diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index 85d7f34dc6..c4c551f017 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -155,18 +155,18 @@ void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor, NOLESS(initial_rate, 120); NOLESS(final_rate, 120); - long acceleration = block->acceleration_st; - int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration)); - int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration)); + long accel = block->acceleration_st; + int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)); + int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)); // Calculate the size of Plateau of Nominal Rate. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps; // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will - // have to use intersection_distance() to calculate when to abort acceleration and start braking + // have to use intersection_distance() to calculate when to abort accel and start braking // in order to reach the final_rate exactly at the end of this block. if (plateau_steps < 0) { - accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count)); + accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count)); accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero) plateau_steps = 0; diff --git a/Marlin/planner.h b/Marlin/planner.h index 7a9f96e66c..48773c5102 100644 --- a/Marlin/planner.h +++ b/Marlin/planner.h @@ -281,9 +281,9 @@ class Planner { * Calculate the distance (not time) it takes to accelerate * from initial_rate to target_rate using the given acceleration: */ - static float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) { - if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0 - return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2); + static float estimate_acceleration_distance(float initial_rate, float target_rate, float accel) { + if (accel == 0) return 0; // accel was 0, set acceleration distance to 0 + return (target_rate * target_rate - initial_rate * initial_rate) / (accel * 2); } /** @@ -294,9 +294,9 @@ class Planner { * This is used to compute the intersection point between acceleration and deceleration * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed) */ - static float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) { - if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0 - return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4); + static float intersection_distance(float initial_rate, float final_rate, float accel, float distance) { + if (accel == 0) return 0; // accel was 0, set intersection distance to 0 + return (accel * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (accel * 4); } /** @@ -304,8 +304,8 @@ class Planner { * to reach 'target_velocity' using 'acceleration' within a given * 'distance'. */ - static float max_allowable_speed(float acceleration, float target_velocity, float distance) { - return sqrt(target_velocity * target_velocity - 2 * acceleration * distance); + static float max_allowable_speed(float accel, float target_velocity, float distance) { + return sqrt(target_velocity * target_velocity - 2 * accel * distance); } static void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor);