|
|
@ -331,15 +331,13 @@ float position_shift[3] = { 0 }; |
|
|
|
// Set by M206, M428, or menu item. Saved to EEPROM.
|
|
|
|
float home_offset[3] = { 0 }; |
|
|
|
|
|
|
|
#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS]) |
|
|
|
#define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS]) |
|
|
|
#define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS)) |
|
|
|
|
|
|
|
// Software Endstops. Default to configured limits.
|
|
|
|
float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; |
|
|
|
float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; |
|
|
|
#if ENABLED(DELTA) |
|
|
|
float delta_clip_start_height = Z_MAX_POS; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if FAN_COUNT > 0 |
|
|
|
int fanSpeeds[FAN_COUNT] = { 0 }; |
|
|
@ -463,6 +461,7 @@ static uint8_t target_extruder; |
|
|
|
#define TOWER_3 Z_AXIS |
|
|
|
|
|
|
|
float delta[3] = { 0 }; |
|
|
|
float cartesian_position[3] = { 0 }; |
|
|
|
#define SIN_60 0.8660254037844386 |
|
|
|
#define COS_60 0.5 |
|
|
|
float endstop_adj[3] = { 0 }; |
|
|
@ -481,12 +480,13 @@ static uint8_t target_extruder; |
|
|
|
float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1); |
|
|
|
float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2); |
|
|
|
float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3); |
|
|
|
//float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
|
|
|
|
float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; |
|
|
|
float delta_clip_start_height = Z_MAX_POS; |
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
|
int delta_grid_spacing[2] = { 0, 0 }; |
|
|
|
float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS]; |
|
|
|
#endif |
|
|
|
float delta_safe_distance_from_top(); |
|
|
|
#else |
|
|
|
static bool home_all_axis = true; |
|
|
|
#endif |
|
|
@ -564,6 +564,7 @@ void stop(); |
|
|
|
void get_available_commands(); |
|
|
|
void process_next_command(); |
|
|
|
void prepare_move_to_destination(); |
|
|
|
void set_current_from_steppers(); |
|
|
|
|
|
|
|
#if ENABLED(ARC_SUPPORT) |
|
|
|
void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise); |
|
|
@ -614,7 +615,7 @@ static void report_current_position(); |
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position); |
|
|
|
#endif |
|
|
|
calculate_delta(current_position); |
|
|
|
inverse_kinematics(current_position); |
|
|
|
planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); |
|
|
|
} |
|
|
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta() |
|
|
@ -1403,7 +1404,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); |
|
|
|
|
|
|
|
static float x_home_pos(int extruder) { |
|
|
|
if (extruder == 0) |
|
|
|
return base_home_pos(X_AXIS) + home_offset[X_AXIS]; |
|
|
|
return LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS); |
|
|
|
else |
|
|
|
/**
|
|
|
|
* In dual carriage mode the extruder offset provides an override of the |
|
|
@ -1438,7 +1439,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); |
|
|
|
* at the same positions relative to the machine. |
|
|
|
*/ |
|
|
|
static void update_software_endstops(AxisEnum axis) { |
|
|
|
float offs = home_offset[axis] + position_shift[axis]; |
|
|
|
float offs = LOGICAL_POSITION(0, axis); |
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) |
|
|
|
if (axis == X_AXIS) { |
|
|
@ -1509,7 +1510,7 @@ static void set_axis_is_at_home(AxisEnum axis) { |
|
|
|
if (active_extruder != 0) |
|
|
|
current_position[X_AXIS] = x_home_pos(active_extruder); |
|
|
|
else |
|
|
|
current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS]; |
|
|
|
current_position[X_AXIS] = LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS); |
|
|
|
update_software_endstops(X_AXIS); |
|
|
|
return; |
|
|
|
} |
|
|
@ -1520,7 +1521,8 @@ static void set_axis_is_at_home(AxisEnum axis) { |
|
|
|
