diff --git a/.travis.yml b/.travis.yml index 8d1b0ef56f..75dc169261 100644 --- a/.travis.yml +++ b/.travis.yml @@ -99,9 +99,9 @@ script: - opt_enable FIX_MOUNTED_PROBE Z_SAFE_HOMING - build_marlin # - # ...with AUTO_BED_LEVELING_FEATURE & DEBUG_LEVELING_FEATURE + # ...with AUTO_BED_LEVELING_FEATURE, Z_MIN_PROBE_REPEATABILITY_TEST, & DEBUG_LEVELING_FEATURE # - - opt_enable AUTO_BED_LEVELING_FEATURE DEBUG_LEVELING_FEATURE + - opt_enable AUTO_BED_LEVELING_FEATURE Z_MIN_PROBE_REPEATABILITY_TEST DEBUG_LEVELING_FEATURE - build_marlin # # Test a Sled Z Probe @@ -365,6 +365,7 @@ script: # SCARA Config # - use_example_configs SCARA + - opt_enable AUTO_BED_LEVELING_FEATURE FIX_MOUNTED_PROBE USE_ZMIN_PLUG - build_marlin # # tvrrug Config need to check board type for sanguino atmega644p diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 4a07513b0a..4285318852 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -315,17 +315,16 @@ float code_value_temp_diff(); extern float delta_diagonal_rod_trim_tower_1; extern float delta_diagonal_rod_trim_tower_2; extern float delta_diagonal_rod_trim_tower_3; - void calculate_delta(float cartesian[3]); + void inverse_kinematics(const float cartesian[3]); void recalc_delta_settings(float radius, float diagonal_rod); - float delta_safe_distance_from_top(); #if ENABLED(AUTO_BED_LEVELING_FEATURE) extern int delta_grid_spacing[2]; void adjust_delta(float cartesian[3]); #endif #elif ENABLED(SCARA) extern float axis_scaling[3]; // Build size scaling - void calculate_delta(float cartesian[3]); - void calculate_SCARA_forward_Transform(float f_scara[3]); + void inverse_kinematics(const float cartesian[3]); + void forward_kinematics_SCARA(float f_scara[3]); #endif #if ENABLED(Z_DUAL_ENDSTOPS) diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index f880434756..5d8f1dcba2 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -331,15 +331,13 @@ float position_shift[3] = { 0 }; // Set by M206, M428, or menu item. Saved to EEPROM. float home_offset[3] = { 0 }; +#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS]) #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS]) #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS)) // Software Endstops. Default to configured limits. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; -#if ENABLED(DELTA) - float delta_clip_start_height = Z_MAX_POS; -#endif #if FAN_COUNT > 0 int fanSpeeds[FAN_COUNT] = { 0 }; @@ -463,6 +461,7 @@ static uint8_t target_extruder; #define TOWER_3 Z_AXIS float delta[3] = { 0 }; + float cartesian_position[3] = { 0 }; #define SIN_60 0.8660254037844386 #define COS_60 0.5 float endstop_adj[3] = { 0 }; @@ -481,12 +480,13 @@ static uint8_t target_extruder; float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1); float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2); float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3); - //float delta_diagonal_rod_2 = sq(delta_diagonal_rod); float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; + float delta_clip_start_height = Z_MAX_POS; #if ENABLED(AUTO_BED_LEVELING_FEATURE) int delta_grid_spacing[2] = { 0, 0 }; float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS]; #endif + float delta_safe_distance_from_top(); #else static bool home_all_axis = true; #endif @@ -564,6 +564,7 @@ void stop(); void get_available_commands(); void process_next_command(); void prepare_move_to_destination(); +void set_current_from_steppers(); #if ENABLED(ARC_SUPPORT) void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise); @@ -614,7 +615,7 @@ static void report_current_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position); #endif - calculate_delta(current_position); + inverse_kinematics(current_position); planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); } #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta() @@ -1403,7 +1404,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); static float x_home_pos(int extruder) { if (extruder == 0) - return base_home_pos(X_AXIS) + home_offset[X_AXIS]; + return LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS); else /** * In dual carriage mode the extruder offset provides an override of the @@ -1438,7 +1439,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); * at the same positions