|
@ -56,6 +56,10 @@ |
|
|
#define G26_OK false |
|
|
#define G26_OK false |
|
|
#define G26_ERR true |
|
|
#define G26_ERR true |
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(ARC_SUPPORT) |
|
|
|
|
|
void plan_arc(const float (&cart)[XYZE], const float (&offset)[2], const uint8_t clockwise); |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
/**
|
|
|
/**
|
|
|
* G26 Mesh Validation Tool |
|
|
* G26 Mesh Validation Tool |
|
|
* |
|
|
* |
|
@ -219,9 +223,9 @@ mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) { |
|
|
|
|
|
|
|
|
void G26_line_to_destination(const float &feed_rate) { |
|
|
void G26_line_to_destination(const float &feed_rate) { |
|
|
const float save_feedrate = feedrate_mm_s; |
|
|
const float save_feedrate = feedrate_mm_s; |
|
|
feedrate_mm_s = feed_rate; // use specified feed rate
|
|
|
feedrate_mm_s = feed_rate; |
|
|
prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_SEGMENTED
|
|
|
prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_SEGMENTED
|
|
|
feedrate_mm_s = save_feedrate; // restore global feed rate
|
|
|
feedrate_mm_s = save_feedrate; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) { |
|
|
void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) { |
|
@ -729,21 +733,25 @@ void GcodeSuite::G26() { |
|
|
|
|
|
|
|
|
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
|
|
|
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
|
|
|
|
|
|
|
|
|
/**
|
|
|
#if DISABLED(ARC_SUPPORT) |
|
|
* Pre-generate radius offset values at 30 degree intervals to reduce CPU load. |
|
|
|
|
|
*/ |
|
|
/**
|
|
|
#define A_INT 30 |
|
|
* Pre-generate radius offset values at 30 degree intervals to reduce CPU load. |
|
|
#define _ANGS (360 / A_INT) |
|
|
*/ |
|
|
#define A_CNT (_ANGS / 2) |
|
|
#define A_INT 30 |
|
|
#define _IND(A) ((A + _ANGS * 8) % _ANGS) |
|
|
#define _ANGS (360 / A_INT) |
|
|
#define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1)) |
|
|
#define A_CNT (_ANGS / 2) |
|
|
#define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS)) |
|
|
#define _IND(A) ((A + _ANGS * 8) % _ANGS) |
|
|
#if A_CNT & 1 |
|
|
#define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1)) |
|
|
#error "A_CNT must be a positive value. Please change A_INT." |
|
|
#define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS)) |
|
|
#endif |
|
|
#if A_CNT & 1 |
|
|
float trig_table[A_CNT]; |
|
|
#error "A_CNT must be a positive value. Please change A_INT." |
|
|
for (uint8_t i = 0; i < A_CNT; i++) |
|
|
#endif |
|
|
trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT)); |
|
|
float trig_table[A_CNT]; |
|
|
|
|
|
for (uint8_t i = 0; i < A_CNT; i++) |
|
|
|
|
|
trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT)); |
|
|
|
|
|
|
|
|
|
|
|
#endif // !ARC_SUPPORT
|
|
|
|
|
|
|
|
|
mesh_index_pair location; |
|
|
mesh_index_pair location; |
|
|
do { |
|
|
do { |
|
@ -761,54 +769,128 @@ void GcodeSuite::G26() { |
|
|
// Determine where to start and end the circle,
|
|
|
// Determine where to start and end the circle,
|
|
|
// which is always drawn counter-clockwise.
|
|
|
// which is always drawn counter-clockwise.
|
|
|
const uint8_t xi = location.x_index, yi = location.y_index; |
|
|
const uint8_t xi = location.x_index, yi = location.y_index; |
|
|
const bool f = yi == 0, r = xi >= GRID_MAX_POINTS_X - 1, b = yi >= GRID_MAX_POINTS_Y - 1; |
|
|
const bool f = yi == 0, r = xi >= GRID_MAX_POINTS_X - 1, b = yi >= GRID_MAX_POINTS_Y - 1; |
|
|
int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
|
|
|
|
|
|
if (xi == 0) { // Left edge? Just right half.