if (axis == X_AXIS || axis == Y_AXIS) { |
|
|
|
|
|
|
|
float homeposition[3]; |
|
|
|
for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i); |
|
|
|
for (uint8_t i = X_AXIS; i <= Z_AXIS; i++) |
|
|
|
homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i); |
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
|
|
|
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
|
|
|
@ -1529,24 +1531,13 @@ static void set_axis_is_at_home(AxisEnum axis) { |
|
|
|
* Works out real Homeposition angles using inverse kinematics, |
|
|
|
* and calculates homing offset using forward kinematics |
|
|
|
*/ |
|
|
|
calculate_delta(homeposition); |
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
|
|
|
|
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
|
|
|
|
for (int i = 0; i < 2; i++) delta[i] -= home_offset[i]; |
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
|
|
|
|
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
|
|
|
|
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
|
|
|
|
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
inverse_kinematics(homeposition); |
|
|
|
forward_kinematics_SCARA(delta); |
|
|
|
|
|
|
|
calculate_SCARA_forward_Transform(delta); |
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
|
|
|
|
// SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
|
|
|
|
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
|
|
|
|
current_position[axis] = delta[axis]; |
|
|
|
current_position[axis] = LOGICAL_POSITION(delta[axis], axis); |
|
|
|
|
|
|
|
/**
|
|
|
|
* SCARA home positions are based on configuration since the actual |
|
|
@ -1558,7 +1549,7 @@ static void set_axis_is_at_home(AxisEnum axis) { |
|
|
|
else |
|
|
|
#endif |
|
|
|
{ |
|
|
|
current_position[axis] = base_home_pos(axis) + home_offset[axis]; |
|
|
|
current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis); |
|
|
|
update_software_endstops(axis); |
|
|
|
|
|
|
|
#if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP) |
|
|
@ -1659,7 +1650,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position, |
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination); |
|
|
|
#endif |
|
|
|
refresh_cmd_timeout(); |
|
|
|
calculate_delta(destination); |
|
|
|
inverse_kinematics(destination); |
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder); |
|
|
|
set_current_to_destination(); |
|
|
|
} |
|
|
@ -1787,7 +1778,7 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
|
SERIAL_ECHOLNPGM(")"); |
|
|
|
} |
|
|
|
#endif |
|
|
|
float z_dest = home_offset[Z_AXIS] + z_raise; |
|
|
|
float z_dest = LOGICAL_POSITION(z_raise, Z_AXIS); |
|
|
|
|
|
|
|
if (zprobe_zoffset < 0) |
|
|
|
z_dest -= zprobe_zoffset; |
|
|
@ -2088,9 +2079,9 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(DELTA) |
|
|
|
#define Z_FROM_STEPPERS() z_before + stepper.get_axis_position_mm(Z_AXIS) - z_mm |
|
|
|
#define SET_Z_FROM_STEPPERS() set_current_from_steppers() |
|
|
|
#else |
|
|
|
#define Z_FROM_STEPPERS() stepper.get_axis_position_mm(Z_AXIS) |
|
|
|
#define SET_Z_FROM_STEPPERS() current_position[Z_AXIS] = LOGICAL_POSITION(stepper.get_axis_position_mm(Z_AXIS), Z_AXIS) |
|
|
|
#endif |
|
|
|
|
|
|
|
// Do a single Z probe and return with current_position[Z_AXIS]
|
|
|
@ -2111,7 +2102,7 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
|
|
|
|
|
do_blocking_move_to_z(-(Z_MAX_LENGTH + 10), Z_PROBE_SPEED_FAST); |
|
|
|
endstops.hit_on_purpose(); |
|
|
|
current_position[Z_AXIS] = Z_FROM_STEPPERS(); |
|
|
|
SET_Z_FROM_STEPPERS(); |
|
|
|
SYNC_PLAN_POSITION_KINEMATIC(); |
|
|
|
|
|
|
|
// move up the retract distance
|
|
|
@ -2125,7 +2116,7 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
|
// move back down slowly to find bed
|
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] - home_bump_mm(Z_AXIS) * 2, Z_PROBE_SPEED_SLOW); |
|
|
|
endstops.hit_on_purpose(); |
