|
|
@ -65,8 +65,8 @@ |
|
|
|
unified_bed_leveling::g29_y_flag; |
|
|
|
float unified_bed_leveling::g29_x_pos, |
|
|
|
unified_bed_leveling::g29_y_pos, |
|
|
|
unified_bed_leveling::g29_card_thickness = 0.0, |
|
|
|
unified_bed_leveling::g29_constant = 0.0; |
|
|
|
unified_bed_leveling::g29_card_thickness = 0, |
|
|
|
unified_bed_leveling::g29_constant = 0; |
|
|
|
|
|
|
|
#if HAS_BED_PROBE |
|
|
|
int unified_bed_leveling::g29_grid_size; |
|
|
@ -346,23 +346,23 @@ |
|
|
|
case 0: |
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
|
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
|
|
|
|
const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x, |
|
|
|
p2 = 0.5 * (GRID_MAX_POINTS_Y) - y; |
|
|
|
z_values[x][y] += 2.0 * HYPOT(p1, p2); |
|
|
|
const float p1 = 0.5f * (GRID_MAX_POINTS_X) - x, |
|
|
|
p2 = 0.5f * (GRID_MAX_POINTS_Y) - y; |
|
|
|
z_values[x][y] += 2.0f * HYPOT(p1, p2); |
|
|
|
} |
|
|
|
} |
|
|
|
break; |
|
|
|
case 1: |
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
|
|
|
|
z_values[x][x] += 9.999; |
|
|
|
z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
|
|
|
|
z_values[x][x] += 9.999f; |
|
|
|
z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999f; // We want the altered line several mesh points thick
|
|
|
|
} |
|
|
|
break; |
|
|
|
case 2: |
|
|
|
// Allow the user to specify the height because 10mm is a little extreme in some cases.
|
|
|
|
for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
|
|
|
|
for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
|
|
|
|
z_values[x][y] += parser.seen('C') ? g29_constant : 9.99; |
|
|
|
z_values[x][y] += parser.seen('C') ? g29_constant : 9.99f; |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
@ -381,7 +381,7 @@ |
|
|
|
tilt_mesh_based_on_probed_grid(true /* true says to do 3-Point leveling */ ); |
|
|
|
restore_ubl_active_state_and_leave(); |
|
|
|
} |
|
|
|
do_blocking_move_to_xy(0.5 * (MESH_MAX_X - (MESH_MIN_X)), 0.5 * (MESH_MAX_Y - (MESH_MIN_Y))); |
|
|
|
do_blocking_move_to_xy(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y))); |
|
|
|
report_current_position(); |
|
|
|
} |
|
|
|
|
|
|
@ -453,7 +453,7 @@ |
|
|
|
|
|
|
|
if (parser.seen('B')) { |
|
|
|
g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness((float) Z_CLEARANCE_BETWEEN_PROBES); |
|
|
|
if (ABS(g29_card_thickness) > 1.5) { |
|
|
|
if (ABS(g29_card_thickness) > 1.5f) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement."); |
|
|
|
return; |
|
|
|
} |
|
|
@ -509,7 +509,7 @@ |
|
|
|
} |
|
|
|
else { |
|
|
|
const float cvf = parser.value_float(); |
|
|
|
switch ((int)truncf(cvf * 10.0) - 30) { // 3.1 -> 1
|
|
|
|
switch ((int)truncf(cvf * 10.0f) - 30) { // 3.1 -> 1
|
|
|
|
#if ENABLED(UBL_G29_P31) |
|
|
|
case 1: { |
|
|
|
|
|
|
@ -519,8 +519,8 @@ |
|
|
|
// P3.12 100X distance weighting
|
|
|
|
// P3.13 1000X distance weighting, approaches simple average of nearest points
|
|
|
|
|
|
|
|
const float weight_power = (cvf - 3.10) * 100.0, // 3.12345 -> 2.345
|
|
|
|
weight_factor = weight_power ? POW(10.0, weight_power) : 0; |
|
|
|
const float weight_power = (cvf - 3.10f) * 100.0f, // 3.12345 -> 2.345
|
|
|
|
weight_factor = weight_power ? POW(10.0f, weight_power) : 0; |
|
|
|
smart_fill_wlsf(weight_factor); |
|
|
|
} |
|
|
|
break; |
|
|
@ -634,7 +634,7 @@ |
|
|
|
} |
|
|
|
|
|
|
|
void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const float value) { |
|
|
|
float sum = 0.0; |
|
|
|
float sum = 0; |
|
|
|
int n = 0; |
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) |
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) |
|
|
@ -648,7 +648,7 @@ |
|
|
|
//
|
|
|
|
// Sum the squares of difference from mean
|
|
|
|
//
|
|
|
|
float sum_of_diff_squared = 0.0; |
|
|
|
float sum_of_diff_squared = 0; |
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) |
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) |
