|
|
@ -20,12 +20,14 @@ |
|
|
|
* |
|
|
|
*/ |
|
|
|
|
|
|
|
#include "Marlin.h" |
|
|
|
#include "MarlinConfig.h" |
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) |
|
|
|
//#include "vector_3.h"
|
|
|
|
//#include "qr_solve.h"
|
|
|
|
|
|
|
|
#include "UBL.h" |
|
|
|
#include "Marlin.h" |
|
|
|
#include "hex_print_routines.h" |
|
|
|
#include "configuration_store.h" |
|
|
|
#include "planner.h" |
|
|
@ -49,12 +51,13 @@ |
|
|
|
#define DEPLOY_PROBE() set_probe_deployed(true) |
|
|
|
#define STOW_PROBE() set_probe_deployed(false) |
|
|
|
bool ProbeStay = true; |
|
|
|
float ubl_3_point_1_X = UBL_PROBE_PT_1_X; |
|
|
|
float ubl_3_point_1_Y = UBL_PROBE_PT_1_Y; |
|
|
|
float ubl_3_point_2_X = UBL_PROBE_PT_2_X; |
|
|
|
float ubl_3_point_2_Y = UBL_PROBE_PT_2_Y; |
|
|
|
float ubl_3_point_3_X = UBL_PROBE_PT_3_X; |
|
|
|
float ubl_3_point_3_Y = UBL_PROBE_PT_3_Y; |
|
|
|
|
|
|
|
constexpr float ubl_3_point_1_X = UBL_PROBE_PT_1_X, |
|
|
|
ubl_3_point_1_Y = UBL_PROBE_PT_1_Y, |
|
|
|
ubl_3_point_2_X = UBL_PROBE_PT_2_X, |
|
|
|
ubl_3_point_2_Y = UBL_PROBE_PT_2_Y, |
|
|
|
ubl_3_point_3_X = UBL_PROBE_PT_3_X, |
|
|
|
ubl_3_point_3_Y = UBL_PROBE_PT_3_Y; |
|
|
|
|
|
|
|
#define SIZE_OF_LITTLE_RAISE 0 |
|
|
|
#define BIG_RAISE_NOT_NEEDED 0 |
|
|
@ -293,19 +296,16 @@ |
|
|
|
volatile uint8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update
|
|
|
|
|
|
|
|
// The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
|
|
|
|
static int g29_verbose_level = 0, test_value = 0, |
|
|
|
phase_value = -1, repetition_cnt = 1; |
|
|
|
static int g29_verbose_level = 0, phase_value = -1, repetition_cnt = 1, |
|
|
|
storage_slot = 0, test_pattern = 0; |
|
|
|
static bool repeat_flag = UBL_OK, c_flag = false, x_flag = UBL_OK, y_flag = UBL_OK, statistics_flag = UBL_OK, business_card_mode = false; |
|
|
|
static float x_pos = 0.0, y_pos = 0.0, height_value = 5.0, measured_z, card_thickness = 0.0, constant = 0.0; |
|
|
|
static int storage_slot = 0, test_pattern = 0; |
|
|
|
|
|
|
|
#if ENABLED(ULTRA_LCD) |
|
|
|
void lcd_setstatus(const char* message, bool persist); |
|
|
|
#endif |
|
|
|
|
|
|
|
void gcode_G29() { |
|
|
|
mesh_index_pair location; |
|
|
|
int j, k; |
|
|
|
float Z1, Z2, Z3; |
|
|
|
|
|
|
|
g29_verbose_level = 0; // These may change, but let's get some reasonable values into them.