|
|
|
current_position[Z_AXIS] = Z_FROM_STEPPERS(); |
|
|
|
SET_Z_FROM_STEPPERS(); |
|
|
|
SYNC_PLAN_POSITION_KINEMATIC(); |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
@ -2959,7 +2950,7 @@ inline void gcode_G28() { |
|
|
|
|
|
|
|
if (home_all_axis || homeX || homeY) { |
|
|
|
// Raise Z before homing any other axes and z is not already high enough (never lower z)
|
|
|
|
destination[Z_AXIS] = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING; |
|
|
|
destination[Z_AXIS] = LOGICAL_POSITION(MIN_Z_HEIGHT_FOR_HOMING, Z_AXIS); |
|
|
|
if (destination[Z_AXIS] > current_position[Z_AXIS]) { |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
@ -3214,12 +3205,12 @@ inline void gcode_G28() { |
|
|
|
; |
|
|
|
line_to_current_position(); |
|
|
|
|
|
|
|
current_position[X_AXIS] = x + home_offset[X_AXIS]; |
|
|
|
current_position[Y_AXIS] = y + home_offset[Y_AXIS]; |
|
|
|
current_position[X_AXIS] = LOGICAL_POSITION(x, X_AXIS); |
|
|
|
current_position[Y_AXIS] = LOGICAL_POSITION(y, Y_AXIS); |
|
|
|
line_to_current_position(); |
|
|
|
|
|
|
|
#if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0 |
|
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; |
|
|
|
current_position[Z_AXIS] = LOGICAL_POSITION(MESH_HOME_SEARCH_Z, Z_AXIS); |
|
|
|
line_to_current_position(); |
|
|
|
#endif |
|
|
|
|
|
|
@ -3637,14 +3628,14 @@ inline void gcode_G28() { |
|
|
|
#endif |
|
|
|
|
|
|
|
// Probe at 3 arbitrary points
|
|
|
|
float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS], |
|
|
|
ABL_PROBE_PT_1_Y + home_offset[Y_AXIS], |
|
|
|
float z_at_pt_1 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_1_X, X_AXIS), |
|
|
|
LOGICAL_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS), |
|
|
|
stow_probe_after_each, verbose_level), |
|
|
|
z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS], |
|
|
|
ABL_PROBE_PT_2_Y + home_offset[Y_AXIS], |
|
|
|
z_at_pt_2 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_2_X, X_AXIS), |
|
|
|
LOGICAL_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS), |
|
|
|
stow_probe_after_each, verbose_level), |
|
|
|
z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS], |
|
|
|
ABL_PROBE_PT_3_Y + home_offset[Y_AXIS], |
|
|
|
z_at_pt_3 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_3_X, X_AXIS), |
|
|
|
LOGICAL_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS), |
|
|
|
stow_probe_after_each, verbose_level); |
|
|
|
|
|
|
|
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); |
|
|
@ -5168,9 +5159,9 @@ static void report_current_position() { |
|
|
|
SERIAL_EOL; |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:"); |
|
|
|
SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]); |
|
|
|
SERIAL_PROTOCOL(delta[X_AXIS]); |
|
|
|
SERIAL_PROTOCOLPGM(" Psi+Theta (90):"); |
|
|
|
SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]); |
|
|
|
SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90); |
|
|
|
SERIAL_EOL; |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); |
|
|
@ -5880,7 +5871,7 @@ inline void gcode_M303() { |
|
|
|
//gcode_get_destination(); // For X Y Z E F
|
|
|
|
delta[X_AXIS] = delta_x; |
|
|
|
delta[Y_AXIS] = delta_y; |
|
|
|
calculate_SCARA_forward_Transform(delta); |
|
|
|
forward_kinematics_SCARA(delta); |
|
|
|
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS]; |
|
|
|
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS]; |
|
|
|
prepare_move_to_destination(); |
|
|
@ -6068,18 +6059,9 @@ inline void gcode_M400() { stepper.synchronize(); } |
|
|
|
|
|
|
|
void quickstop_stepper() { |
|
|
|
stepper.quick_stop(); |
|
|
|
#if DISABLED(DELTA) && DISABLED(SCARA) |
|
|
|
#if DISABLED(SCARA) |
|
|
|
stepper.synchronize(); |
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
|
vector_3 pos = planner.adjusted_position(); // values directly from steppers...
