Browse Source

Use arc moves for G26 if enabled (#10696)

Co-Authored-By: ManuelMcLure <manuelmclure@users.noreply.github.com>
pull/1/head
Scott Lahteine 7 years ago
committed by GitHub
parent
commit
6671c064cd
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 194
      Marlin/src/gcode/bedlevel/G26.cpp

194
Marlin/src/gcode/bedlevel/G26.cpp

@ -56,6 +56,10 @@
#define G26_OK false #define G26_OK false
#define G26_ERR true #define G26_ERR true
#if ENABLED(ARC_SUPPORT)
void plan_arc(const float (&cart)[XYZE], const float (&offset)[2], const uint8_t clockwise);
#endif
/** /**
* G26 Mesh Validation Tool * G26 Mesh Validation Tool
* *
@ -219,9 +223,9 @@ mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
void G26_line_to_destination(const float &feed_rate) { void G26_line_to_destination(const float &feed_rate) {
const float save_feedrate = feedrate_mm_s; const float save_feedrate = feedrate_mm_s;
feedrate_mm_s = feed_rate; // use specified feed rate feedrate_mm_s = feed_rate;
prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_SEGMENTED prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_SEGMENTED
feedrate_mm_s = save_feedrate; // restore global feed rate feedrate_mm_s = save_feedrate;
} }
void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) { void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) {
@ -729,21 +733,25 @@ void GcodeSuite::G26() {
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern.")); //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
/** #if DISABLED(ARC_SUPPORT)
* Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
*/ /**
#define A_INT 30 * Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
#define _ANGS (360 / A_INT) */
#define A_CNT (_ANGS / 2) #define A_INT 30
#define _IND(A) ((A + _ANGS * 8) % _ANGS) #define _ANGS (360 / A_INT)
#define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1)) #define A_CNT (_ANGS / 2)
#define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS)) #define _IND(A) ((A + _ANGS * 8) % _ANGS)
#if A_CNT & 1 #define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
#error "A_CNT must be a positive value. Please change A_INT." #define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
#endif #if A_CNT & 1
float trig_table[A_CNT]; #error "A_CNT must be a positive value. Please change A_INT."
for (uint8_t i = 0; i < A_CNT; i++) #endif
trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT)); float trig_table[A_CNT];
for (uint8_t i = 0; i < A_CNT; i++)
trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));
#endif // !ARC_SUPPORT
mesh_index_pair location; mesh_index_pair location;
do { do {
@ -761,54 +769,128 @@ void GcodeSuite::G26() {
// Determine where to start and end the circle, // Determine where to start and end the circle,
// which is always drawn counter-clockwise. // which is always drawn counter-clockwise.
const uint8_t xi = location.x_index, yi = location.y_index; const uint8_t xi = location.x_index, yi = location.y_index;
const bool f = yi == 0, r = xi >= GRID_MAX_POINTS_X - 1, b = yi >= GRID_MAX_POINTS_Y - 1; const bool f = yi == 0, r = xi >= GRID_MAX_POINTS_X - 1, b = yi >= GRID_MAX_POINTS_Y - 1;
int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
if (xi == 0) { // Left edge? Just right half. #if ENABLED(ARC_SUPPORT)
start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left #define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * PI * (quarters) / 2)
} float sx = circle_x + INTERSECTION_CIRCLE_RADIUS, // default to full circle
else if (r) { // Right edge? Just left half. ex = circle_x + INTERSECTION_CIRCLE_RADIUS,
start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right sy = circle_y, ey = circle_y,
end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right arc_length = ARC_LENGTH(4);
}
else if (f) { // Front edge? Just back half. // Figure out where to start and end the arc - we always print counterclockwise
start_ind = 0; // 03:00 if (xi == 0) { // left edge
end_ind = 5; // 09:00 sx = f ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x;
} ex = b ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x;
else if (b) { // Back edge? Just front half. sy = f ? circle_y : circle_y - INTERSECTION_CIRCLE_RADIUS;