|
|
|
@ -331,7 +331,7 @@ |
|
|
|
if (code_seen('I')) { |
|
|
|
repetition_cnt = code_has_value() ? code_value_int() : 1; |
|
|
|
while (repetition_cnt--) { |
|
|
|
location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL); // The '0' says we want to use the nozzle's position
|
|
|
|
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL); // The '0' says we want to use the nozzle's position
|
|
|
|
if (location.x_index < 0) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n"); |
|
|
|
break; // No more invalid Mesh Points to populate
|
|
|
@ -409,8 +409,8 @@ |
|
|
|
SERIAL_ECHOPAIR(",", y_pos); |
|
|
|
SERIAL_PROTOCOLLNPGM(")\n"); |
|
|
|
} |
|
|
|
probe_entire_mesh( x_pos+X_PROBE_OFFSET_FROM_EXTRUDER, y_pos+Y_PROBE_OFFSET_FROM_EXTRUDER, |
|
|
|
code_seen('O') || code_seen('M'), code_seen('E')); |
|
|
|
probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, |
|
|
|
code_seen('O') || code_seen('M'), code_seen('E')); |
|
|
|
break; |
|
|
|
//
|
|
|
|
// Manually Probe Mesh in areas that can not be reached by the probe
|
|
|
@ -455,7 +455,7 @@ |
|
|
|
// If no repetition is specified, do the whole Mesh
|
|
|
|
if (!repeat_flag) repetition_cnt = 9999; |
|
|
|
while (repetition_cnt--) { |
|
|
|
location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL); // The '0' says we want to use the nozzle's position
|
|
|
|
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL); // The '0' says we want to use the nozzle's position
|
|
|
|
if (location.x_index < 0) break; // No more invalid Mesh Points to populate
|
|
|
|
z_values[location.x_index][location.y_index] = height_value; |
|
|
|
} |
|
|
@ -534,8 +534,7 @@ |
|
|
|
if (code_seen('L')) { // Load Current Mesh Data
|
|
|
|
storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; |
|
|
|
|
|
|
|
k = E2END - sizeof(ubl.state); |
|
|
|
j = (k - ubl_eeprom_start) / sizeof(z_values); |
|
|
|
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); |
|
|
|
|
|
|
|
if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); |
|
|
@ -569,8 +568,7 @@ |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
int k = E2END - sizeof(ubl.state), |
|
|
|
j = (k - ubl_eeprom_start) / sizeof(z_values); |
|
|
|
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); |
|
|
|
|
|
|
|
if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); |
|
|
@ -691,7 +689,7 @@ |
|
|
|
z_values[x][y] -= mean + constant; |
|
|
|
} |
|
|
|
|
|
|
|
void shift_mesh_height( ) { |
|
|
|
void shift_mesh_height() { |
|
|
|
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) |
|
|
|
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) |
|
|
|
if (!isnan(z_values[x][y])) |
|
|
@ -702,9 +700,8 @@ |
|
|
|
* Probe all invalidated locations of the mesh that can be reached by the probe. |
|
|
|
* This attempts to fill in locations closest to the nozzle's start location first. |
|
|
|
*/ |
|
|
|
void probe_entire_mesh(float x_pos, float y_pos, bool do_ubl_mesh_map, bool stow_probe) { |
|
|
|
void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe) { |
|
|
|
mesh_index_pair location; |
|
|
|
float xProbe, yProbe, measured_z; |
|
|
|
|
|
|
|
ubl_has_control_of_lcd_panel++; |
|
|
|
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
|
|
@ -720,20 +717,22 @@ |
|
|
|
restore_ubl_active_state_and_leave(); |