|
|
|
|
current_position[X_AXIS] = pos.x; |
|
|
|
current_position[Y_AXIS] = pos.y; |
|
|
|
current_position[Z_AXIS] = pos.z; |
|
|
|
#else |
|
|
|
current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS); |
|
|
|
current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS); |
|
|
|
current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); |
|
|
|
#endif |
|
|
|
set_current_from_steppers(); |
|
|
|
sync_plan_position(); // ...re-apply to planner position
|
|
|
|
#endif |
|
|
|
} |
|
|
@ -6146,7 +6128,7 @@ inline void gcode_M428() { |
|
|
|
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { |
|
|
|
if (axis_homed[i]) { |
|
|
|
float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0, |
|
|
|
diff = current_position[i] - base; |
|
|
|
diff = current_position[i] - LOGICAL_POSITION(base, i); |
|
|
|
if (diff > -20 && diff < 20) { |
|
|
|
set_home_offset((AxisEnum)i, home_offset[i] - diff); |
|
|
|
} |
|
|
@ -6278,7 +6260,7 @@ inline void gcode_M503() { |
|
|
|
|
|
|
|
// Define runplan for move axes
|
|
|
|
#if ENABLED(DELTA) |
|
|
|
#define RUNPLAN(RATE_MM_S) calculate_delta(destination); \ |
|
|
|
#define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \ |
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder); |
|
|
|
#else |
|
|
|
#define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S)); |
|
|
@ -6400,7 +6382,7 @@ inline void gcode_M503() { |
|
|
|
|
|
|
|
#if ENABLED(DELTA) |
|
|
|
// Move XYZ to starting position, then E
|
|
|
|
calculate_delta(lastpos); |
|
|
|
inverse_kinematics(lastpos); |
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); |
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); |
|
|
|
#else |
|
|
@ -7740,7 +7722,13 @@ void clamp_to_software_endstops(float target[3]) { |
|
|
|
delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3); |
|
|
|
} |
|
|
|
|
|
|
|
void calculate_delta(float cartesian[3]) { |
|
|
|
void inverse_kinematics(const float in_cartesian[3]) { |
|
|
|
|
|
|
|
const float cartesian[3] = { |
|
|
|
RAW_POSITION(in_cartesian[X_AXIS], X_AXIS), |
|
|
|
RAW_POSITION(in_cartesian[Y_AXIS], Y_AXIS), |
|
|
|
RAW_POSITION(in_cartesian[Z_AXIS], Z_AXIS) |
|
|
|
}; |
|
|
|
|
|
|
|
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1 |
|
|
|
- sq(delta_tower1_x - cartesian[X_AXIS]) |
|
|
@ -7766,14 +7754,97 @@ void clamp_to_software_endstops(float target[3]) { |
|
|
|
} |
|
|
|
|
|
|
|
float delta_safe_distance_from_top() { |
|
|
|
float cartesian[3] = { 0 }; |
|
|
|
calculate_delta(cartesian); |
|
|
|
float cartesian[3] = { |
|
|
|
LOGICAL_POSITION(0, X_AXIS), |
|
|
|
LOGICAL_POSITION(0, Y_AXIS), |
|
|
|
LOGICAL_POSITION(0, Z_AXIS) |
|
|
|
}; |
|
|
|
inverse_kinematics(cartesian); |
|
|
|
float distance = delta[TOWER_3]; |
|
|
|
cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS; |
|
|
|
calculate_delta(cartesian); |
|
|
|
cartesian[Y_AXIS] = LOGICAL_POSITION(DELTA_PRINTABLE_RADIUS, Y_AXIS); |
|
|
|
inverse_kinematics(cartesian); |
|
|
|
return abs(distance - delta[TOWER_3]); |
|
|
|
} |
|
|
|
|
|
|
|
void forward_kinematics_DELTA(float z1, float z2, float z3) { |
|
|
|
//As discussed in Wikipedia "Trilateration"
|
|
|
|
//we are establishing a new coordinate
|
|
|
|
//system in the plane of the three carriage points.
