|
@ -742,7 +742,7 @@ float junction_deviation = 0.1; |
|
|
} |
|
|
} |
|
|
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
|
|
|
|
|
|
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
|
|
|
// Calculate moves/second for this move. No divide by zero due to previous checks.
|
|
|
float inverse_second = feed_rate * inverse_millimeters; |
|
|
float inverse_second = feed_rate * inverse_millimeters; |
|
|
|
|
|
|
|
|
int moves_queued = movesplanned(); |
|
|
int moves_queued = movesplanned(); |
|
@ -853,7 +853,7 @@ float junction_deviation = 0.1; |
|
|
|
|
|
|
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
|
float steps_per_mm = block->step_event_count / block->millimeters; |
|
|
float steps_per_mm = block->step_event_count / block->millimeters; |
|
|
long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS]; |
|
|
unsigned long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS]; |
|
|
if (bsx == 0 && bsy == 0 && bsz == 0) { |
|
|
if (bsx == 0 && bsy == 0 && bsz == 0) { |
|
|
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
|
|
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
|
|
} |
|
|
} |
|
@ -868,11 +868,12 @@ float junction_deviation = 0.1; |
|
|
xsteps = axis_steps_per_sqr_second[X_AXIS], |
|
|
xsteps = axis_steps_per_sqr_second[X_AXIS], |
|
|
ysteps = axis_steps_per_sqr_second[Y_AXIS], |
|
|
ysteps = axis_steps_per_sqr_second[Y_AXIS], |
|
|
zsteps = axis_steps_per_sqr_second[Z_AXIS], |
|
|
zsteps = axis_steps_per_sqr_second[Z_AXIS], |
|
|
esteps = axis_steps_per_sqr_second[E_AXIS]; |
|
|
esteps = axis_steps_per_sqr_second[E_AXIS], |
|
|
if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps; |
|
|
allsteps = block->step_event_count; |
|
|
if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps; |
|
|
if (xsteps < (acc_st * bsx) / allsteps) acc_st = (xsteps * allsteps) / bsx; |
|
|
if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps; |
|
|
if (ysteps < (acc_st * bsy) / allsteps) acc_st = (ysteps * allsteps) / bsy; |
|
|
if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps; |
|
|
if (zsteps < (acc_st * bsz) / allsteps) acc_st = (zsteps * allsteps) / bsz; |
|
|
|
|
|
if (esteps < (acc_st * bse) / allsteps) acc_st = (esteps * allsteps) / bse; |
|
|
|
|
|
|
|
|
block->acceleration_st = acc_st; |
|
|
block->acceleration_st = acc_st; |
|
|
block->acceleration = acc_st / steps_per_mm; |
|
|
block->acceleration = acc_st / steps_per_mm; |
|
|