Browse Source

Fixed AUTOTEMP (M109 S215 B260 F1 starts autotemp)

Changed SLOWDOWN. IF this does not work ok OLD_SLOWDOWN is the old algo.
pull/1/head
Erik van der Zalm 13 years ago
parent
commit
67cf105bc6
  1. 6
      Marlin/Configuration.h
  2. 11
      Marlin/Configuration_adv.h
  3. 1
      Marlin/Marlin.h
  4. 38
      Marlin/Marlin.pde
  5. 94
      Marlin/planner.cpp
  6. 10
      Marlin/stepper.cpp
  7. 44
      Marlin/temperature.cpp

6
Marlin/Configuration.h

@ -121,7 +121,7 @@
const bool X_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MAX_ENDSTOPS
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
@ -165,7 +165,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// default settings
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200*8/3,760*1.1} // default steps per unit for ultimaker
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200*8/3,760*1.1} // default steps per unit for ultimaker
#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 45} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
@ -196,7 +196,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
//#define ULTRA_LCD //general lcd support, also 16x2
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define ULTIPANEL
#define ULTIPANEL
#ifdef ULTIPANEL
// #define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT

11
Marlin/Configuration_adv.h

@ -41,8 +41,8 @@
// the target temperature is set to mintemp+factor*se[steps/sec] and limited by mintemp and maxtemp
// you exit the value by any M109 without F*
// Also, if the temperature is set to a value <mintemp, it is not changed by autotemp.
// on an ultimaker, some initial testing worked with M109 S215 T260 F0.1 in the start.gcode
//#define AUTOTEMP
// on an ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
#define AUTOTEMP
#ifdef AUTOTEMP
#define AUTOTEMP_OLDWEIGHT 0.98
#endif
@ -94,8 +94,8 @@
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
#define DEFAULT_MINSEGMENTTIME 20000 // Obsolete delete this
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
#define DEFAULT_MINSEGMENTTIME 20000
// If defined the movements slow down when the look ahead buffer is only half full
#define SLOWDOWN
@ -147,9 +147,6 @@
#endif // ADVANCE
// A debugging feature to compare calculated vs performed steps, to see if steps are lost by the software.
//#define DEBUG_STEPS
// Arc interpretation settings:
#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25

1
Marlin/Marlin.h

@ -64,6 +64,7 @@
#define SERIAL_PROTOCOL(x) MYSERIAL.print(x);
#define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y);
#define SERIAL_PROTOCOLPGM(x) serialprintPGM(MYPGM(x));
#define SERIAL_PROTOCOLLN(x) {MYSERIAL.print(x);MYSERIAL.write('\n');}
#define SERIAL_PROTOCOLLNPGM(x) {serialprintPGM(MYPGM(x));MYSERIAL.write('\n');}

38
Marlin/Marlin.pde

@ -849,14 +849,14 @@ void process_commands()
}
#if (TEMP_0_PIN > -1)
SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL(degHotend(tmp_extruder));
//SERIAL_PROTOCOLPGM("/");
//SERIAL_PROTOCOL(degTargetHotend(tmp_extruder));
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
#if TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL(degBed());
//SERIAL_PROTOCOLPGM("/");
//SERIAL_PROTOCOL(degTargetBed());
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetBed(),1);
#endif //TEMP_BED_PIN
#else
SERIAL_ERROR_START;
@ -888,7 +888,7 @@ void process_commands()
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
#ifdef AUTOTEMP
if (code_seen('S')) autotemp_min=code_value();
if (code_seen('G')) autotemp_max=code_value();
if (code_seen('B')) autotemp_max=code_value();
if (code_seen('F'))
{
autotemp_factor=code_value();
@ -915,9 +915,9 @@ void process_commands()
if( (millis() - codenum) > 1000UL )
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL( degHotend(tmp_extruder) );
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL( (int)tmp_extruder );
SERIAL_PROTOCOL((int)tmp_extruder);
#ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:");
if(residencyStart > -1)
@ -966,9 +966,10 @@ void process_commands()
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL( (int)active_extruder );
SERIAL_PROTOCOL((int)active_extruder);
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOLLN(degBed());
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLLN("");
codenum = millis();
}
manage_heater();
@ -1058,7 +1059,20 @@ void process_commands()
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
axis_steps_per_unit[i] = code_value();
if(i == 3) { // E
float value = code_value();
if(value < 20.0) {
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
max_e_jerk *= factor;
max_feedrate[i] *= factor;
axis_steps_per_sqr_second[i] *= factor;
}
axis_steps_per_unit[i] = value;
}
else {
axis_steps_per_unit[i] = code_value();
}
}
break;
case 115: // M115