|
|
|
|
//This system will have the origin at tower1 and
|
|
|
|
//tower2 is on the x axis. tower3 is in the X-Y
|
|
|
|
//plane with a Z component of zero. We will define unit
|
|
|
|
//vectors in this coordinate system in our original
|
|
|
|
//coordinate system. Then when we calculate the
|
|
|
|
//Xnew, Ynew and Znew values, we can translate back into
|
|
|
|
//the original system by moving along those unit vectors
|
|
|
|
//by the corresponding values.
|
|
|
|
// https://en.wikipedia.org/wiki/Trilateration
|
|
|
|
|
|
|
|
// Variable names matched to Marlin, c-version
|
|
|
|
// and avoiding a vector library
|
|
|
|
// by Andreas Hardtung 2016-06-7
|
|
|
|
// based on a Java function from
|
|
|
|
// "Delta Robot Kinematics by Steve Graves" V3
|
|
|
|
|
|
|
|
// Result is in cartesian_position[].
|
|
|
|
|
|
|
|
//Create a vector in old coordinates along x axis of new coordinate
|
|
|
|
float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 }; |
|
|
|
|
|
|
|
//Get the Magnitude of vector.
|
|
|
|
float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] ); |
|
|
|
|
|
|
|
//Create unit vector by dividing by magnitude.
|
|
|
|
float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d }; |
|
|
|
|
|
|
|
//Now find vector from the origin of the new system to the third point.
|
|
|
|
float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 }; |
|
|
|
|
|
|
|
//Now use dot product to find the component of this vector on the X axis.
|
|
|
|
float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2]; |
|
|
|
|
|
|
|
//Now create a vector along the x axis that represents the x component of p13.
|
|
|
|
float iex[3] = { ex[0]*i, ex[1]*i, ex[2]*i }; |
|
|
|
|
|
|
|
//Now subtract the X component away from the original vector leaving only the Y component. We use the
|
|
|
|
//variable that will be the unit vector after we scale it.
|
|
|
|
float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]}; |
|
|
|
|
|
|
|
//The magnitude of Y component
|
|
|
|
float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2])); |
|
|
|
|
|
|
|
//Now make vector a unit vector
|
|
|
|
ey[0] /= j; ey[1] /= j; ey[2] /= j; |
|
|
|
|
|
|
|
//The cross product of the unit x and y is the unit z
|
|
|
|
//float[] ez = vectorCrossProd(ex, ey);
|
|
|
|
float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] }; |
|
|
|
|
|
|
|
//Now we have the d, i and j values defined in Wikipedia.
|
|
|
|
//We can plug them into the equations defined in
|
|
|
|
//Wikipedia for Xnew, Ynew and Znew
|
|
|
|
float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2); |
|
|
|
float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j; |
|
|
|
float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew); |
|
|
|
|
|
|
|
//Now we can start from the origin in the old coords and
|
|
|
|
//add vectors in the old coords that represent the
|
|
|
|
//Xnew, Ynew and Znew to find the point in the old system
|
|
|
|
cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew; |
|
|
|
cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew; |
|
|
|
cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew; |
|
|
|
}; |
|
|
|
|
|
|
|
void forward_kinematics_DELTA(float point[3]) { |
|
|
|
forward_kinematics_DELTA(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]); |
|
|
|
} |
|
|
|
|
|
|
|
void set_cartesian_from_steppers() { |
|
|
|
forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS), |
|
|
|
stepper.get_axis_position_mm(Y_AXIS), |
|
|
|
stepper.get_axis_position_mm(Z_AXIS)); |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
|
|
|
|
|
// Adjust print surface height by linear interpolation over the bed_level array.