|
|
|
if (!isnan(z_values[x][y])) |
|
|
@ -786,7 +786,7 @@ |
|
|
|
|
|
|
|
float unified_bed_leveling::measure_point_with_encoder() { |
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER); |
|
|
|
move_z_with_encoder(0.01); |
|
|
|
move_z_with_encoder(0.01f); |
|
|
|
KEEPALIVE_STATE(IN_HANDLER); |
|
|
|
return current_position[Z_AXIS]; |
|
|
|
} |
|
|
@ -797,8 +797,8 @@ |
|
|
|
lcd_external_control = true; |
|
|
|
save_ubl_active_state_and_disable(); // Disable bed level correction for probing
|
|
|
|
|
|
|
|
do_blocking_move_to(0.5 * (MESH_MAX_X - (MESH_MIN_X)), 0.5 * (MESH_MAX_Y - (MESH_MIN_Y)), in_height); |
|
|
|
//, MIN(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
|
|
|
|
do_blocking_move_to(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y)), in_height); |
|
|
|
//, MIN(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) * 0.5f);
|
|
|
|
planner.synchronize(); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Place shim under nozzle"); |
|
|
@ -874,7 +874,7 @@ |
|
|
|
|
|
|
|
serialprintPGM(parser.seen('B') ? PSTR(MSG_UBL_BC_INSERT) : PSTR(MSG_UBL_BC_INSERT2)); |
|
|
|
|
|
|
|
const float z_step = 0.01; // existing behavior: 0.01mm per click, occasionally step
|
|
|
|
const float z_step = 0.01f; // existing behavior: 0.01mm per click, occasionally step
|
|
|
|
//const float z_step = planner.steps_to_mm[Z_AXIS]; // approx one step each click
|
|
|
|
|
|
|
|
move_z_with_encoder(z_step); |
|
|
@ -913,7 +913,7 @@ |
|
|
|
lcd_quick_feedback(true); |
|
|
|
#endif |
|
|
|
|
|
|
|
g29_constant = 0.0; |
|
|
|
g29_constant = 0; |
|
|
|
g29_repetition_cnt = 0; |
|
|
|
|
|
|
|
g29_x_flag = parser.seenval('X'); |
|
|
@ -1004,7 +1004,7 @@ |
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
|
|
|
if (parser.seenval('F')) { |
|
|
|
const float fh = parser.value_float(); |
|
|
|
if (!WITHIN(fh, 0.0, 100.0)) { |
|
|
|
if (!WITHIN(fh, 0, 100)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
@ -1226,7 +1226,7 @@ |
|
|
|
|
|
|
|
mesh_index_pair out_mesh; |
|
|
|
out_mesh.x_index = out_mesh.y_index = -1; |
|
|
|
out_mesh.distance = -99999.99; |
|
|
|
out_mesh.distance = -99999.99f; |
|
|
|
|
|
|
|
for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) { |
|
|
|
for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { |
|
|
@ -1242,7 +1242,7 @@ |
|
|
|
found_a_NAN = true; |
|
|
|
|
|
|
|
int8_t closest_x = -1, closest_y = -1; |
|
|
|
float d1, d2 = 99999.9; |
|
|
|
float d1, d2 = 99999.9f; |
|
|
|
for (int8_t k = 0; k < GRID_MAX_POINTS_X; k++) { |
|
|
|
for (int8_t l = 0; l < GRID_MAX_POINTS_Y; l++) { |
|
|
|
if (!isnan(z_values[k][l])) { |
|
|
@ -1279,7 +1279,7 @@ |
|
|
|
if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing
|
|
|
|
out_mesh.x_index = GRID_MAX_POINTS_X / 2; |
|
|
|
out_mesh.y_index = GRID_MAX_POINTS_Y / 2; |
|
|
|
out_mesh.distance = 1.0; |
|
|
|
out_mesh.distance = 1; |
|
|
|
} |
|
|
|
return out_mesh; |
|
|
|
} |
|
|
@ -1287,13 +1287,13 @@ |
|
|
|
mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &rx, const float &ry, const bool probe_as_reference, uint16_t bits[16]) { |
|
|
|
mesh_index_pair out_mesh; |
|
|
|
out_mesh.x_index = out_mesh.y_index = -1; |
|
|
|
out_mesh.distance = -99999.9; |
|
|
|
out_mesh.distance = -99999.9f; |
|
|
|
|
|
|
|
// Get our reference position. Either the nozzle or probe location.
|
|
|
|
const float px = rx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0), |
|
|
|
py = ry - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0); |
|
|
|
|
|
|
|
float best_so_far = 99999.99; |
|
|
|
float best_so_far = 99999.99f; |
|
|
|
|
|
|
|
for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) { |
|
|
|
for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { |
|
|
@ -1320,7 +1320,7 @@ |
|
|
|
|
|
|
|
// factor in the distance from the current location for the normal case
|
|
|
|
// so the nozzle isn't running all over the bed.