|
|
|
#if ENABLED(ARC_SUPPORT) |
|
|
start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
|
|
|
|
|
|
end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
|
|
|
#define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * PI * (quarters) / 2) |
|
|
} |
|
|
float sx = circle_x + INTERSECTION_CIRCLE_RADIUS, // default to full circle
|
|
|
else if (r) { // Right edge? Just left half.
|
|
|
ex = circle_x + INTERSECTION_CIRCLE_RADIUS, |
|
|
start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
|
|
|
sy = circle_y, ey = circle_y, |
|
|
end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
|
|
|
arc_length = ARC_LENGTH(4); |
|
|
} |
|
|
|
|
|
else if (f) { // Front edge? Just back half.
|
|
|
// Figure out where to start and end the arc - we always print counterclockwise
|
|
|
start_ind = 0; // 03:00
|
|
|
if (xi == 0) { // left edge
|
|
|
end_ind = 5; // 09:00
|
|
|
sx = f ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x; |
|
|
} |
|
|
ex = b ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x; |
|
|
else if (b) { // Back edge? Just front half.
|
|
|
sy = f ? circle_y : circle_y - INTERSECTION_CIRCLE_RADIUS; |
|
|
start_ind = 6; // 09:00
|
|
|
ey = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS; |
|
|
end_ind = 11; // 03:00
|
|
|
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2); |
|
|
} |
|
|
} |
|
|
|
|
|
else if (r) { // right edge
|
|
|
|
|
|
sx = b ? circle_x - INTERSECTION_CIRCLE_RADIUS : circle_x; |
|
|
|
|
|
ex = f ? circle_x - INTERSECTION_CIRCLE_RADIUS : circle_x; |
|
|
|
|
|
sy = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS; |
|
|
|
|
|
ey = f ? circle_y : circle_y - INTERSECTION_CIRCLE_RADIUS; |
|
|
|
|
|
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2); |
|
|
|
|
|
} |
|
|
|
|
|
else if (f) { |
|
|
|
|
|
sx = circle_x + INTERSECTION_CIRCLE_RADIUS; |
|
|
|
|
|
ex = circle_x - INTERSECTION_CIRCLE_RADIUS; |
|
|
|
|
|
sy = ey = circle_y; |
|
|
|
|
|
arc_length = ARC_LENGTH(2); |
|
|
|
|
|
} |
|
|
|
|
|
else if (b) { |
|
|
|
|
|
sx = circle_x - INTERSECTION_CIRCLE_RADIUS; |
|
|
|
|
|
ex = circle_x + INTERSECTION_CIRCLE_RADIUS; |
|
|
|
|
|
sy = ey = circle_y; |
|
|
|
|
|
arc_length = ARC_LENGTH(2); |
|
|
|
|
|
} |
|
|
|
|
|
const float arc_offset[2] = { |
|
|
|
|
|
circle_x - sx, |
|
|
|
|
|
circle_y - sy |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual circle
|
|
|
|
|
|
dy_s = current_position[Y_AXIS] - sy, |
|
|
|
|
|
dist_start = HYPOT2(dx_s, dy_s); |
|
|
|
|
|
const float endpoint[XYZE] = { |
|
|
|
|
|
ex, ey, |
|
|
|
|
|
g26_layer_height, |
|
|
|
|
|
current_position[E_AXIS] + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier) |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
if (dist_start > 2.0) { |
|
|
|
|
|
retract_filament(destination); |
|
|
|
|
|
//todo: parameterize the bump height with a define
|
|
|
|
|
|
move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
|
|
|
|
|
|
move_to(sx, sy, g26_layer_height + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
for (int8_t ind = start_ind; ind <= end_ind; ind++) { |
|
|
move_to(sx, sy, g26_layer_height, 0.0); // Get to the starting point with no extrusion / un-Z bump
|
|
|
|
|
|
|
|
|
|
|
|
recover_filament(destination); |
|
|
|
|
|
const float save_feedrate = feedrate_mm_s; |
|
|
|
|
|
feedrate_mm_s = PLANNER_XY_FEEDRATE() / 10.0; |
|
|
|
|
|
plan_arc(endpoint, arc_offset, false); // Draw a counter-clockwise arc
|
|
|
|
|
|
feedrate_mm_s = save_feedrate; |
|
|
|
|
|
set_destination_from_current(); |
|
|
#if ENABLED(NEWPANEL) |
|
|
#if ENABLED(NEWPANEL) |
|
|
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
|
|
|
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
|
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
float rx = circle_x + _COS(ind), // For speed, these are now a lookup table entry
|
|
|
#else // !ARC_SUPPORT
|
|
|
ry = circle_y + _SIN(ind), |
|
|
|
|
|
xe = circle_x + _COS(ind + 1), |
|
|
|
|
|
ye = circle_y + _SIN(ind + 1); |
|
|
|
|
|
|
|
|
|
|
|
#if IS_KINEMATIC |
|
|
|
|
|
// Check to make sure this segment is entirely on the bed, skip if not.
