diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 90a7b6aa2b..30ffb1162f 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -3019,12 +3019,12 @@ static void homeaxis(const AxisEnum axis) { // so here it re-homes each tower in turn. // Delta homing treats the axes as normal linear axes. - // retrace by the amount specified in endstop_adj - if (endstop_adj[axis] * Z_HOME_DIR < 0) { + // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps + if (endstop_adj[axis] * Z_HOME_DIR <= 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:"); #endif - do_homing_move(axis, endstop_adj[axis]); + do_homing_move(axis, endstop_adj[axis] - 0.1); } #else @@ -5098,20 +5098,18 @@ void home_all_axes() { gcode_G28(true); } * * Parameters: * - * P Number of probe points: + * Pn Number of probe points: * * P1 Probe center and set height only. * P2 Probe center and towers. Set height, endstops, and delta radius. * P3 Probe all positions: center, towers and opposite towers. Set all. * P4-P7 Probe all positions at different locations and average them. * - * A Abort delta height calibration after 1 probe (only P1) - * - * O Use opposite tower points instead of tower points (only P2) - * - * T Don't calibrate tower angle corrections (P3-P7) - * - * V Verbose level: + * T Don't calibrate tower angle corrections + * + * Cn.nn Calibration precision; when omitted calibrates to maximum precision + * + * Vn Verbose level: * * V0 Dry-run mode. Report settings and probe results. No calibration. * V1 Report settings @@ -5131,30 +5129,61 @@ void home_all_axes() { gcode_G28(true); } return; } - const bool do_height_only = probe_points == 1, - do_center_and_towers = probe_points == 2, - do_all_positions = probe_points == 3, - do_circle_x2 = probe_points == 5, - do_circle_x3 = probe_points == 6, - do_circle_x4 = probe_points == 7, - probe_center_plus_3 = probe_points >= 3, - point_averaging = probe_points >= 4, - probe_center_plus_6 = probe_points >= 5; + const float calibration_precision = code_seen('C') ? code_value_float() : 0.0; + if (calibration_precision < 0) { + SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0)."); + return; + } - const char negating_parameter = do_height_only ? 'A' : do_center_and_towers ? 'O' : 'T'; - int8_t probe_mode = code_seen(negating_parameter) && code_value_bool() ? -probe_points : probe_points; + const bool towers_set = !code_seen('T'), + + _1p_calibration = probe_points == 1, + _4p_calibration = probe_points == 2, + _4p_towers_points = _4p_calibration && towers_set, + _4p_opposite_points = _4p_calibration && !towers_set, + _7p_calibration = probe_points >= 3, + _7p_half_circle = probe_points == 3, + _7p_double_circle = probe_points == 5, + _7p_triple_circle = probe_points == 6, + _7p_quadruple_circle = probe_points == 7, + _7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle, + _7p_intermed_points = _7p_calibration && !_7p_half_circle; + + if (!_1p_calibration) { // test if the outer radius is reachable + for (uint8_t axis = 1; axis < 13; ++axis) { + float circles = (_7p_quadruple_circle ? 1.5 : + _7p_triple_circle ? 1.0 : + _7p_double_circle ? 0.5 : 0); + if (!position_is_reachable_by_probe_xy(cos(RADIANS(180 + 30 * axis)) * + delta_calibration_radius * (1 + circles * 0.1), + sin(RADIANS(180 + 30 * axis)) * + delta_calibration_radius * (1 + circles * 0.1))) { + SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible."); + return; + } + } + } SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate"); + stepper.synchronize(); #if HAS_LEVELING - set_bed_leveling_enabled(false); + reset_bed_level(); // After calibration bed-level data is no longer valid #endif + #if HOTENDS > 1 + const uint8_t old_tool_index = active_extruder; + tool_change(0, 0, true); + #endif + setup_for_endstop_or_probe_move(); - home_all_axes(); + endstops.enable(true); + home_delta(); + endstops.not_homing(); const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h"; float test_precision, zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end + zero_std_dev_old = zero_std_dev, e_old[XYZ] = { endstop_adj[A_AXIS], endstop_adj[B_AXIS], @@ -5173,7 +5202,7 @@ void home_all_axes() { gcode_G28(true); } LCD_MESSAGEPGM("Checking... AC"); // TODO: Make translatable string SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); - if (!do_height_only) { + if (!