|
|
|
return; |
|
|
|
} |
|
|
|
location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 1, NULL); // the '1' says we want the location to be relative to the probe
|
|
|
|
|
|
|
|
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL); // the '1' says we want the location to be relative to the probe
|
|
|
|
if (location.x_index >= 0 && location.y_index >= 0) { |
|
|
|
xProbe = ubl.map_x_index_to_bed_location(location.x_index); |
|
|
|
yProbe = ubl.map_y_index_to_bed_location(location.y_index); |
|
|
|
const float xProbe = ubl.map_x_index_to_bed_location(location.x_index), |
|
|
|
yProbe = ubl.map_y_index_to_bed_location(location.y_index); |
|
|
|
if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed."); |
|
|
|
ubl_has_control_of_lcd_panel = false; |
|
|
|
goto LEAVE; |
|
|
|
} |
|
|
|
measured_z = probe_pt(xProbe, yProbe, stow_probe, g29_verbose_level); |
|
|
|
const float measured_z = probe_pt(xProbe, yProbe, stow_probe, g29_verbose_level); |
|
|
|
z_values[location.x_index][location.y_index] = measured_z + Z_PROBE_OFFSET_FROM_EXTRUDER; |
|
|
|
} |
|
|
|
|
|
|
|
if (do_ubl_mesh_map) ubl.display_map(1); |
|
|
|
|
|
|
|
} while (location.x_index >= 0 && location.y_index >= 0); |
|
|
|
|
|
|
|
LEAVE: |
|
|
@ -742,32 +741,27 @@ |
|
|
|
STOW_PROBE(); |
|
|
|
restore_ubl_active_state_and_leave(); |
|
|
|
|
|
|
|
x_pos = constrain(x_pos - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS); |
|
|
|
y_pos = constrain(y_pos - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS); |
|
|
|
|
|
|
|
do_blocking_move_to_xy(x_pos, y_pos); |
|
|
|
do_blocking_move_to_xy( |
|
|
|
constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS), |
|
|
|
constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS) |
|
|
|
); |
|
|
|
} |
|
|
|
|
|
|
|
vector tilt_mesh_based_on_3pts(float pt1, float pt2, float pt3) { |
|
|
|
vector v1, v2, normal; |
|
|
|
vector_3 tilt_mesh_based_on_3pts(const float &pt1, const float &pt2, const float &pt3) { |
|
|
|
float c, d, t; |
|
|
|
int i, j; |
|
|
|
|
|
|
|
v1.dx = (ubl_3_point_1_X - ubl_3_point_2_X); |
|
|
|
v1.dy = (ubl_3_point_1_Y - ubl_3_point_2_Y); |
|
|
|
v1.dz = (pt1 - pt2); |
|
|
|
|
|
|
|
v2.dx = (ubl_3_point_3_X - ubl_3_point_2_X); |
|
|
|
v2.dy = (ubl_3_point_3_Y - ubl_3_point_2_Y); |
|
|
|
v2.dz = (pt3 - pt2); |
|
|
|
vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X), |
|
|
|
(ubl_3_point_1_Y - ubl_3_point_2_Y), |
|
|
|
(pt1 - pt2) ), |
|
|
|
|
|
|
|
// do cross product
|
|
|
|
v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X), |
|
|
|
(ubl_3_point_3_Y - ubl_3_point_2_Y), |
|
|
|
(pt3 - pt2) ), |
|
|
|
|
|
|
|
normal.dx = v1.dy * v2.dz - v1.dz * v2.dy; |
|
|
|
normal.dy = v1.dz * v2.dx - v1.dx * v2.dz; |
|
|
|
normal.dz = v1.dx * v2.dy - v1.dy * v2.dx; |
|
|
|
normal = vector_3::cross(v1, v2); |
|
|
|
|
|
|
|
// printf("[%f,%f,%f] ", normal.dx, normal.dy, normal.dz);
|
|
|
|
// printf("[%f,%f,%f] ", normal.x, normal.y, normal.z);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This code does two things. This vector is normal to the tilted plane. |
|
|
@ -776,31 +770,32 @@ |
|
|
|
* We also need Z to be unity because we are going to be treating this triangle |
|
|
|
* as the sin() and cos() of the bed's tilt |
|
|
|
*/ |
|
|
|