|
|
|
@ -7782,8 +7853,8 @@ void clamp_to_software_endstops(float target[3]) { |
|
|
|
|
|
|
|
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; |
|
|
|
float h1 = 0.001 - half, h2 = half - 0.001, |
|
|
|
grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])), |
|
|
|
grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1])); |
|
|
|
grid_x = max(h1, min(h2, RAW_POSITION(cartesian[X_AXIS], X_AXIS) / delta_grid_spacing[0])), |
|
|
|
grid_y = max(h1, min(h2, RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) / delta_grid_spacing[1])); |
|
|
|
int floor_x = floor(grid_x), floor_y = floor(grid_y); |
|
|
|
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, |
|
|
|
z1 = bed_level[floor_x + half][floor_y + half], |
|
|
@ -7818,6 +7889,27 @@ void clamp_to_software_endstops(float target[3]) { |
|
|
|
|
|
|
|
#endif // DELTA
|
|
|
|
|
|
|
|
void set_current_from_steppers() { |
|
|
|
#if ENABLED(DELTA) |
|
|
|
set_cartesian_from_steppers(); |
|
|
|
current_position[X_AXIS] = cartesian_position[X_AXIS]; |
|
|
|
current_position[Y_AXIS] = cartesian_position[Y_AXIS]; |
|
|
|
current_position[Z_AXIS] = cartesian_position[Z_AXIS]; |
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
|
vector_3 pos = planner.adjusted_position(); // values directly from steppers...
|
|
|
|
current_position[X_AXIS] = pos.x; |
|
|
|
current_position[Y_AXIS] = pos.y; |
|
|
|
current_position[Z_AXIS] = pos.z; |
|
|
|
#else |
|
|
|
current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS); // CORE handled transparently
|
|
|
|
current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS); |
|
|
|
current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); |
|
|
|
#endif |
|
|
|
|
|
|
|
for (uint8_t i = X_AXIS; i <= Z_AXIS; i++) |
|
|
|
current_position[i] += LOGICAL_POSITION(0, i); |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
|
|
|
|
|
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
|
|
|
@ -7846,14 +7938,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ |
|
|
|
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); |
|
|
|
if (cx2 != cx1 && TEST(x_splits, gcx)) { |
|
|
|
memcpy(end, destination, sizeof(end)); |
|
|
|
destination[X_AXIS] = mbl.get_probe_x(gcx) + home_offset[X_AXIS] + position_shift[X_AXIS]; |
|
|
|
destination[X_AXIS] = LOGICAL_POSITION(mbl.get_probe_x(gcx), X_AXIS); |
|
|
|
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); |
|
|
|
destination[Y_AXIS] = MBL_SEGMENT_END(Y); |
|
|
|
CBI(x_splits, gcx); |
|
|
|
} |
|
|
|
else if (cy2 != cy1 && TEST(y_splits, gcy)) { |
|
|
|
memcpy(end, destination, sizeof(end)); |
|
|
|
destination[Y_AXIS] = mbl.get_probe_y(gcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS]; |
|
|
|
destination[Y_AXIS] = LOGICAL_POSITION(mbl.get_probe_y(gcy), Y_AXIS); |
|
|
|
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); |
|
|
|
destination[X_AXIS] = MBL_SEGMENT_END(X); |
|
|
|
CBI(y_splits, gcy); |
|
|
@ -7879,7 +7971,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ |
|
|
|
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA) |
|
|
|
|
|
|
|
inline bool prepare_delta_move_to(float target[NUM_AXIS]) { |
|
|
|
inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) { |
|
|
|
float difference[NUM_AXIS]; |
|
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i]; |
|
|
|
|
|
|
@ -7902,14 +7994,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ |
|
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) |
|
|
|
target[i] = current_position[i] + difference[i] * fraction; |
|
|
|
|
|
|
|
calculate_delta(target); |
|
|
|
inverse_kinematics(target); |
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
|
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
|
if (!bed_leveling_in_progress) adjust_delta(target); |
|
|
|
#endif |
|
|
|
|
|
|
|
//DEBUG_POS("prepare_delta_move_to", target);
|
|
|
|
//DEBUG_POS("prepare_delta_move_to", delta);
|
|
|
|