relative to the machine. */ static void update_software_endstops(AxisEnum axis) { - float offs = home_offset[axis] + position_shift[axis]; + float offs = LOGICAL_POSITION(0, axis); #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS) { @@ -1509,7 +1510,7 @@ static void set_axis_is_at_home(AxisEnum axis) { if (active_extruder != 0) current_position[X_AXIS] = x_home_pos(active_extruder); else - current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS]; + current_position[X_AXIS] = LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS); update_software_endstops(X_AXIS); return; } @@ -1520,7 +1521,8 @@ static void set_axis_is_at_home(AxisEnum axis) { if (axis == X_AXIS || axis == Y_AXIS) { float homeposition[3]; - for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i); + for (uint8_t i = X_AXIS; i <= Z_AXIS; i++) + homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i); // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]); // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]); @@ -1529,24 +1531,13 @@ static void set_axis_is_at_home(AxisEnum axis) { * Works out real Homeposition angles using inverse kinematics, * and calculates homing offset using forward kinematics */ - calculate_delta(homeposition); - - // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]); - // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); - - for (int i = 0; i < 2; i++) delta[i] -= home_offset[i]; - - // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]); - // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]); - // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]); - // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); - - calculate_SCARA_forward_Transform(delta); + inverse_kinematics(homeposition); + forward_kinematics_SCARA(delta); - // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]); + // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]); // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]); - current_position[axis] = delta[axis]; + current_position[axis] = LOGICAL_POSITION(delta[axis], axis); /** * SCARA home positions are based on configuration since the actual @@ -1558,7 +1549,7 @@ static void set_axis_is_at_home(AxisEnum axis) { else #endif { - current_position[axis] = base_home_pos(axis) + home_offset[axis]; + current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis); update_software_endstops(axis); #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP) @@ -1659,7 +1650,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position, if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination); #endif refresh_cmd_timeout(); - calculate_delta(destination); + inverse_kinematics(destination); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder); set_current_to_destination(); } @@ -1787,7 +1778,7 @@ static void clean_up_after_endstop_or_probe_move() { SERIAL_ECHOLNPGM(")"); } #endif - float z_dest = home_offset[Z_AXIS] + z_raise; + float z_dest = LOGICAL_POSITION(z_raise, Z_AXIS); if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset; @@ -2088,9 +2079,9 @@ static void clean_up_after_endstop_or_probe_move() { } #if ENABLED(DELTA) - #define Z_FROM_STEPPERS() z_before + stepper.get_axis_position_mm(Z_AXIS) - z_mm + #define SET_Z_FROM_STEPPERS() set_current_from_steppers() #else - #define Z_FROM_STEPPERS() stepper.get_axis_position_mm(Z_AXIS) + #define SET_Z_FROM_STEPPERS() current_position[Z_AXIS] = LOGICAL_POSITION(stepper.get_axis_position_mm(Z_AXIS), Z_AXIS) #endif // Do a single Z probe and return with current_position[Z_AXIS] @@ -2111,7 +2102,7 @@ static void clean_up_after_endstop_or_probe_move() { do_blocking_move_to_z(-(Z_MAX_LENGTH + 10), Z_PROBE_SPEED_FAST); endstops.hit_on_purpose(); - current_position[Z_AXIS] = Z_FROM_STEPPERS(); + SET_Z_FROM_STEPPERS(); SYNC_PLAN_POSITION_KINEMATIC(); // move up the retract distance @@ -2125,7 +2116,7 @@ static void clean_up_after_endstop_or_probe_move() { // move back down slowly to find bed do_blocking_move_to_z(current_position[Z_AXIS] - home_bump_mm(Z_AXIS) * 2, Z_PROBE_SPEED_SLOW); endstops.hit_on_purpose(); - current_position[Z_AXIS] = Z_FROM_STEPPERS(); + SET_Z_FROM_STEPPERS(); SYNC_PLAN_POSITION_KINEMATIC(); #if ENABLED(DEBUG_LEVELING_FEATURE) @@ -2959,7 +2950,7 @@ inline