normal.dx /= normal.dz; |
|
|
|
normal.dy /= normal.dz; |
|
|
|
normal.dz /= normal.dz; |
|
|
|
const float inv_z = 1.0 / normal.z; |
|
|
|
normal.x *= inv_z; |
|
|
|
normal.y *= inv_z; |
|
|
|
normal.z = 1.0; |
|
|
|
|
|
|
|
//
|
|
|
|
// All of 3 of these points should give us the same d constant
|
|
|
|
//
|
|
|
|
t = normal.dx * ubl_3_point_1_X + normal.dy * ubl_3_point_1_Y; |
|
|
|
d = t + normal.dz * pt1; |
|
|
|
t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y; |
|
|
|
d = t + normal.z * pt1; |
|
|
|
c = d - t; |
|
|
|
SERIAL_ECHOPGM("d from 1st point: "); |
|
|
|
SERIAL_ECHO_F(d, 6); |
|
|
|
SERIAL_ECHOPGM(" c: "); |
|
|
|
SERIAL_ECHO_F(c, 6); |
|
|
|
SERIAL_EOL; |
|
|
|
t = normal.dx * ubl_3_point_2_X + normal.dy * ubl_3_point_2_Y; |
|
|
|
d = t + normal.dz * pt2; |
|
|
|
t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y; |
|
|
|
d = t + normal.z * pt2; |
|
|
|
c = d - t; |
|
|
|
SERIAL_ECHOPGM("d from 2nd point: "); |
|
|
|
SERIAL_ECHO_F(d, 6); |
|
|
|
SERIAL_ECHOPGM(" c: "); |
|
|
|
SERIAL_ECHO_F(c, 6); |
|
|
|
SERIAL_EOL; |
|
|
|
t = normal.dx * ubl_3_point_3_X + normal.dy * ubl_3_point_3_Y; |
|
|
|
d = t + normal.dz * pt3; |
|
|
|
t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y; |
|
|
|
d = t + normal.z * pt3; |
|
|
|
c = d - t; |
|
|
|
SERIAL_ECHOPGM("d from 3rd point: "); |
|
|
|
SERIAL_ECHO_F(d, 6); |
|
|
@ -810,7 +805,7 @@ |
|
|
|
|
|
|
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { |
|
|
|
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { |
|
|
|
c = -((normal.dx * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.dy * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d); |
|
|
|
c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d); |
|
|
|
z_values[i][j] += c; |
|
|
|
} |
|
|
|
} |
|
|
@ -829,7 +824,7 @@ |
|
|
|
return current_position[Z_AXIS]; |
|
|
|
} |
|
|
|
|
|
|
|
float measure_business_card_thickness(float height_value) { |
|
|
|
float measure_business_card_thickness(const float &height_value) { |
|
|
|
|
|
|
|
ubl_has_control_of_lcd_panel++; |
|
|
|
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
|
|
@ -856,44 +851,45 @@ |
|
|
|
return abs(Z1 - Z2); |
|
|
|
} |
|
|
|
|
|
|
|
void manually_probe_remaining_mesh(float x_pos, float y_pos, float z_clearance, float card_thickness, bool do_ubl_mesh_map) { |
|
|
|
mesh_index_pair location; |
|
|
|
float last_x, last_y, dx, dy, |
|
|
|
xProbe, yProbe; |
|
|
|
void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) { |
|
|
|
|
|
|
|
ubl_has_control_of_lcd_panel++; |
|
|
|
last_x = last_y = -9999.99; |
|
|
|
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
|
|
|
do_blocking_move_to_z(z_clearance); |
|
|
|
do_blocking_move_to_xy(x_pos, y_pos); |
|
|
|
do_blocking_move_to_xy(lx, ly); |
|
|
|
|
|
|
|
float last_x = -9999.99, last_y = -9999.99; |
|
|
|
mesh_index_pair location; |
|
|
|
do { |
|
|
|
if (do_ubl_mesh_map) ubl.display_map(1); |
|
|
|
|
|
|
|
location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL); // The '0' says we want to use the nozzle's position
|
|
|
|
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL); // The '0' says we want to use the nozzle's position
|
|
|
|
// It doesn't matter if the probe can not reach the
|
|
|
|
// NAN location. This is a manual probe.
