|
|
@ -400,7 +400,6 @@ static uint8_t target_extruder; |
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
|
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); |
|
|
|
bool bed_leveling_in_progress = false; |
|
|
|
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s |
|
|
|
#elif defined(XY_PROBE_SPEED) |
|
|
|
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED) |
|
|
@ -3434,8 +3433,6 @@ inline void gcode_G28() { |
|
|
|
// Deploy the probe. Probe will raise if needed.
|
|
|
|
if (DEPLOY_PROBE()) return; |
|
|
|
|
|
|
|
bed_leveling_in_progress = true; |
|
|
|
|
|
|
|
float xProbe, yProbe, measured_z = 0; |
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_GRID) |
|
|
@ -3576,6 +3573,8 @@ inline void gcode_G28() { |
|
|
|
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_LINEAR) |
|
|
|
|
|
|
|
// For LINEAR leveling calculate matrix, print reports, correct the position
|
|
|
|
|
|
|
|
// solve lsq problem
|
|
|
|
double plane_equation_coefficients[3]; |
|
|
|
qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector); |
|
|
@ -3669,6 +3668,8 @@ inline void gcode_G28() { |
|
|
|
} |
|
|
|
} //do_topography_map
|
|
|
|
|
|
|
|
// For LINEAR and 3POINT leveling correct the current position
|
|
|
|
|
|
|
|
if (verbose_level > 0) |
|
|
|
planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:"); |
|
|
|
|
|
|
@ -3738,8 +3739,6 @@ inline void gcode_G28() { |
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29"); |
|
|
|
#endif |
|
|
|
|
|
|
|
bed_leveling_in_progress = false; |
|
|
|
|
|
|
|
report_current_position(); |
|
|
|
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER); |
|
|
@ -7638,6 +7637,48 @@ void ok_to_send() { |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_NONLINEAR) |
|
|
|
|
|
|
|
// Get the Z adjustment for non-linear bed leveling
|
|
|
|
float nonlinear_z_offset(float cartesian[XYZ]) { |
|
|
|
if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return 0; // G29 not done!
|
|
|
|
|
|
|
|
int half_x = (ABL_GRID_POINTS_X - 1) / 2, |
|
|
|
half_y = (ABL_GRID_POINTS_Y - 1) / 2; |
|
|
|
float hx2 = half_x - 0.001, hx1 = -hx2, |
|
|
|
hy2 = half_y - 0.001, hy1 = -hy2, |
|
|
|
grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])), |
|
|
|
grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS])); |
|
|
|
int floor_x = floor(grid_x), floor_y = floor(grid_y); |
|
|
|
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, |
|
|
|
z1 = bed_level_grid[floor_x + half_x][floor_y + half_y], |
|
|
|
z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1], |
|
|
|
z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y], |
|
|
|
z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1], |
|
|
|
left = (1 - ratio_y) * z1 + ratio_y * z2, |
|
|
|
right = (1 - ratio_y) * z3 + ratio_y * z4; |
|
|
|
|
|
|
|
/*
|
|
|
|
SERIAL_ECHOPAIR("grid_x=", grid_x); |
|
|
|
SERIAL_ECHOPAIR(" grid_y=", grid_y); |
|
|
|
SERIAL_ECHOPAIR(" floor_x=", floor_x); |
|
|
|
SERIAL_ECHOPAIR(" floor_y=", floor_y); |
|
|
|
SERIAL_ECHOPAIR(" ratio_x=", ratio_x); |
|
|
|
SERIAL_ECHOPAIR(" ratio_y=", ratio_y); |
|
|
|
SERIAL_ECHOPAIR(" z1=", z1); |
|
|
|
SERIAL_ECHOPAIR(" z2=", z2); |
|
|
|
SERIAL_ECHOPAIR(" z3=", z3); |
|
|
|
SERIAL_ECHOPAIR(" z4=", z4); |
|
|
|
SERIAL_ECHOPAIR(" left=", left); |
|
|
|
SERIAL_ECHOPAIR(" right=", right); |
|
|
|
SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right); |
|
|
|
//*/
|
|
|
|
|
|
|
|
return (1 - ratio_x) * left + ratio_x * right; |
|
|
|
} |
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_NONLINEAR
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) |
|
|
|
|
|
|
|
/**
|
|
|
@ -7828,50 +7869,6 @@ void ok_to_send() { |
|
|
|
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]); |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_NONLINEAR) |
|
|
|
|
|
|
|
// Adjust print surface height by linear interpolation over the bed_level array.