void gcode_G28() { if (home_all_axis || homeX || homeY) { // Raise Z before homing any other axes and z is not already high enough (never lower z) - destination[Z_AXIS] = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING; + destination[Z_AXIS] = LOGICAL_POSITION(MIN_Z_HEIGHT_FOR_HOMING, Z_AXIS); if (destination[Z_AXIS] > current_position[Z_AXIS]) { #if ENABLED(DEBUG_LEVELING_FEATURE) @@ -3214,12 +3205,12 @@ inline void gcode_G28() { ; line_to_current_position(); - current_position[X_AXIS] = x + home_offset[X_AXIS]; - current_position[Y_AXIS] = y + home_offset[Y_AXIS]; + current_position[X_AXIS] = LOGICAL_POSITION(x, X_AXIS); + current_position[Y_AXIS] = LOGICAL_POSITION(y, Y_AXIS); line_to_current_position(); #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0 - current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; + current_position[Z_AXIS] = LOGICAL_POSITION(MESH_HOME_SEARCH_Z, Z_AXIS); line_to_current_position(); #endif @@ -3637,14 +3628,14 @@ inline void gcode_G28() { #endif // Probe at 3 arbitrary points - float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS], - ABL_PROBE_PT_1_Y + home_offset[Y_AXIS], + float z_at_pt_1 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_1_X, X_AXIS), + LOGICAL_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS), stow_probe_after_each, verbose_level), - z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS], - ABL_PROBE_PT_2_Y + home_offset[Y_AXIS], + z_at_pt_2 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_2_X, X_AXIS), + LOGICAL_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS), stow_probe_after_each, verbose_level), - z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS], - ABL_PROBE_PT_3_Y + home_offset[Y_AXIS], + z_at_pt_3 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_3_X, X_AXIS), + LOGICAL_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS), stow_probe_after_each, verbose_level); if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); @@ -5168,9 +5159,9 @@ static void report_current_position() { SERIAL_EOL; SERIAL_PROTOCOLPGM("SCARA Cal - Theta:"); - SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]); + SERIAL_PROTOCOL(delta[X_AXIS]); SERIAL_PROTOCOLPGM(" Psi+Theta (90):"); - SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]); + SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90); SERIAL_EOL; SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); @@ -5880,7 +5871,7 @@ inline void gcode_M303() { //gcode_get_destination(); // For X Y Z E F delta[X_AXIS] = delta_x; delta[Y_AXIS] = delta_y; - calculate_SCARA_forward_Transform(delta); + forward_kinematics_SCARA(delta); destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS]; destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS]; prepare_move_to_destination(); @@ -6068,18 +6059,9 @@ inline void gcode_M400() { stepper.synchronize(); } void quickstop_stepper() { stepper.quick_stop(); - #if DISABLED(DELTA) && DISABLED(SCARA) + #if DISABLED(SCARA) stepper.synchronize(); - #if ENABLED(AUTO_BED_LEVELING_FEATURE) - vector_3 pos = planner.adjusted_position(); // values directly from steppers... - current_position[X_AXIS] = pos.x; - current_position[Y_AXIS] = pos.y; - current_position[Z_AXIS] = pos.z; - #else - current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS); - current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS); - current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); - #endif + set_current_from_steppers(); sync_plan_position(); // ...re-apply to planner position #endif } @@ -6146,7 +6128,7 @@ inline void gcode_M428() { for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { if (axis_homed[i]) { float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0, - diff = current_position[i] - base; + diff = current_position[i] - LOGICAL_POSITION(base, i); if (diff > -20 && diff < 20) { set_home_offset((AxisEnum)i, home_offset[i] - diff); } @@ -6278,7 +6260,7 @@ inline void gcode_M503() { // Define runplan for move axes #if ENABLED(DELTA) - #define RUNPLAN(RATE_MM_S) calculate_delta(destination); \ + #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \ planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder); #else #define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S)); @@ -6400,7 +6382,7 @@ inline void gcode_M503() { #if ENABLED(DELTA) // Move XYZ to starting position, then E - calculate_delta(lastpos); + inverse_kinematics(lastpos); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); #else @@ -7740,7 +7722,13 @@ void clamp_to_software_endstops(float target[3]) { delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3); } - void calculate_delta(float cartesian[3]) { + void inverse_kinematics(const float in_cartesian[3]) { + + const float cartesian[3] = { + RAW_POSITION(in_cartesian[X_AXIS], X_AXIS), + RAW_POSITION(in_cartesian[Y_AXIS], Y_AXIS), + RAW_POSITION(in_cartesian[Z_AXIS], Z_AXIS) + }; delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1 - sq(delta_tower1_x - cartesian[X_AXIS]) @@ -7766,14 +7754,97 @@ void clamp_to_software_endstops(float target[3]) { } float delta_safe_distance_from_top() { - float cartesian[3] = { 0 }; - calculate_delta(cartesian); + float cartesian[3] = { + LOGICAL_POSITION(0, X_AXIS), + LOGICAL_POSITION(0, Y_AXIS), + LOGICAL_POSITION(0, Z_AXIS) + }; + inverse_kinematics(cartesian); float distance = delta[TOWER_3]; - cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS; - calculate_delta(cartesian); + cartesian[Y_AXIS] = LOGICAL_POSITION(DELTA_PRINTABLE_RADIUS, Y_AXIS); + inverse_kinematics(cartesian); return abs(distance - delta[TOWER_3]); } + void forward_kinematics_DELTA(float z1, float z2, float z3) { + //As discussed in Wikipedia "Trilateration" + //we are establishing a new coordinate + //system in the plane of the three carriage points. + //This system will have the origin at tower1 and + //tower2 is on the x axis. tower3 is in the X-Y + //plane with a Z component of zero. We will define unit + //vectors in this coordinate system in our original + //coordinate system. Then when we calculate the + //Xnew, Ynew and Znew values, we can translate back into + //the original system by moving along those unit vectors + //by the corresponding values. + // https://en.wikipedia.org/wiki/Trilateration + + // Variable names matched to Marlin, c-version + // and avoiding a vector library + // by Andreas Hardtung 2016-06-7 + // based on a Java function from + // "Delta Robot Kinematics by Steve Graves" V3 + + // Result is in cartesian_position[]. + + //Create a vector in old coordinates along x axis of new coordinate + float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 }; + + //Get the Magnitude of vector. + float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] ); + + //Create unit vector by dividing by magnitude. + float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d }; + + //Now find vector from the origin of the new system to the third point. + float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 }; + + //Now use dot product to find the component of this vector on the X axis. + float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2]; + + //Now create a vector along the x axis that represents the x component of p13. + float iex[3] = { ex[0]*i, ex[1]*i, ex[2]*i }; + + //Now subtract the X component away from the original vector leaving only the Y component. We use the + //variable that will be the unit vector after we scale it. + float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]}; + + //The magnitude of Y component + float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2])); + + //Now make vector a unit vector + ey[0] /= j; ey[1] /= j; ey[2] /= j; + + //The cross product of the unit x and y is the unit z + //float[] ez = vectorCrossProd(ex, ey); + float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] }; + + //Now we have the d, i and j values defined in Wikipedia. + //We can plug them into the equations defined in + //Wikipedia for Xnew, Ynew and Znew + float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2); + float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j; + float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew); + + //Now we can start from the origin in the old coords and + //add vectors in the old coords that represent the + //Xnew, Ynew and Znew to find the point in the old system + cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew; + cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew; + cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew; + }; + + void