|
|
|
|
if (location.x_index < 0 && location.y_index < 0) continue; |
|
|
|
|
|
|
|
xProbe = ubl.map_x_index_to_bed_location(location.x_index); |
|
|
|
yProbe = ubl.map_y_index_to_bed_location(location.y_index); |
|
|
|
const float xProbe = ubl.map_x_index_to_bed_location(location.x_index), |
|
|
|
yProbe = ubl.map_y_index_to_bed_location(location.y_index); |
|
|
|
|
|
|
|
// Modify to use if (position_is_reachable(pos[XYZ]))
|
|
|
|
if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed."); |
|
|
|
ubl_has_control_of_lcd_panel = false; |
|
|
|
goto LEAVE; |
|
|
|
} |
|
|
|
|
|
|
|
dx = xProbe - last_x; |
|
|
|
dy = yProbe - last_y; |
|
|
|
const float dx = xProbe - last_x, |
|
|
|
dy = yProbe - last_y; |
|
|
|
|
|
|
|
if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED) |
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); |
|
|
|
else |
|
|
|
do_blocking_move_to_z(z_clearance); |
|
|
|
|
|
|
|
do_blocking_move_to_xy(xProbe, yProbe); |
|
|
|
|
|
|
|
last_x = xProbe; |
|
|
|
last_y = yProbe; |
|
|
|
do_blocking_move_to_xy(xProbe, yProbe); |
|
|
|
|
|
|
|
wait_for_user = true; |
|
|
|
while (wait_for_user) { // we need the loop to move the nozzle based on the encoder wheel here!
|
|
|
@ -931,7 +927,7 @@ |
|
|
|
LEAVE: |
|
|
|
restore_ubl_active_state_and_leave(); |
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); |
|
|
|
do_blocking_move_to_xy(x_pos, y_pos); |
|
|
|
do_blocking_move_to_xy(lx, ly); |
|
|
|
} |
|
|
|
|
|
|
|
bool g29_parameter_parsing() { |
|
|
@ -983,7 +979,7 @@ |
|
|
|
ubl.store_state(); |
|
|
|
} |
|
|
|
|
|
|
|
if ((c_flag = code_seen('C')) && code_has_value()) |
|
|
|
if ((c_flag = code_seen('C') && code_has_value())) |
|
|
|
constant = code_value_float(); |
|
|
|
|
|
|
|
if (code_seen('D')) { // Disable the Unified Bed Leveling System
|
|
|
@ -992,19 +988,17 @@ |
|
|
|
ubl.store_state(); |
|
|
|
} |
|
|
|
|
|
|
|
if (code_seen('F')) { |
|
|
|
ubl.state.g29_correction_fade_height = 10.00; |
|
|
|
if (code_has_value()) { |
|
|
|
ubl.state.g29_correction_fade_height = code_value_float(); |
|
|
|
ubl.state.g29_fade_height_multiplier = 1.0 / ubl.state.g29_correction_fade_height; |
|
|
|
} |
|
|
|
if (ubl.state.g29_correction_fade_height < 0.0 || ubl.state.g29_correction_fade_height > 100.0) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n"); |
|
|
|
ubl.state.g29_correction_fade_height = 10.00; |
|
|
|
ubl.state.g29_fade_height_multiplier = 1.0 / ubl.state.g29_correction_fade_height; |
|
|
|
return UBL_ERR; |
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
|
|
|
if (code_seen('F') && code_has_value()) { |
|
|
|
const float fh = code_value_float(); |
|
|
|
if (fh < 0.0 || fh > 100.0) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
ubl.state.g29_correction_fade_height = fh; |
|
|
|
ubl.state.g29_fade_height_multiplier = 1.0 / fh; |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
if ((repeat_flag = code_seen('R'))) { |
|
|
|
repetition_cnt = code_has_value() ? code_value_int() : 9999; |
|
|
@ -1020,7 +1014,7 @@ |
|
|
|
* This function goes away after G29 debug is complete. But for right now, it is a handy |
|
|
|
* routine to dump binary data structures. |
|
|
|
*/ |
|
|
|
void dump(char *str, float f) { |
|
|
|
void dump(char * const str, const float &f) { |
|
|
|
char *ptr; |
|
|
|
|
|
|
|
SERIAL_PROTOCOL(str); |
|
|
@ -1056,7 +1050,6 @@ |
|
|
|
} |
|
|
|
ubl_state_at_invocation = ubl.state.active; |
|
|
|
ubl.state.active = 0; |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
void restore_ubl_active_state_and_leave() { |
|
|
@ -1075,33 +1068,27 @@ |
|
|
|
* good to have the extra information. Soon... we prune this to just a few items |