_1p_calibration) { SERIAL_PROTOCOLPGM(" Ex:"); if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); @@ -5186,7 +5215,7 @@ void home_all_axes() { gcode_G28(true); } SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); } SERIAL_EOL; - if (probe_mode > 2) { // negative disables tower angles + if (_7p_calibration && towers_set) { SERIAL_PROTOCOLPGM(".Tower angle : Tx:"); if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2); @@ -5202,80 +5231,76 @@ void home_all_axes() { gcode_G28(true); } #endif int8_t iterations = 0; + + home_offset[Z_AXIS] -= probe_pt(0.0, 0.0 , true, 1); // 1st probe to set height + do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES); do { - float z_at_pt[13] = { 0 }, - S1 = 0.0, - S2 = 0.0; + float z_at_pt[13] = { 0.0 }, S1 = 0.0, S2 = 0.0; int16_t N = 0; - test_precision = zero_std_dev; + test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev; + iterations++; // Probe the points - if (!do_all_positions && !do_circle_x3) { // probe the center - setup_for_endstop_or_probe_move(); - z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1); // TODO: Needs error handling - clean_up_after_endstop_or_probe_move(); + if (!_7p_half_circle && !_7p_triple_circle) { // probe the center + z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1); } - if (probe_center_plus_3) { // probe extra center points - for (int8_t axis = probe_center_plus_6 ? 11 : 9; axis > 0; axis -= probe_center_plus_6 ? 2 : 4) { - setup_for_endstop_or_probe_move(); - z_at_pt[0] += probe_pt( // TODO: Needs error handling - cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), - sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1); - clean_up_after_endstop_or_probe_move(); + if (_7p_calibration) { // probe extra center points + for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) { + const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1; + z_at_pt[0] += probe_pt(cos(a) * r, sin(a) * r, true, 1); // TODO: Needs error handling } - z_at_pt[0] /= float(do_circle_x2 ? 7 : probe_points); + z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points); } - if (!do_height_only) { // probe the radius + if (!_1p_calibration) { // probe the radius bool zig_zag = true; - for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; - axis += (do_center_and_towers ? 4 : do_all_positions ? 2 : 1)) { - float offset_circles = (do_circle_x4 ? (zig_zag ? 1.5 : 1.0) : - do_circle_x3 ? (zig_zag ? 1.0 : 0.5) : - do_circle_x2 ? (zig_zag ? 0.5 : 0.0) : 0); + const uint8_t start = _4p_opposite_points ? 3 : 1, + step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1; + for (uint8_t axis = start; axis < 13; axis += step) { + const float offset_circles = _7p_quadruple_circle ? (zig_zag ? 1.5 : 1.0) : + _7p_triple_circle ? (zig_zag ? 1.0 : 0.5) : + _7p_double_circle ? (zig_zag ? 0.5 : 0.0) : 0; for (float circles = -offset_circles ; circles <= offset_circles; circles++) { - setup_for_endstop_or_probe_move(); - z_at_pt[axis] += probe_pt( // TODO: Needs error handling - cos(RADIANS(180 + 30 * axis)) * delta_calibration_radius * - (1 + circles * 0.1 * (zig_zag ? 1 : -1)), - sin(RADIANS(180 + 30 * axis)) * delta_calibration_radius * - (1 + circles * 0.1 * (zig_zag ? 1 : -1)), true, 1); - clean_up_after_endstop_or_probe_move(); + const float a = RADIANS(180 + 30 * axis), + r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1)); + z_at_pt[axis] += probe_pt(cos(a) * r, sin(a) * r, true, 1); // TODO: Needs error handling } zig_zag = !zig_zag; z_at_pt[axis] /= (2 * offset_circles + 1); } } - if (point_averaging) // average intermediates to tower and opposites + if (_7p_intermed_points) // average intermediates to tower and opposites for (uint8_t axis = 1; axis <= 11; axis += 2) z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; S1 += z_at_pt[0]; S2 += sq(z_at_pt[0]); N++; - if (!do_height_only) // std dev from zero plane - for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (do_center_and_towers ? 4 : 2)) { + if (!_1p_calibration) // std dev from zero plane + for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) { S1 += z_at_pt[axis]; S2 += sq(z_at_pt[axis]); N++; } + zero_std_dev_old = zero_std_dev; zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; + + if (iterations == 1) home_offset[Z_AXIS] = zh_old; // reset height after 1st probe change // Solve matrices - if (zero_std_dev < test_precision) { + if (zero_std_dev < test_precision && zero_std_dev > calibration_precision) { COPY(e_old, endstop_adj); dr_old = delta_radius; zh_old = home_offset[Z_AXIS]; alpha_old = delta_tower_angle_trim[A_AXIS]; beta_old = delta_tower_angle_trim[B_AXIS]; - float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, - t_alpha = 0.0, t_beta = 0.0; + float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0; const float r_diff = delta_radius - delta_calibration_radius, h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm @@ -5293,25 +5318,25 @@ void home_all_axes() { gcode_G28(true); } #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I) #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I) - switch (probe_mode) { - case -1: - test_precision = 0.00; + switch (probe_points) { case 1: + test_precision = 0.00; LOOP_XYZ(i) e_delta[i] = Z1000(0); break; case 2: - e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9); - e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9); - e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9); - r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9); - break; - - case -2: - e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3); - e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3); - e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3); - r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3); + if (towers_set) { + e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9); + e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9); + e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9); + r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9); + } + else { + e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3); + e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3); + e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3); + r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3); + } break; default: @@ -5320,9 +5345,9 @@ void home_all_axes() { gcode_G28(true); } e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3); r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3); - if (probe_mode > 0) { // negative disables tower angles - t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3); - t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3); + if (towers_set) { + t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3); + t_beta = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3); } break; } @@ -5330,7 +5355,7 @@ void home_all_axes() { gcode_G28(true); } LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis]; delta_radius += r_delta; delta_tower_angle_trim[A_AXIS] += t_alpha; - delta_tower_angle_trim[B_AXIS] -= t_beta; + delta_tower_angle_trim[B_AXIS] += t_beta; // adjust delta_height and endstops by the max amount const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]); @@ -5339,7 +5364,7 @@ void home_all_axes() { gcode_G28(true); } recalc_delta_settings(delta_radius, delta_diagonal_rod); } - else { // step one back + else if(zero_std_dev >= test_precision) { // step one back COPY(endstop_adj, e_old); delta_radius = dr_old; home_offset[Z_AXIS] = zh_old; @@ -5355,7 +5380,7 @@ void home_all_axes() { gcode_G28(true); } SERIAL_PROTOCOLPGM(". c:"); if (z_at_pt[0] > 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[0], 2); - if (probe_mode == 2 || probe_center_plus_3) { + if (_4p_towers_points || _7p_calibration) { SERIAL_PROTOCOLPGM(" x:"); if (z_at_pt[1] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[1], 2); @@ -5366,9 +5391,9 @@ void home_all_axes() { gcode_G28(true); } if (z_at_pt[9] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[9], 2); } - if (probe_mode != -2) SERIAL_EOL; - if (probe_mode == -2 || probe_center_plus_3) { - if (probe_center_plus_3) { + if (!_4p_opposite_points) SERIAL_EOL; + if ((_4p_opposite_points) || _7p_calibration) { + if (_7p_calibration) { SERIAL_CHAR('.'); SERIAL_PROTOCOL_SP(13); } @@ -5385,10 +5410,15 @@ void home_all_axes() { gcode_G28(true); } } } if (test_precision != 0.0) { // !forced end - if (zero_std_dev >= test_precision) { // end iterations + if (zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) { // end iterations SERIAL_PROTOCOLPGM("Calibration OK"); SERIAL_PROTOCOL_SP(36); - SERIAL_PROTOCOLPGM("rolling back."); + if (zero_std_dev >= test_precision) + SERIAL_PROTOCOLPGM("rolling back."); + else { + SERIAL_PROTOCOLPGM("std dev:"); + SERIAL_PROTOCOL_F(zero_std_dev, 3); + } SERIAL_EOL; LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string } @@ -5404,7 +5434,7 @@ void home_all_axes() { gcode_G28(true); } lcd_setstatus(mess); } SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); - if (!do_height_only) { + if (!_1p_calibration) { SERIAL_PROTOCOLPGM(" Ex:"); if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); @@ -5417,7 +5447,7 @@ void home_all_axes() { gcode_G28(true); } SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); } SERIAL_EOL; - if (probe_mode > 2) { // negative disables tower angles + if (_7p_calibration && towers_set) { SERIAL_PROTOCOLPGM(".Tower angle : Tx:"); if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2); @@ -5427,7 +5457,7 @@ void home_all_axes() { gcode_G28(true); } SERIAL_PROTOCOLPGM(" Tz:+0.00"); SERIAL_EOL; } - if (zero_std_dev >= test_precision) + if (zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) serialprintPGM(save_message); SERIAL_EOL; } @@ -5449,12 +5479,20 @@ void home_all_axes() { gcode_G28(true); } } } - stepper.synchronize(); - - home_all_axes(); + endstops.enable(true); + home_delta(); + endstops.not_homing(); - } while (zero_std_dev < test_precision && iterations < 31); + } + while (zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31); + #if ENABLED(DELTA_HOME_TO_SAFE_ZONE) + do_blocking_move_to_z(delta_clip_start_height); + #endif + clean_up_after_endstop_or_probe_move(); + #if