start_ind = 6; // 09:00 ey = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS;
end_ind = 11; // 03:00 arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
} }
else if (r) { // right edge
sx = b ? circle_x - INTERSECTION_CIRCLE_RADIUS : circle_x;
ex = f ? circle_x - INTERSECTION_CIRCLE_RADIUS : circle_x;
sy = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS;
ey = f ? circle_y : circle_y - INTERSECTION_CIRCLE_RADIUS;
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
}
else if (f) {
sx = circle_x + INTERSECTION_CIRCLE_RADIUS;
ex = circle_x - INTERSECTION_CIRCLE_RADIUS;
sy = ey = circle_y;
arc_length = ARC_LENGTH(2);
}
else if (b) {
sx = circle_x - INTERSECTION_CIRCLE_RADIUS;
ex = circle_x + INTERSECTION_CIRCLE_RADIUS;
sy = ey = circle_y;
arc_length = ARC_LENGTH(2);
}
const float arc_offset[2] = {
circle_x - sx,
circle_y - sy
};
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual circle
dy_s = current_position[Y_AXIS] - sy,
dist_start = HYPOT2(dx_s, dy_s);
const float endpoint[XYZE] = {
ex, ey,
g26_layer_height,
current_position[E_AXIS] + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier)
};
if (dist_start > 2.0) {
retract_filament(destination);
//todo: parameterize the bump height with a define
move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
move_to(sx, sy, g26_layer_height + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
}
for (int8_t ind = start_ind; ind <= end_ind; ind++) { move_to(sx, sy, g26_layer_height, 0.0); // Get to the starting point with no extrusion / un-Z bump
recover_filament(destination);
const float save_feedrate = feedrate_mm_s;
feedrate_mm_s = PLANNER_XY_FEEDRATE() / 10.0;
plan_arc(endpoint, arc_offset, false); // Draw a counter-clockwise arc
feedrate_mm_s = save_feedrate;
set_destination_from_current();
#if ENABLED(NEWPANEL) #if ENABLED(NEWPANEL)
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
#endif #endif
float rx = circle_x + _COS(ind), // For speed, these are now a lookup table entry #else // !ARC_SUPPORT
ry = circle_y + _SIN(ind),
xe = circle_x + _COS(ind + 1),
ye = circle_y + _SIN(ind + 1);
#if IS_KINEMATIC
// Check to make sure this segment is entirely on the bed, skip if not.
if (!position_is_reachable(rx, ry) || !position_is_reachable(xe, ye)) continue;
#else // not, we need to skip
rx = constrain(rx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
ry = constrain(ry, Y_MIN_POS + 1, Y_MAX_POS - 1);
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif
int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
if (xi == 0) { // Left edge? Just right half.
start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
}
else if (r) { // Right edge? Just left half.
start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
}
else if (f) { // Front edge? Just back half.
start_ind = 0; // 03:00
end_ind = 5; // 09:00
}
else if (b) { // Back edge? Just front half.
start_ind = 6; // 09:00
end_ind = 11; // 03:00
}
print_line_from_here_to_there(rx, ry, g26_layer_height, xe, ye, g26_layer_height); for (int8_t ind = start_ind; ind <= end_ind; ind++) {
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
} #if ENABLED(NEWPANEL)
if (look_for_lines_to_connect()) if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
goto LEAVE; #endif
float rx = circle_x + _COS(ind), // For speed, these are now a lookup table entry
ry = circle_y + _SIN(ind),
xe = circle_x + _COS(ind + 1),
ye = circle_y + _SIN(ind + 1);
#if IS_KINEMATIC
// Check to make sure this segment is entirely on the bed, skip if not.
if (!position_is_reachable(rx, ry) || !position_is_reachable(xe, ye)) continue;
#else // not, we need to skip
rx = constrain(rx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
ry = constrain(ry, Y_MIN_POS + 1, Y_MAX_POS - 1);
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif
print_line_from_here_to_there(rx, ry, g26_layer_height, xe, ye, g26_layer_height);
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
}
#endif // !ARC_SUPPORT
if (look_for_lines_to_connect()) goto LEAVE;
} }
SERIAL_FLUSH(); // Prevent host M105 buffer overrun. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
} while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0); } while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0);
LEAVE: LEAVE:

Loading…
Cancel
Save