Browse Source

stepper.cpp macros rework

delete some tabs
pull/1/head
Wurstnase 10 years ago
parent
commit
79a44a9de3
  1. 121
      Marlin/stepper.cpp

121
Marlin/stepper.cpp

@ -46,7 +46,7 @@ block_t *current_block; // A pointer to the block currently being traced
// Variables used by The Stepper Driver Interrupt // Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output static unsigned char out_bits; // The next stepping-bits to be output
static unsigned int cleaning_buffer_counter; static unsigned int cleaning_buffer_counter;
#ifdef Z_DUAL_ENDSTOPS #ifdef Z_DUAL_ENDSTOPS
static bool performing_homing = false, static bool performing_homing = false,
@ -285,8 +285,8 @@ void checkHitEndstops() {
} }
#ifdef Z_PROBE_ENDSTOP #ifdef Z_PROBE_ENDSTOP
if (endstop_z_probe_hit) { if (endstop_z_probe_hit) {
SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]); SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP"); LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
} }
#endif #endif
SERIAL_EOL; SERIAL_EOL;
@ -411,7 +411,7 @@ ISR(TIMER1_COMPA_vect) {
OCR1A = 200; OCR1A = 200;
return; return;
} }
// If there is no current block, attempt to pop one from the buffer // If there is no current block, attempt to pop one from the buffer
if (!current_block) { if (!current_block) {
// Anything in the buffer? // Anything in the buffer?
@ -463,14 +463,22 @@ ISR(TIMER1_COMPA_vect) {
count_direction[Y_AXIS] = 1; count_direction[Y_AXIS] = 1;
} }
#define _ENDSTOP(axis, minmax) axis ##_## minmax ##_endstop
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
#define _OLD_ENDSTOP(axis, minmax) old_## axis ##_## minmax ##_endstop
#define _AXIS(AXIS) AXIS ##_AXIS
#define _ENDSTOP_HIT(axis) endstop_## axis ##_hit
#define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \ #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \ bool _ENDSTOP(axis, minmax) = (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)); \
if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \ if (_ENDSTOP(axis, minmax) && _OLD_ENDSTOP(axis, minmax) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \ endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
endstop_## axis ##_hit = true; \ _ENDSTOP_HIT(axis) = true; \
step_events_completed = current_block->step_event_count; \ step_events_completed = current_block->step_event_count; \
} \ } \
old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop; _OLD_ENDSTOP(axis, minmax) = _ENDSTOP(axis, minmax);
// Check X and Y endstops // Check X and Y endstops
if (check_endstops) { if (check_endstops) {
@ -486,7 +494,7 @@ ISR(TIMER1_COMPA_vect) {
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1)) if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif #endif
{ {
#if HAS_X_MIN #if HAS_X_MIN
UPDATE_ENDSTOP(x, X, min, MIN); UPDATE_ENDSTOP(x, X, min, MIN);
@ -572,14 +580,14 @@ ISR(TIMER1_COMPA_vect) {
z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
if(z_probe_endstop && old_z_probe_endstop) if(z_probe_endstop && old_z_probe_endstop)
{ {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_probe_hit=true; endstop_z_probe_hit=true;
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true"); // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
} }
old_z_probe_endstop = z_probe_endstop; old_z_probe_endstop = z_probe_endstop;
#endif #endif
} // check_endstops } // check_endstops
} }
@ -625,15 +633,15 @@ ISR(TIMER1_COMPA_vect) {
#endif // !Z_DUAL_ENDSTOPS #endif // !Z_DUAL_ENDSTOPS
#endif // Z_MAX_PIN #endif // Z_MAX_PIN
#ifdef Z_PROBE_ENDSTOP #ifdef Z_PROBE_ENDSTOP
UPDATE_ENDSTOP(z, Z, probe, PROBE); UPDATE_ENDSTOP(z, Z, probe, PROBE);
z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
if(z_probe_endstop && old_z_probe_endstop) if(z_probe_endstop && old_z_probe_endstop)
{ {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_probe_hit=true; endstop_z_probe_hit=true;
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true"); // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
} }
old_z_probe_endstop = z_probe_endstop; old_z_probe_endstop = z_probe_endstop;
#endif #endif
@ -667,6 +675,11 @@ ISR(TIMER1_COMPA_vect) {
} }
#endif //ADVANCE #endif //ADVANCE
#define _COUNTER(axis) counter_## axis
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
#ifdef CONFIG_STEPPERS_TOSHIBA #ifdef CONFIG_STEPPERS_TOSHIBA
/** /**
* The Toshiba stepper controller require much longer pulses. * The Toshiba stepper controller require much longer pulses.
@ -675,8 +688,8 @@ ISR(TIMER1_COMPA_vect) {
* lag to allow it work with without needing NOPs * lag to allow it work with without needing NOPs
*/ */
#define STEP_ADD(axis, AXIS) \ #define STEP_ADD(axis, AXIS) \
counter_## axis += current_block->steps[AXIS ##_AXIS]; \ _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); } if (_COUNTER(axis) > 0) { _WRITE_STEP(AXIS, HIGH); }