|
|
|
*/ |
|
|
|
void g29_what_command() { |
|
|
|
int k = E2END - ubl_eeprom_start; |
|
|
|
const uint16_t k = E2END - ubl_eeprom_start; |
|
|
|
statistics_flag++; |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 "); |
|
|
|
if (ubl.state.active) |
|
|
|
SERIAL_PROTOCOLPGM("Active.\n"); |
|
|
|
else |
|
|
|
SERIAL_PROTOCOLPGM("Inactive.\n"); |
|
|
|
SERIAL_EOL; |
|
|
|
ubl.state.active ? SERIAL_PROTOCOLCHAR('A') : SERIAL_PROTOCOLPGM("In"); |
|
|
|
SERIAL_PROTOCOLLNPGM("ctive.\n"); |
|
|
|
delay(50); |
|
|
|
|
|
|
|
if (ubl.state.eeprom_storage_slot == 0xFFFF) { |
|
|
|
if (ubl.state.eeprom_storage_slot == -1) |
|
|
|
SERIAL_PROTOCOLPGM("No Mesh Loaded."); |
|
|
|
} |
|
|
|
else { |
|
|
|
SERIAL_PROTOCOLPGM("Mesh: "); |
|
|
|
prt_hex_word(ubl.state.eeprom_storage_slot); |
|
|
|
SERIAL_PROTOCOLPGM(" Loaded. "); |
|
|
|
SERIAL_PROTOCOLPGM(" Loaded."); |
|
|
|
} |
|
|
|
|
|
|
|
SERIAL_EOL; |
|
|
|
delay(50); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPAIR("g29_correction_fade_height : ", ubl.state.g29_correction_fade_height ); |
|
|
|
SERIAL_EOL; |
|
|
|
|
|
|
|
idle(); |
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
|
|
|
SERIAL_PROTOCOLPAIR("g29_correction_fade_height : ", ubl.state.g29_correction_fade_height); |
|
|
|
SERIAL_EOL; |
|
|
|
#endif |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("z_offset: "); |
|
|
|
SERIAL_PROTOCOL_F(ubl.state.z_offset, 6); |
|
|
@ -1111,28 +1098,20 @@ |
|
|
|
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { |
|
|
|
SERIAL_PROTOCOL_F( ubl.map_x_index_to_bed_location(i), 1); |
|
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
|
delay(10); |
|
|
|
} |
|
|
|
SERIAL_EOL; |
|
|
|
delay(50); |
|
|
|
idle(); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); |
|
|
|
for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) { |
|
|
|
SERIAL_PROTOCOL_F( ubl.map_y_index_to_bed_location(i), 1); |
|
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
|
delay(10); |
|
|
|
} |
|
|
|
SERIAL_EOL; |
|
|
|
delay(50); |
|
|
|
idle(); |
|
|
|
|
|
|
|
#if HAS_KILL |
|
|
|
SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN); |
|
|
|
SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN)); |
|
|
|
#endif |
|
|
|
delay(50); |
|
|
|
idle(); |
|
|
|
SERIAL_EOL; |
|
|
|
|
|
|
|
SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation); |
|
|
@ -1142,54 +1121,39 @@ |
|
|
|
SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x"); |
|
|
|
prt_hex_word(ubl_eeprom_start); |
|
|
|
SERIAL_EOL; |
|
|
|
delay(50); |
|
|
|
idle(); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("end of EEPROM : "); |
|
|
|
prt_hex_word(E2END); |
|
|
|
SERIAL_EOL; |
|
|
|
delay(50); |
|
|
|
idle(); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl)); |
|
|
|
SERIAL_EOL; |
|
|
|
SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values)); |
|
|
|
SERIAL_EOL; |
|
|
|
delay(50); |
|
|
|
idle(); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("EEPROM free for UBL: 0x"); |
|
|
|
prt_hex_word(k); |
|
|
|
SERIAL_EOL; |
|
|
|
idle(); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("EEPROM can hold 0x"); |
|
|
|
prt_hex_word(k / sizeof(z_values)); |
|
|
|
SERIAL_PROTOCOLLNPGM(" meshes.\n"); |
|
|
|
delay(50); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("sizeof(ubl.state) :"); |
|
|
|
prt_hex_word(sizeof(ubl.state)); |
|
|
|
idle(); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS); |
|
|
|
SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS); |
|
|
|
SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X); |
|
|
|
delay(50); |
|
|
|
idle(); |
|
|
|
SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y); |
|
|
|
SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X); |
|
|
|
SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y); |
|
|
|
delay(50); |
|
|
|
idle(); |
|
|
|
SERIAL_PROTOCOLPGM("\nMESH_X_DIST "); |
|
|
|
SERIAL_PROTOCOL_F(MESH_X_DIST, 6); |
|
|
|
SERIAL_PROTOCOLPGM("\nMESH_Y_DIST "); |
|
|
|
SERIAL_PROTOCOL_F(MESH_Y_DIST, 6); |
|
|
|
SERIAL_EOL; |
|
|
|
|
|
|
|
idle(); |
|
|
|
|
|
|
|
if (!ubl.sanity_check()) |
|
|
|
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed."); |
|
|
|
} |
|
|
@ -1205,7 +1169,7 @@ |
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_ECHOLNPGM("EEPROM Dump:"); |
|
|
|
for (uint16_t i = 0; i < E2END + 1; i += 16) { |
|
|
|
if (i & 0x3 == 0) idle(); |
|
|
|
if (!(i & 0x3)) idle(); |
|
|
|
prt_hex_word(i); |
|
|
|
SERIAL_ECHOPGM(": "); |
|
|
|
for (uint16_t j = 0; j < 16; j++) { |
|
|
@ -1217,7 +1181,6 @@ |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
SERIAL_EOL; |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
@ -1233,15 +1196,14 @@ |
|
|
|
} |
|
|
|
storage_slot = code_value_int(); |
|
|
|
|
|
|
|
uint16_t k = E2END - sizeof(ubl.state), |
|
|
|
j = (k - ubl_eeprom_start) / sizeof(tmp_z_values); |
|
|
|
int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(tmp_z_values); |
|
|
|
|
|
|
|
if (storage_slot < 0 || storage_slot > j || ubl_eeprom_start <= 0) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
j = k - (storage_slot + 1) * sizeof(tmp_z_values); |
|
|
|
j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values); |
|
|
|
eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values)); |
|
|
|
|
|
|
|
SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot); |
|
|
@ -1254,23 +1216,19 @@ |
|
|
|
z_values[x][y] = z_values[x][y] - tmp_z_values[x][y]; |
|
|
|
} |
|
|
|
|
|
|
|
mesh_index_pair find_closest_mesh_point_of_type(MeshPointType type, float X, float Y, bool probe_as_reference, unsigned int bits[16]) { |
|
|
|
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16]) { |
|
|
|
int i, j; |
|
|
|
float f, px, py, mx, my, dx, dy, closest = 99999.99, |
|
|
|
current_x, current_y, distance; |
|
|
|
float closest = 99999.99; |
|
|
|
mesh_index_pair return_val; |
|
|
|
|
|
|
|
return_val.x_index = return_val.y_index = -1; |
|
|
|
|
|
|
|
current_x = current_position[X_AXIS]; |
|
|
|
current_y = current_position[Y_AXIS]; |
|
|
|
const float current_x = current_position[X_AXIS], |
|
|
|
current_y = current_position[Y_AXIS]; |
|
|
|
|
|
|
|
px = X; // Get our reference position. Either the nozzle or
|
|
|
|
py = Y; // the probe location.
|
|
|
|
if (probe_as_reference) { |
|
|
|
px -= X_PROBE_OFFSET_FROM_EXTRUDER; |
|
|
|
py -= Y_PROBE_OFFSET_FROM_EXTRUDER; |
|
|
|
} |
|
|
|
// Get our reference position. Either the nozzle or probe location.
|
|
|
|
const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0), |
|
|
|
py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0); |
|
|
|
|
|
|
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { |
|
|
|
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { |
|
|
@ -1282,24 +1240,20 @@ |
|
|
|
|
|
|
|
// We only get here if we found a Mesh Point of the specified type
|
|
|
|
|
|
|
|
mx = ubl.map_x_index_to_bed_location(i); // Check if we can probe this mesh location
|
|
|
|
my = ubl.map_y_index_to_bed_location(j); |
|
|
|
const float mx = LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), // Check if we can probe this mesh location
|
|
|
|
my = LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(j)); |
|
|
|
|
|
|
|
// If we are using the probe as the reference there are some locations we can't get to.