|
|
|
|
distance += HYPOT(current_position[X_AXIS] - mx, current_position[Y_AXIS] - my) * 0.1; |
|
|
|
distance += HYPOT(current_position[X_AXIS] - mx, current_position[Y_AXIS] - my) * 0.1f; |
|
|
|
if (distance < best_so_far) { |
|
|
|
best_so_far = distance; // We found a closer location with
|
|
|
|
out_mesh.x_index = i; // the specified type of mesh value.
|
|
|
@ -1401,8 +1401,8 @@ |
|
|
|
lcd_refresh(); |
|
|
|
|
|
|
|
float new_z = z_values[location.x_index][location.y_index]; |
|
|
|
if (isnan(new_z)) new_z = 0.0; // Invalid points begin at 0
|
|
|
|
new_z = FLOOR(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
|
|
|
|
if (isnan(new_z)) new_z = 0; // Invalid points begin at 0
|
|
|
|
new_z = FLOOR(new_z * 1000) * 0.001f; // Chop off digits after the 1000ths place
|
|
|
|
|
|
|
|
lcd_mesh_edit_setup(new_z); |
|
|
|
|
|
|
@ -1461,7 +1461,7 @@ |
|
|
|
if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward?
|
|
|
|
z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.)
|
|
|
|
else |
|
|
|
z_values[x][y] = 2.0 * z_values[x1][y1] - z_values[x2][y2]; // Angled upward...
|
|
|
|
z_values[x][y] = 2.0f * z_values[x1][y1] - z_values[x2][y2]; // Angled upward...
|
|
|
|
return true; |
|
|
|
} |
|
|
|
return false; |
|
|
@ -1510,8 +1510,8 @@ |
|
|
|
|
|
|
|
float measured_z; |
|
|
|
|
|
|
|
const float dx = float(x_max - x_min) / (g29_grid_size - 1.0), |
|
|
|
dy = float(y_max - y_min) / (g29_grid_size - 1.0); |
|
|
|
const float dx = float(x_max - x_min) / (g29_grid_size - 1), |
|
|
|
dy = float(y_max - y_min) / (g29_grid_size - 1); |
|
|
|
|
|
|
|
struct linear_fit_data lsf_results; |
|
|
|
|
|
|
@ -1634,7 +1634,7 @@ |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal(); |
|
|
|
vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1).get_normal(); |
|
|
|
|
|
|
|
if (g29_verbose_level > 2) { |
|
|
|
SERIAL_ECHOPGM("bed plane normal = ["); |
|
|
@ -1713,7 +1713,7 @@ |
|
|
|
* The only difference is just 3 points are used in the calculations. That fact guarantees |
|
|
|
* each probed point should have an exact match when a get_z_correction() for that location |
|
|
|
* is calculated. The Z error between the probed point locations and the get_z_correction() |
|
|
|
* numbers for those locations should be 0.000 |
|
|
|
* numbers for those locations should be 0. |
|
|
|
*/ |
|
|
|
#if 0 |
|
|
|
float t, t1, d; |
|
|
@ -1743,13 +1743,13 @@ |
|
|
|
SERIAL_EOL(); |
|
|
|
|
|
|
|
t = normal.x * (Z_SAFE_HOMING_X_POINT) + normal.y * (Z_SAFE_HOMING_Y_POINT); |
|
|
|
d = t + normal.z * 0.000; |
|
|
|
d = t + normal.z * 0; |
|
|
|
SERIAL_ECHOPGM("D from home location with Z=0 : "); |
|
|
|
SERIAL_ECHO_F(d, 6); |
|
|
|
SERIAL_EOL(); |
|
|
|
|
|
|
|
t = normal.x * (Z_SAFE_HOMING_X_POINT) + normal.y * (Z_SAFE_HOMING_Y_POINT); |
|
|
|
d = t + get_z_correction(Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT); // normal.z * 0.000;
|
|
|
|
d = t + get_z_correction(Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT); // normal.z * 0;
|
|
|
|
SERIAL_ECHOPGM("D from home location using mesh value for Z: "); |
|
|
|
SERIAL_ECHO_F(d, 6); |
|
|
|
|
|
|
@ -1800,7 +1800,7 @@ |
|
|
|
if (TEST(bitmap[jx], jy)) { |
|
|
|
const float ry = mesh_index_to_ypos(jy), |
|
|
|
rz = z_values[jx][jy], |
|
|
|
w = 1.0 + weight_scaled / HYPOT((rx - px), (ry - py)); |
|
|
|
w = 1 + weight_scaled / HYPOT((rx - px), (ry - py)); |
|
|
|
incremental_WLSF(&lsf_results, rx, ry, rz, w); |
|
|
|
} |
|
|
|
} |
|
|
|