//DEBUG_POS("prepare_kinematic_move_to", target);
|
|
|
|
//DEBUG_POS("prepare_kinematic_move_to", delta);
|
|
|
|
|
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder); |
|
|
|
} |
|
|
@ -7918,10 +8010,6 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ |
|
|
|
|
|
|
|
#endif // DELTA || SCARA
|
|
|
|
|
|
|
|
#if ENABLED(SCARA) |
|
|
|
inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); } |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) |
|
|
|
|
|
|
|
inline bool prepare_move_to_destination_dualx() { |
|
|
@ -8020,10 +8108,8 @@ void prepare_move_to_destination() { |
|
|
|
prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(SCARA) |
|
|
|
if (!prepare_scara_move_to(destination)) return; |
|
|
|
#elif ENABLED(DELTA) |
|
|
|
if (!prepare_delta_move_to(destination)) return; |
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA) |
|
|
|
if (!prepare_kinematic_move_to(destination)) return; |
|
|
|
#else |
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) |
|
|
|
if (!prepare_move_to_destination_dualx()) return; |
|
|
@ -8159,8 +8245,8 @@ void prepare_move_to_destination() { |
|
|
|
clamp_to_software_endstops(arc_target); |
|
|
|
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA) |
|
|
|
calculate_delta(arc_target); |
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
|
inverse_kinematics(arc_target); |
|
|
|
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
|
adjust_delta(arc_target); |
|
|
|
#endif |
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder); |
|
|
@ -8171,8 +8257,8 @@ void prepare_move_to_destination() { |
|
|
|
|
|
|
|
// Ensure last segment arrives at target location.
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA) |
|
|
|
calculate_delta(target); |
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
|
inverse_kinematics(target); |
|
|
|
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
|
adjust_delta(target); |
|
|
|
#endif |
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder); |
|
|
@ -8239,7 +8325,7 @@ void prepare_move_to_destination() { |
|
|
|
|
|
|
|
#if ENABLED(SCARA) |
|
|
|
|
|
|
|
void calculate_SCARA_forward_Transform(float f_scara[3]) { |
|
|
|
void forward_kinematics_SCARA(float f_scara[3]) { |
|
|
|
// Perform forward kinematics, and place results in delta[3]
|
|
|
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
|
|
|
|
|
|
@ -8265,16 +8351,17 @@ void prepare_move_to_destination() { |
|
|
|
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
} |
|
|
|
|
|
|
|
void calculate_delta(float cartesian[3]) { |
|
|
|
//reverse kinematics.
|
|
|
|
// Perform reversed kinematics, and place results in delta[3]
|
|
|
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
|
|
|
void inverse_kinematics(const float cartesian[3]) { |
|
|
|
// Inverse kinematics.
|
|
|
|
// Perform SCARA IK and place results in delta[3].
|
|
|
|
// The maths and first version were done by QHARLEY.
|
|
|
|
// Integrated, tweaked by Joachim Cerny in June 2014.
|
|
|
|
|
|
|
|
float SCARA_pos[2]; |
|
|
|
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; |
|
|
|
|
|
|
|
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
|
|
|
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
|
|
|
SCARA_pos[X_AXIS] = RAW_POSITION(cartesian[X_AXIS], X_AXIS) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
|
|
|
SCARA_pos[Y_AXIS] = RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
|
|
|
|
|
|
|
#if (Linkage_1 == Linkage_2) |
|
|
|
SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1; |
|
|
@ -8292,7 +8379,7 @@ void prepare_move_to_destination() { |
|
|
|
|
|
|
|
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
|
|
|
|
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
|
|
|
|
delta[Z_AXIS] = cartesian[Z_AXIS]; |
|
|
|
delta[Z_AXIS] = RAW_POSITION(cartesian[Z_AXIS], Z_AXIS); |
|
|
|
|
|
|
|
/**
|
|
|
|
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); |
|
|
|