_m[j] += current_block->steps[E_AXIS]; |
|
|
|
// Step when the counter goes over zero
|
|
|
|
if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN); |
|
|
|
if (counter_m[j] >= 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN); |
|
|
|
} |
|
|
|
#else // !MIXING_EXTRUDER
|
|
|
|
PULSE_START(E); |
|
|
@ -1456,7 +1463,7 @@ void Stepper::stepper_pulse_phase_isr() { |
|
|
|
#if DISABLED(LIN_ADVANCE) |
|
|
|
#if ENABLED(MIXING_EXTRUDER) |
|
|
|
MIXING_STEPPERS_LOOP(j) { |
|
|
|
if (counter_m[j] > 0) { |
|
|
|
if (counter_m[j] >= 0) { |
|
|
|
counter_m[j] -= current_block->mix_event_count[j]; |
|
|
|
En_STEP_WRITE(j, INVERT_E_STEP_PIN); |
|
|
|
} |
|
|
@ -1738,11 +1745,11 @@ uint32_t Stepper::stepper_block_phase_isr() { |
|
|
|
bezier_2nd_half = false; |
|
|
|
#endif |
|
|
|
|
|
|
|
// Initialize Bresenham counters to 1/2 the ceiling
|
|
|
|
counter_X = counter_Y = counter_Z = counter_E = -((int32_t)(current_block->step_event_count >> 1)); |
|
|
|
// Initialize Bresenham counters to 1/2 the ceiling, with proper roundup (as explained in the article linked above)
|
|
|
|
counter_X = counter_Y = counter_Z = counter_E = -int32_t((current_block->step_event_count + 1) >> 1); |
|
|
|
#if ENABLED(MIXING_EXTRUDER) |
|
|
|
MIXING_STEPPERS_LOOP(i) |
|
|
|
counter_m[i] = -(current_block->mix_event_count[i] >> 1); |
|
|
|
counter_m[i] = -int32_t((current_block->mix_event_count[i] + 1) >> 1); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(Z_LATE_ENABLE) |
|
|
|