|
|
|
|
void adjust_delta(float cartesian[XYZ]) { |
|
|
|
if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
|
|
|
|
|
|
|
|
int half_x = (ABL_GRID_POINTS_X - 1) / 2, |
|
|
|
half_y = (ABL_GRID_POINTS_Y - 1) / 2; |
|
|
|
float hx2 = half_x - 0.001, hx1 = -hx2, |
|
|
|
hy2 = half_y - 0.001, hy1 = -hy2, |
|
|
|
grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])), |
|
|
|
grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS])); |
|
|
|
int floor_x = floor(grid_x), floor_y = floor(grid_y); |
|
|
|
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, |
|
|
|
z1 = bed_level_grid[floor_x + half_x][floor_y + half_y], |
|
|
|
z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1], |
|
|
|
z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y], |
|
|
|
z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1], |
|
|
|
left = (1 - ratio_y) * z1 + ratio_y * z2, |
|
|
|
right = (1 - ratio_y) * z3 + ratio_y * z4, |
|
|
|
offset = (1 - ratio_x) * left + ratio_x * right; |
|
|
|
|
|
|
|
delta[X_AXIS] += offset; |
|
|
|
delta[Y_AXIS] += offset; |
|
|
|
delta[Z_AXIS] += offset; |
|
|
|
|
|
|
|
/**
|
|
|
|
SERIAL_ECHOPAIR("grid_x=", grid_x); |
|
|
|
SERIAL_ECHOPAIR(" grid_y=", grid_y); |
|
|
|
SERIAL_ECHOPAIR(" floor_x=", floor_x); |
|
|
|
SERIAL_ECHOPAIR(" floor_y=", floor_y); |
|
|
|
SERIAL_ECHOPAIR(" ratio_x=", ratio_x); |
|
|
|
SERIAL_ECHOPAIR(" ratio_y=", ratio_y); |
|
|
|
SERIAL_ECHOPAIR(" z1=", z1); |
|
|
|
SERIAL_ECHOPAIR(" z2=", z2); |
|
|
|
SERIAL_ECHOPAIR(" z3=", z3); |
|
|
|
SERIAL_ECHOPAIR(" z4=", z4); |
|
|
|
SERIAL_ECHOPAIR(" left=", left); |
|
|
|
SERIAL_ECHOPAIR(" right=", right); |
|
|
|
SERIAL_ECHOLNPAIR(" offset=", offset); |
|
|
|
*/ |
|
|
|
} |
|
|
|
#endif // AUTO_BED_LEVELING_NONLINEAR
|
|
|
|
|
|
|
|
#endif // DELTA
|
|
|
|
|
|
|
|
/**
|
|
|
@ -8018,10 +8015,6 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { |
|
|
|
|
|
|
|
inverse_kinematics(logical); |
|
|
|
|
|
|
|
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR) |
|
|
|
if (!bed_leveling_in_progress) adjust_delta(logical); |
|
|
|
#endif |
|
|
|
|
|
|
|
//DEBUG_POS("prepare_kinematic_move_to", logical);
|
|
|
|
//DEBUG_POS("prepare_kinematic_move_to", delta);
|
|
|
|
|
|
|
@ -8272,9 +8265,6 @@ void prepare_move_to_destination() { |
|
|
|
|
|
|
|
#if IS_KINEMATIC |
|
|
|
inverse_kinematics(arc_target); |
|
|
|
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR) |
|
|
|
adjust_delta(arc_target); |
|
|
|
#endif |
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder); |
|
|
|
#else |
|
|
|
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder); |
|
|
@ -8284,9 +8274,6 @@ void prepare_move_to_destination() { |
|
|
|
// Ensure last segment arrives at target location.
|
|
|
|
#if IS_KINEMATIC |
|
|
|
inverse_kinematics(logical); |
|
|
|
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR) |
|
|
|
adjust_delta(logical); |
|
|
|
#endif |
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder); |
|
|
|
#else |
|
|
|
planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder); |
|
|
|