|
|
|
|
|
|
if (!position_is_reachable(rx, ry) || !position_is_reachable(xe, ye)) continue; |
|
|
|
|
|
#else // not, we need to skip
|
|
|
|
|
|
rx = constrain(rx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
|
|
|
|
|
ry = constrain(ry, Y_MIN_POS + 1, Y_MAX_POS - 1); |
|
|
|
|
|
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1); |
|
|
|
|
|
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
|
|
|
|
|
|
if (xi == 0) { // Left edge? Just right half.
|
|
|
|
|
|
start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
|
|
|
|
|
|
end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
|
|
|
|
|
|
} |
|
|
|
|
|
else if (r) { // Right edge? Just left half.
|
|
|
|
|
|
start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
|
|
|
|
|
|
end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
|
|
|
|
|
|
} |
|
|
|
|
|
else if (f) { // Front edge? Just back half.
|
|
|
|
|
|
start_ind = 0; // 03:00
|
|
|
|
|
|
end_ind = 5; // 09:00
|
|
|
|
|
|
} |
|
|
|
|
|
else if (b) { // Back edge? Just front half.
|
|
|
|
|
|
start_ind = 6; // 09:00
|
|
|
|
|
|
end_ind = 11; // 03:00
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
print_line_from_here_to_there(rx, ry, g26_layer_height, xe, ye, g26_layer_height); |
|
|
for (int8_t ind = start_ind; ind <= end_ind; ind++) { |
|
|
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
|
|
|
} |
|
|
#if ENABLED(NEWPANEL) |
|
|
if (look_for_lines_to_connect()) |
|
|
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
|
|
|
goto LEAVE; |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
float rx = circle_x + _COS(ind), // For speed, these are now a lookup table entry
|
|
|
|
|
|
ry = circle_y + _SIN(ind), |
|
|
|
|
|
xe = circle_x + _COS(ind + 1), |
|
|
|
|
|
ye = circle_y + _SIN(ind + 1); |
|
|
|
|
|
|
|
|
|
|
|
#if IS_KINEMATIC |
|
|
|
|
|
// Check to make sure this segment is entirely on the bed, skip if not.
|
|
|
|
|
|
if (!position_is_reachable(rx, ry) || !position_is_reachable(xe, ye)) continue; |
|
|
|
|
|
#else // not, we need to skip
|
|
|
|
|
|
rx = constrain(rx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
|
|
|
|
|
ry = constrain(ry, Y_MIN_POS + 1, Y_MAX_POS - 1); |
|
|
|
|
|
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1); |
|
|
|
|
|
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
print_line_from_here_to_there(rx, ry, g26_layer_height, xe, ye, g26_layer_height); |
|
|
|
|
|
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#endif // !ARC_SUPPORT
|
|
|
|
|
|
|
|
|
|
|
|
if (look_for_lines_to_connect()) goto LEAVE; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
|
|
|
|
|
|
} while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0); |
|
|
} while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0); |
|
|
|
|
|
|
|
|
LEAVE: |
|
|
LEAVE: |
|
|