HOTENDS > 1 + tool_change(old_tool_index, 0, true); + #endif #if ENABLED(Z_PROBE_SLED) RETRACT_PROBE(); #endif diff --git a/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h b/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h index 2c31e0226c..b23bb75f6e 100644 --- a/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h +++ b/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h @@ -447,10 +447,10 @@ #define DELTA_DIAGONAL_ROD 218.0 // mm // Horizontal distance bridged by diagonal push rods when effector is centered. - #define DELTA_RADIUS 100.00 //mm // get this value from auto calibrate + #define DELTA_RADIUS 100.00 //mm Get this value from auto calibrate // height from z=0 to home position - #define DELTA_HEIGHT 295.00 // get this value from auto calibrate - use G33 P1 A at 1st time calibration + #define DELTA_HEIGHT 295.00 // get this value from auto calibrate - use G33 P1 at 1st time calibration // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 85.0 @@ -460,8 +460,8 @@ // See http://minow.blogspot.com/index.html#4918805519571907051 #define DELTA_CALIBRATION_MENU - // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled - #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm + // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled + #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) #define DELTA_AUTO_CALIBRATION diff --git a/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h b/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h index ce585c1aff..9838387b47 100644 --- a/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h +++ b/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h @@ -454,10 +454,10 @@ #define DELTA_CARRIAGE_OFFSET 22.0 // mm // Horizontal distance bridged by diagonal push rods when effector is centered. - #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate + #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm Get this value from auto calibrate // height from z=0.00 to home position - #define DELTA_HEIGHT 280 // get this value from auto calibrate - use G33 C-1 at 1st time calibration + #define DELTA_HEIGHT 280 // get this value from auto calibrate - use G33 P1 at 1st time calibration // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 85.0 @@ -467,8 +467,8 @@ // See http://minow.blogspot.com/index.html#4918805519571907051 //#define DELTA_CALIBRATION_MENU - // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled - #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm + // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled + #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) //#define DELTA_AUTO_CALIBRATION diff --git a/Marlin/example_configurations/delta/generic/Configuration.h b/Marlin/example_configurations/delta/generic/Configuration.h index 0b942adba0..dee93545c5 100644 --- a/Marlin/example_configurations/delta/generic/Configuration.h +++ b/Marlin/example_configurations/delta/generic/Configuration.h @@ -444,10 +444,10 @@ #define DELTA_CARRIAGE_OFFSET 18.0 // mm // Horizontal distance bridged by diagonal push rods when effector is centered. - #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate // height from z=0.00 to home position + #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm Get this value from auto calibrate // height from z=0.00 to home position - #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 C-1 at 1st time calibration + #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 P1 at 1st time calibration // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 140.0 @@ -456,8 +456,8 @@ // See http://minow.blogspot.com/index.html#4918805519571907051 //#define DELTA_CALIBRATION_MENU - // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled - #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm + // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled + #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) //#define DELTA_AUTO_CALIBRATION diff --git a/Marlin/example_configurations/delta/kossel_mini/Configuration.h b/Marlin/example_configurations/delta/kossel_mini/Configuration.h index 3c9fff7d61..5af56f4491 100644 --- a/Marlin/example_configurations/delta/kossel_mini/Configuration.h +++ b/Marlin/example_configurations/delta/kossel_mini/Configuration.h @@ -444,10 +444,10 @@ #define DELTA_CARRIAGE_OFFSET 19.5 // mm // Horizontal distance bridged by diagonal push rods when effector is centered. - #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate + #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm Get this value from auto calibrate // height from z=0.00 to home position - #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 C-1 at 1st time calibration + #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 P1 at 1st time calibration // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 90.0 @@ -456,8 +456,8 @@ // See http://minow.blogspot.com/index.html#4918805519571907051 //#define DELTA_CALIBRATION_MENU - // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled - #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 18) // mm + // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled + #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) //#define DELTA_AUTO_CALIBRATION diff --git a/Marlin/example_configurations/delta/kossel_pro/Configuration.h b/Marlin/example_configurations/delta/kossel_pro/Configuration.h index 6e672402a5..1a623d6b0f 100644 --- a/Marlin/example_configurations/delta/kossel_pro/Configuration.h +++ b/Marlin/example_configurations/delta/kossel_pro/Configuration.h @@ -431,10 +431,10 @@ #define DELTA_CARRIAGE_OFFSET 30.0 // mm // Horizontal distance bridged by diagonal push rods when effector is centered. - #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate + #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm Get this value from auto calibrate // height from z=0.00 to home position - #define DELTA_HEIGHT 277 // get this value from auto calibrate - use G33 C-1 at 1st time calibration + #define DELTA_HEIGHT 277 // get this value from auto calibrate - use G33 P1 at 1st time calibration // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 127.0 @@ -443,8 +443,8 @@ // See http://minow.blogspot.com/index.html#4918805519571907051 //#define DELTA_CALIBRATION_MENU - // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled - #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 25.4) // mm + // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled + #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) //#define DELTA_AUTO_CALIBRATION diff --git a/Marlin/example_configurations/delta/kossel_xl/Configuration.h b/Marlin/example_configurations/delta/kossel_xl/Configuration.h index 62f9bafb52..fa9c006922 100644 --- a/Marlin/example_configurations/delta/kossel_xl/Configuration.h +++ b/Marlin/example_configurations/delta/kossel_xl/Configuration.h @@ -449,10 +449,10 @@ #define DELTA_CARRIAGE_OFFSET 22.0 // mm // Horizontal distance bridged by diagonal push rods when effector is centered. - #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate + #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm Get this value from auto calibrate // height from z=0.00 to home position - #define DELTA_HEIGHT 380 // get this value from auto calibrate - use G33 C-1 at 1st time calibration + #define DELTA_HEIGHT 380 // get this value from auto calibrate - use G33 P1 at 1st time calibration // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 140.0 @@ -461,8 +461,8 @@ // See http://minow.blogspot.com/index.html#4918805519571907051 //#define DELTA_CALIBRATION_MENU - // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled - #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm + // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled + #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) //#define DELTA_AUTO_CALIBRATION diff --git a/Marlin/planner.h b/Marlin/planner.h index ca23979fab..d389adc46d 100644 --- a/Marlin/planner.h +++ b/Marlin/planner.h @@ -160,8 +160,10 @@ class Planner { min_travel_feedrate_mm_s; #if HAS_ABL - static bool abl_enabled; // Flag that bed leveling is enabled - static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level + static bool abl_enabled; // Flag that bed leveling is enabled + #if ABL_PLANAR + static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level + #endif #endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index ac702737b2..e66f55a536 100644 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -2151,6 +2151,10 @@ void kill_screen(const char* lcd_msg) { } void _lcd_delta_calibrate_home() { + #if HAS_LEVELING + reset_bed_level(); // After calibration bed-level data is no longer valid + #endif + enqueue_and_echo_commands_P(PSTR("G28")); lcd_goto_screen(_lcd_calibrate_homing); } @@ -2158,6 +2162,10 @@ void kill_screen(const char* lcd_msg) { // Move directly to the tower position with uninterpolated moves // If we used interpolated moves it would cause this to become re-entrant void _goto_tower_pos(const float &a) { + #if HAS_LEVELING + reset_bed_level(); // After calibration bed-level data is no longer valid + #endif + current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5; line_to_current(Z_AXIS); diff --git a/README.md b/README.md index dbbcf97219..2b296dc26c 100644 --- a/README.md +++ b/README.md @@ -69,7 +69,7 @@ More features have been added by: - [[@Tannoo](https://github.com/Tannoo)] - [[@teemuatlut](https://github.com/teemuatlut)] - [[@bgort](https://github.com/bgort)] - - [[@LVD-AC](https://github.com/LVD-AC)] + - Luc Van Daele[[@LVD-AC](https://github.com/LVD-AC)] - Dutch, French, English - [[@paulusjacobus](https://github.com/paulusjacobus)] - ...and many others