forward_kinematics_DELTA(float point[3]) { + forward_kinematics_DELTA(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]); + } + + void set_cartesian_from_steppers() { + forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS), + stepper.get_axis_position_mm(Y_AXIS), + stepper.get_axis_position_mm(Z_AXIS)); + } + #if ENABLED(AUTO_BED_LEVELING_FEATURE) // Adjust print surface height by linear interpolation over the bed_level array. @@ -7782,8 +7853,8 @@ void clamp_to_software_endstops(float target[3]) { int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; float h1 = 0.001 - half, h2 = half - 0.001, - grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])), - grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1])); + grid_x = max(h1, min(h2, RAW_POSITION(cartesian[X_AXIS], X_AXIS) / delta_grid_spacing[0])), + grid_y = max(h1, min(h2, RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) / delta_grid_spacing[1])); int floor_x = floor(grid_x), floor_y = floor(grid_y); float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, z1 = bed_level[floor_x + half][floor_y + half], @@ -7818,6 +7889,27 @@ void clamp_to_software_endstops(float target[3]) { #endif // DELTA +void set_current_from_steppers() { + #if ENABLED(DELTA) + set_cartesian_from_steppers(); + current_position[X_AXIS] = cartesian_position[X_AXIS]; + current_position[Y_AXIS] = cartesian_position[Y_AXIS]; + current_position[Z_AXIS] = cartesian_position[Z_AXIS]; + #elif ENABLED(AUTO_BED_LEVELING_FEATURE) + vector_3 pos = planner.adjusted_position(); // values directly from steppers... + current_position[X_AXIS] = pos.x; + current_position[Y_AXIS] = pos.y; + current_position[Z_AXIS] = pos.z; + #else + current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS); // CORE handled transparently + current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS); + current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); + #endif + + for (uint8_t i = X_AXIS; i <= Z_AXIS; i++) + current_position[i] += LOGICAL_POSITION(0, i); +} + #if ENABLED(MESH_BED_LEVELING) // This function is used to split lines on mesh borders so each segment is only part of one mesh area @@ -7846,14 +7938,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); if (cx2 != cx1 && TEST(x_splits, gcx)) { memcpy(end, destination, sizeof(end)); - destination[X_AXIS] = mbl.get_probe_x(gcx) + home_offset[X_AXIS] + position_shift[X_AXIS]; + destination[X_AXIS] = LOGICAL_POSITION(mbl.get_probe_x(gcx), X_AXIS); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); destination[Y_AXIS] = MBL_SEGMENT_END(Y); CBI(x_splits, gcx); } else if (cy2 != cy1 && TEST(y_splits, gcy)) { memcpy(end, destination, sizeof(end)); - destination[Y_AXIS] = mbl.get_probe_y(gcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS]; + destination[Y_AXIS] = LOGICAL_POSITION(mbl.get_probe_y(gcy), Y_AXIS); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); destination[X_AXIS] = MBL_SEGMENT_END(X); CBI(y_splits, gcy); @@ -7879,7 +7971,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ #if ENABLED(DELTA) || ENABLED(SCARA) - inline bool prepare_delta_move_to(float target[NUM_AXIS]) { + inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) { float difference[NUM_AXIS]; for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i]; @@ -7902,14 +7994,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ for (int8_t i = 0; i < NUM_AXIS; i++) target[i] = current_position[i] + difference[i] * fraction; - calculate_delta(target); + inverse_kinematics(target); - #if ENABLED(AUTO_BED_LEVELING_FEATURE) + #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE) if (!bed_leveling_in_progress) adjust_delta(target); #endif - //DEBUG_POS("prepare_delta_move_to", target); - //DEBUG_POS("prepare_delta_move_to", delta); + //DEBUG_POS("prepare_kinematic_move_to", target); + //DEBUG_POS("prepare_kinematic_move_to", delta); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder); } @@ -7918,10 +8010,6 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ #endif // DELTA || SCARA -#if ENABLED(SCARA) - inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); } -#endif - #if ENABLED(DUAL_X_CARRIAGE) inline bool prepare_move_to_destination_dualx() { @@ -8020,10 +8108,8 @@ void prepare_move_to_destination() { prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]); #endif - #if ENABLED(SCARA) - if (!prepare_scara_move_to(destination)) return; - #elif ENABLED(DELTA) - if (!prepare_delta_move_to(destination)) return; + #if ENABLED(DELTA) || ENABLED(SCARA) + if (!prepare_kinematic_move_to(destination)) return; #else #if ENABLED(DUAL_X_CARRIAGE) if (!prepare_move_to_destination_dualx()) return; @@ -8159,8 +8245,8 @@ void prepare_move_to_destination() { clamp_to_software_endstops(arc_target); #if ENABLED(DELTA) || ENABLED(SCARA) - calculate_delta(arc_target); - #if ENABLED(AUTO_BED_LEVELING_FEATURE) + inverse_kinematics(arc_target); + #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE) adjust_delta(arc_target); #endif planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder); @@ -8171,8 +8257,8 @@ void prepare_move_to_destination() { // Ensure last segment arrives at target location. #if ENABLED(DELTA) || ENABLED(SCARA) - calculate_delta(target); - #if ENABLED(AUTO_BED_LEVELING_FEATURE) + inverse_kinematics(target); + #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE) adjust_delta(target); #endif planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder); @@ -8239,7 +8325,7 @@ void prepare_move_to_destination() { #if ENABLED(SCARA) - void calculate_SCARA_forward_Transform(float f_scara[3]) { + void forward_kinematics_SCARA(float f_scara[3]) { // Perform forward kinematics, and place results in delta[3] // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 @@ -8265,16 +8351,17 @@ void prepare_move_to_destination() { //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); } - void calculate_delta(float cartesian[3]) { - //reverse kinematics. - // Perform reversed kinematics, and place results in delta[3] - // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 + void inverse_kinematics(const float cartesian[3]) { + // Inverse kinematics. + // Perform SCARA IK and place results in delta[3]. + // The maths and first version were done by QHARLEY. + // Integrated, tweaked by Joachim Cerny in June 2014. float SCARA_pos[2]; static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; - SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y - SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. + SCARA_pos[X_AXIS] = RAW_POSITION(cartesian[X_AXIS], X_AXIS) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y + SCARA_pos[Y_AXIS] = RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. #if (Linkage_1 == Linkage_2) SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1; @@ -8292,7 +8379,7 @@ void prepare_move_to_destination() { delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor) - delta[Z_AXIS] = cartesian[Z_AXIS]; + delta[Z_AXIS] = RAW_POSITION(cartesian[Z_AXIS], Z_AXIS); /** SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); diff --git a/Marlin/planner_bezier.cpp b/Marlin/planner_bezier.cpp index ad3319a498..6ca7afd1d6 100644 --- a/Marlin/planner_bezier.cpp +++ b/Marlin/planner_bezier.cpp @@ -189,8 +189,8 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS] clamp_to_software_endstops(bez_target); #if ENABLED(DELTA) || ENABLED(SCARA) - calculate_delta(bez_target); - #if ENABLED(AUTO_BED_LEVELING_FEATURE) + inverse_kinematics(bez_target); + #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE) adjust_delta(bez_target); #endif planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder); diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index 7264f7b404..17d41cd3d8 100755 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -564,7 +564,7 @@ void kill_screen(const char* lcd_msg) { inline void line_to_current(AxisEnum axis) { #if ENABLED(DELTA) - calculate_delta(current_position); + inverse_kinematics(current_position); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder); #else // !DELTA planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder); @@ -1301,7 +1301,7 @@ void kill_screen(const char* lcd_msg) { inline void manage_manual_move() { if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) { #if ENABLED(DELTA) - calculate_delta(current_position); + inverse_kinematics(current_position); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index); #else planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);