STEP_ADD(x,X); STEP_ADD(x,X);
STEP_ADD(y,Y); STEP_ADD(y,Y);
STEP_ADD(z,Z); STEP_ADD(z,Z);
@ -685,10 +698,10 @@ ISR(TIMER1_COMPA_vect) {
#endif #endif
#define STEP_IF_COUNTER(axis, AXIS) \ #define STEP_IF_COUNTER(axis, AXIS) \
if (counter_## axis > 0) { \ if (_COUNTER(axis) > 0) { \
counter_## axis -= current_block->step_event_count; \ _COUNTER(axis) -= current_block->step_event_count; \
count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \ count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
AXIS ##_STEP_WRITE(LOW); \ _WRITE_STEP(AXIS, LOW); \
} }
STEP_IF_COUNTER(x, X); STEP_IF_COUNTER(x, X);
@ -701,12 +714,12 @@ ISR(TIMER1_COMPA_vect) {
#else // !CONFIG_STEPPERS_TOSHIBA #else // !CONFIG_STEPPERS_TOSHIBA
#define APPLY_MOVEMENT(axis, AXIS) \ #define APPLY_MOVEMENT(axis, AXIS) \
counter_## axis += current_block->steps[AXIS ##_AXIS]; \ _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
if (counter_## axis > 0) { \ if (_COUNTER(axis) > 0) { \
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \ _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); \
counter_## axis -= current_block->step_event_count; \ _COUNTER(axis) -= current_block->step_event_count; \
count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \ count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \ _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
} }
APPLY_MOVEMENT(x, X); APPLY_MOVEMENT(x, X);
@ -874,7 +887,7 @@ void st_init() {
#ifdef HAVE_L6470DRIVER #ifdef HAVE_L6470DRIVER
L6470_init(); L6470_init();
#endif #endif
// Initialize Dir Pins // Initialize Dir Pins
#if HAS_X_DIR #if HAS_X_DIR
X_DIR_INIT; X_DIR_INIT;
@ -920,11 +933,11 @@ void st_init() {
#if HAS_Y_ENABLE #if HAS_Y_ENABLE
Y_ENABLE_INIT; Y_ENABLE_INIT;
if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH); if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
#if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
Y2_ENABLE_INIT; Y2_ENABLE_INIT;
if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH); if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
#endif #endif
#endif #endif
#if HAS_Z_ENABLE #if HAS_Z_ENABLE
Z_ENABLE_INIT; Z_ENABLE_INIT;
@ -1001,8 +1014,8 @@ void st_init() {
#ifdef ENDSTOPPULLUP_ZMAX #ifdef ENDSTOPPULLUP_ZMAX
WRITE(Z2_MAX_PIN,HIGH); WRITE(Z2_MAX_PIN,HIGH);
#endif #endif
#endif #endif
#if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
SET_INPUT(Z_PROBE_PIN); SET_INPUT(Z_PROBE_PIN);
#ifdef ENDSTOPPULLUP_ZPROBE #ifdef ENDSTOPPULLUP_ZPROBE
@ -1010,10 +1023,13 @@ void st_init() {
#endif #endif
#endif #endif
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
#define _DISABLE(axis) disable_## axis()
#define AXIS_INIT(axis, AXIS, PIN) \ #define AXIS_INIT(axis, AXIS, PIN) \
AXIS ##_STEP_INIT; \ _STEP_INIT(AXIS); \
AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \ _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
disable_## axis() _DISABLE(axis)
#define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E) #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
@ -1146,14 +1162,19 @@ void quickStop() {
// No other ISR should ever interrupt this! // No other ISR should ever interrupt this!
void babystep(const uint8_t axis, const bool direction) { void babystep(const uint8_t axis, const bool direction) {
#define _ENABLE(axis) enable_## axis()
#define _READ_DIR(AXIS) AXIS ##_DIR_READ
#define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
#define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
#define BABYSTEP_AXIS(axis, AXIS, INVERT) { \ #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
enable_## axis(); \ _ENABLE(axis); \
uint8_t old_pin = AXIS ##_DIR_READ; \ uint8_t old_pin = _READ_DIR(AXIS); \
AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \ _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \ _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
delayMicroseconds(2); \ delayMicroseconds(2); \
AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \ _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
AXIS ##_APPLY_DIR(old_pin, true); \ _APPLY_DIR(AXIS, old_pin); \
} }
switch(axis) { switch(axis) {
@ -1165,7 +1186,7 @@ void quickStop() {
case Y_AXIS: case Y_AXIS:
BABYSTEP_AXIS(y, Y, false); BABYSTEP_AXIS(y, Y, false);
break; break;
case Z_AXIS: { case Z_AXIS: {
#ifndef DELTA #ifndef DELTA
@ -1202,7 +1223,7 @@ void quickStop() {
#endif #endif
} break; } break;
default: break; default: break;
} }
} }
@ -1266,7 +1287,7 @@ void microstep_init() {
#if HAS_MICROSTEPS #if HAS_MICROSTEPS
pinMode(X_MS1_PIN,OUTPUT); pinMode(X_MS1_PIN,OUTPUT);
pinMode(X_MS2_PIN,OUTPUT); pinMode(X_MS2_PIN,OUTPUT);
pinMode(Y_MS1_PIN,OUTPUT); pinMode(Y_MS1_PIN,OUTPUT);
pinMode(Y_MS2_PIN,OUTPUT); pinMode(Y_MS2_PIN,OUTPUT);
pinMode(Z_MS1_PIN,OUTPUT); pinMode(Z_MS1_PIN,OUTPUT);

Loading…
Cancel
Save