|
|
|
|
// We prune these out of the list and ignore them until the next Phase where we do the
|
|
|
|
// manual nozzle probing.
|
|
|
|
|
|
|
|
|
|
|
|
if (probe_as_reference && |
|
|
|
( mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X) || my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y) ) |
|
|
|
(mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X) || my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y)) |
|
|
|
) continue; |
|
|
|
|
|
|
|
dx = px - mx; // We can get to it. Let's see if it is the
|
|
|
|
dy = py - my; // closest location to the nozzle.
|
|
|
|
distance = HYPOT(dx, dy); |
|
|
|
|
|
|
|
dx = current_x - mx; // We are going to add in a weighting factor that considers
|
|
|
|
dy = current_y - my; // the current location of the nozzle. If two locations are equal
|
|
|
|
distance += HYPOT(dx, dy) * 0.01; // distance from the measurement location, we are going to give
|
|
|
|
// We can get to it. Let's see if it is the closest location to the nozzle.
|
|
|
|
// Add in a weighting factor that considers the current location of the nozzle.
|
|
|
|
const float distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.01; |
|
|
|
|
|
|
|
if (distance < closest) { |
|
|
|
closest = distance; // We found a closer location with
|
|
|
@ -1313,10 +1267,9 @@ |
|
|
|
return return_val; |
|
|
|
} |
|
|
|
|
|
|
|
void fine_tune_mesh(float x_pos, float y_pos, bool do_ubl_mesh_map) { |
|
|
|
void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) { |
|
|
|
mesh_index_pair location; |
|
|
|
float xProbe, yProbe; |
|
|
|
uint16_t i, not_done[16]; |
|
|
|
uint16_t not_done[16]; |
|
|
|
int32_t round_off; |
|
|
|
|
|
|
|
save_ubl_active_state_and_disable(); |
|
|
@ -1327,11 +1280,11 @@ |
|
|
|
#endif |
|
|
|
|
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); |
|
|
|
do_blocking_move_to_xy(x_pos, y_pos); |
|
|
|
do_blocking_move_to_xy(lx, ly); |
|
|
|
do { |
|
|
|
if (do_ubl_mesh_map) ubl.display_map(1); |
|
|
|
|
|
|
|
location = find_closest_mesh_point_of_type( SET_IN_BITMAP, x_pos, y_pos, 0, not_done); // The '0' says we want to use the nozzle's position
|
|
|
|
location = find_closest_mesh_point_of_type( SET_IN_BITMAP, lx, ly, 0, not_done); // The '0' says we want to use the nozzle's position
|
|
|
|
// It doesn't matter if the probe can not reach this
|
|
|
|
// location. This is a manual edit of the Mesh Point.
|
|
|
|
if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
|
|
|
@ -1339,8 +1292,8 @@ |
|
|
|
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
|
|
|
|
// different location the next time through the loop
|
|
|
|
|
|
|
|
xProbe = ubl.map_x_index_to_bed_location(location.x_index); |
|
|
|
yProbe = ubl.map_y_index_to_bed_location(location.y_index); |
|
|
|
const float xProbe = ubl.map_x_index_to_bed_location(location.x_index), |
|
|
|
yProbe = ubl.map_y_index_to_bed_location(location.y_index); |
|
|
|
if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check.
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now,
|
|
|
|
ubl_has_control_of_lcd_panel = false; // Let's do the check.
|
|
|
@ -1406,7 +1359,7 @@ |
|
|
|
restore_ubl_active_state_and_leave(); |
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); |
|
|
|
|
|
|
|
do_blocking_move_to_xy(x_pos, y_pos); |
|
|
|
do_blocking_move_to_xy(lx, ly); |
|
|
|
|
|
|
|
#if ENABLED(ULTRA_LCD) |
|
|
|
lcd_setstatus("Done Editing Mesh", true); |
|
|
|