94
Marlin/planner.cpp

@ -51,9 +51,6 @@
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/
#include "Marlin.h"
#include "planner.h"
#include "stepper.h"
@ -377,20 +374,26 @@ void plan_init() {
void getHighESpeed()
{
static float oldt=0;
if(!autotemp_enabled)
if(!autotemp_enabled){
return;
if(degTargetHotend0()+2<autotemp_min) //probably temperature set to zero.
}
if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
return; //do nothing
}
float high=0;
float high=0.0;
uint8_t block_index = block_buffer_tail;
while(block_index != block_buffer_head) {
float se=block_buffer[block_index].steps_e/float(block_buffer[block_index].step_event_count)*block_buffer[block_index].nominal_rate;
//se; units steps/sec;
if(se>high)
{
high=se;
if((block_buffer[block_index].steps_x != 0) ||
(block_buffer[block_index].steps_y != 0) ||
(block_buffer[block_index].steps_z != 0)) {
float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
//se; mm/sec;
if(se>high)
{
high=se;
}
}
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
@ -407,10 +410,6 @@ void getHighESpeed()
}
oldt=t;
setTargetHotend0(t);
// SERIAL_ECHO_START;
// SERIAL_ECHOPAIR("highe",high);
// SERIAL_ECHOPAIR(" t",t);
// SERIAL_ECHOLN("");
}
#endif
@ -456,6 +455,9 @@ void check_axes_activity() {
analogWrite(FAN_PIN,tail_fan_speed);
}
#endif
#ifdef AUTOTEMP
getHighESpeed();
#endif
}
@ -517,7 +519,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block
if (block->step_event_count <=dropsegments) { return; };
if (block->step_event_count <= dropsegments) { return; };
block->fan_speed = FanSpeed;
@ -540,7 +542,6 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Enable all
if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); }
if (block->steps_e == 0) {
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
}
@ -548,12 +549,6 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
}
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
#ifdef SLOWDOWN
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
#endif
float delta_mm[4];
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
@ -569,34 +564,33 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
float inverse_second = feed_rate * inverse_millimeters;
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
#ifdef OLD_SLOWDOWN
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
#endif
/*
#ifdef SLOWDOWN
// segment time im micro seconds
long segment_time = lround(1000000.0/inverse_second);
if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
if (segment_time<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
segment_time=segment_time+lround(2*(minsegmenttime-segment_time)/blockcount);
unsigned long segment_time = lround(1000000.0/inverse_second);
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) {
if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
}
}
else {
if (segment_time<minsegmenttime) segment_time=minsegmenttime;
}
#endif
// END OF SLOW DOWN SECTION
*/
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
// Calculate speed in mm/sec for each axis
// Calculate and limit speed in mm/sec for each axis
float current_speed[4];
for(int i=0; i < 4; i++) {
current_speed[i] = delta_mm[i] * inverse_second;
}
// Limit speed per axis
float speed_factor = 1.0; //factor <=1 do decrease speed
for(int i=0; i < 4; i++) {
current_speed[i] = delta_mm[i] * inverse_second;
if(abs(current_speed[i]) > max_feedrate[i])
speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
}
@ -633,17 +627,6 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Correct the speed
if( speed_factor < 1.0) {
// Serial.print("speed factor : "); Serial.println(speed_factor);
for(int i=0; i < 4; i++) {
if(abs(current_speed[i]) > max_feedrate[i])
speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
/*
if(speed_factor < 0.1) {
Serial.print("speed factor : "); Serial.println(speed_factor);
Serial.print("current_speed"); Serial.print(i); Serial.print(" : "); Serial.println(current_speed[i]);
}
*/
}
for(unsigned char i=0; i < 4; i++) {
current_speed[i] *= speed_factor;
}
@ -784,9 +767,6 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
*/
#endif // ADVANCE
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
MINIMUM_PLANNER_SPEED/block->nominal_speed);
@ -797,9 +777,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
memcpy(position, target, sizeof(target)); // position[] = target[]
planner_recalculate();
#ifdef AUTOTEMP
getHighESpeed();
#endif
st_wake_up();
}

10
Marlin/stepper.cpp

@ -54,7 +54,6 @@ volatile static unsigned long step_events_completed; // The number of step event
static long old_advance = 0;
#endif
static long e_steps[3];
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate; // needed for deccelaration start point
@ -216,7 +215,6 @@ void enable_endstops(bool check)
void st_wake_up() {
// TCNT1 = 0;
if(busy == false)
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
@ -295,6 +293,7 @@ ISR(TIMER1_COMPA_vect)
// Anything in the buffer?
current_block = plan_get_current_block();
if (current_block != NULL) {
current_block->busy = true;
trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x;
@ -773,12 +772,7 @@ void st_init()
TIMSK0 |= (1<<OCIE0A);
#endif //ADVANCE
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#else
enable_endstops(true);
#endif
enable_endstops(true); // Start with endstops active. After homing they can be disabled
sei();
}

44
Marlin/temperature.cpp

@ -95,17 +95,6 @@ static unsigned long previous_millis_bed_heater;
static int maxttemp[EXTRUDERS] = { 16383 }; // the first value used for all
static int bed_minttemp = 0;
static int bed_maxttemp = 16383;
static int heater_pin_map[EXTRUDERS] = { HEATER_0_PIN
#if EXTRUDERS > 1
, HEATER_1_PIN
#endif
#if EXTRUDERS > 2
, HEATER_2_PIN
#endif
#if EXTRUDERS > 3
#error Unsupported number of extruders
#endif
};
static void *heater_ttbl_map[EXTRUDERS] = { (void *)heater_0_temptable
#if EXTRUDERS > 1
, (void *)heater_1_temptable
@ -138,7 +127,6 @@ void PID_autotune(float temp)
float input;
int cycles=0;
bool heating = true;
soft_pwm[0] = 255>>1;
unsigned long temp_millis = millis();
unsigned long t1=temp_millis;
@ -154,8 +142,10 @@ void PID_autotune(float temp)
SERIAL_ECHOLN("PID Autotune start");
//disable_heater(); // switch off all heaters.
disable_heater(); // switch off all heaters.
soft_pwm[0] = 255>>1;
for(;;) {
if(temp_meas_ready == true) { // temp sample ready
@ -202,6 +192,7 @@ void PID_autotune(float temp)
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
/*
Kp = 0.33*Ku;
Ki = Kp/Tu;
Kd = Kp*Tu/3;
@ -216,6 +207,7 @@ void PID_autotune(float temp)
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
*/
}
}
soft_pwm[0] = (bias + d) >> 1;
@ -225,7 +217,7 @@ void PID_autotune(float temp)
}
}
if(input > (temp + 20)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed !, Temperature to high");
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature to high");
return;
}
if(millis() - temp_millis > 2000) {
@ -235,6 +227,14 @@ void PID_autotune(float temp)
SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOLLN(getHeaterPower(0));
}
if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
return;
}
if(cycles > 5) {
SERIAL_PROTOCOLLNPGM("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h");
return;
}
LCD_STATUS;
}
}
@ -313,11 +313,9 @@ void manage_heater()
// Check if temperature is within the correct range
if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e]))
{
//analogWrite(heater_pin_map[e], pid_output);
soft_pwm[e] = (int)pid_output >> 1;
}
else {
//analogWrite(heater_pin_map[e], 0);
soft_pwm[e] = 0;
}
} // End extruder for loop
@ -680,7 +678,7 @@ void disable_heater()
target_raw[0]=0;
soft_pwm[0]=0;
#if HEATER_0_PIN > -1
digitalWrite(HEATER_0_PIN,LOW);
WRITE(HEATER_0_PIN,LOW);
#endif
#endif
@ -688,7 +686,7 @@ void disable_heater()
target_raw[1]=0;
soft_pwm[1]=0;
#if HEATER_1_PIN > -1
digitalWrite(HEATER_1_PIN,LOW);
WRITE(HEATER_1_PIN,LOW);
#endif
#endif
@ -696,20 +694,20 @@ void disable_heater()
target_raw[2]=0;
soft_pwm[2]=0;
#if HEATER_2_PIN > -1
digitalWrite(HEATER_2_PIN,LOW);
WRITE(HEATER_2_PIN,LOW);
#endif
#endif
#if TEMP_BED_PIN > -1
target_raw_bed=0;
#if HEATER_BED_PIN > -1
digitalWrite(HEATER_BED_PIN,LOW);
WRITE(HEATER_BED_PIN,LOW);
#endif
#endif
}
void max_temp_error(uint8_t e) {
digitalWrite(heater_pin_map[e], 0);
disable_heater();
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLN(e);
@ -718,7 +716,7 @@ void max_temp_error(uint8_t e) {
}
void min_temp_error(uint8_t e) {
digitalWrite(heater_pin_map[e], 0);
disable_heater();
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLN(e);
@ -727,7 +725,7 @@ void min_temp_error(uint8_t e) {
}
void bed_max_temp_error(void) {
digitalWrite(HEATER_BED_PIN, 0);
WRITE(HEATER_BED_PIN, 0);
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");

Loading…
Cancel
Save