|
|
@ -39,6 +39,32 @@ struct IF { typedef R type; }; |
|
|
|
template <class L, class R> |
|
|
|
struct IF<true, L, R> { typedef L type; }; |
|
|
|
|
|
|
|
#define LINEAR_AXIS_GANG(V...) GANG_N(LINEAR_AXES, V) |
|
|
|
#define LINEAR_AXIS_CODE(V...) CODE_N(LINEAR_AXES, V) |
|
|
|
#define LINEAR_AXIS_LIST(V...) LIST_N(LINEAR_AXES, V) |
|
|
|
#define LINEAR_AXIS_ARRAY(V...) { LINEAR_AXIS_LIST(V) } |
|
|
|
#define LINEAR_AXIS_ARGS(T...) LINEAR_AXIS_LIST(T x, T y, T z, T i, T j, T k) |
|
|
|
#define LINEAR_AXIS_ELEM(O) LINEAR_AXIS_LIST(O.x, O.y, O.z, O.i, O.j, O.k) |
|
|
|
#define LINEAR_AXIS_DEFS(T,V) LINEAR_AXIS_LIST(T x=V, T y=V, T z=V, T i=V, T j=V, T k=V) |
|
|
|
|
|
|
|
#define LOGICAL_AXIS_GANG(E,V...) LINEAR_AXIS_GANG(V) GANG_ITEM_E(E) |
|
|
|
#define LOGICAL_AXIS_CODE(E,V...) LINEAR_AXIS_CODE(V) CODE_ITEM_E(E) |
|
|
|
#define LOGICAL_AXIS_LIST(E,V...) LINEAR_AXIS_LIST(V) LIST_ITEM_E(E) |
|
|
|
#define LOGICAL_AXIS_ARRAY(E,V...) { LOGICAL_AXIS_LIST(E,V) } |
|
|
|
#define LOGICAL_AXIS_ARGS(T...) LOGICAL_AXIS_LIST(T e, T x, T y, T z, T i, T j, T k) |
|
|
|
#define LOGICAL_AXIS_ELEM(O) LOGICAL_AXIS_LIST(O.e, O.x, O.y, O.z, O.i, O.j, O.k) |
|
|
|
#define LOGICAL_AXIS_DECL(T,V) LOGICAL_AXIS_LIST(T e=V, T x=V, T y=V, T z=V, T i=V, T j=V, T k=V) |
|
|
|
|
|
|
|
#if HAS_EXTRUDERS |
|
|
|
#define LIST_ITEM_E(N) , N |
|
|
|
#define CODE_ITEM_E(N) ; N |
|
|
|
#define GANG_ITEM_E(N) N |
|
|
|
#else |
|
|
|
#define LIST_ITEM_E(N) |
|
|
|
#define CODE_ITEM_E(N) |
|
|
|
#define GANG_ITEM_E(N) |
|
|
|
#endif |
|
|
|
|
|
|
|
//
|
|
|
|
// Enumerated axis indices
|
|
|
|
//
|
|
|
@ -47,16 +73,43 @@ struct IF<true, L, R> { typedef L type; }; |
|
|
|
// - X_HEAD, Y_HEAD, and Z_HEAD should be used for Steppers on Core kinematics
|
|
|
|
//
|
|
|
|
enum AxisEnum : uint8_t { |
|
|
|
X_AXIS = 0, A_AXIS = X_AXIS, |
|
|
|
Y_AXIS = 1, B_AXIS = Y_AXIS, |
|
|
|
Z_AXIS = 2, C_AXIS = Z_AXIS, |
|
|
|
E_AXIS, |
|
|
|
X_HEAD, Y_HEAD, Z_HEAD, |
|
|
|
E0_AXIS = E_AXIS, |
|
|
|
E1_AXIS, E2_AXIS, E3_AXIS, E4_AXIS, E5_AXIS, E6_AXIS, E7_AXIS, |
|
|
|
ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF |
|
|
|
|
|
|
|
// Linear axes may be controlled directly or indirectly
|
|
|
|
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS) |
|
|
|
|
|
|
|
// Extruder axes may be considered distinctly
|
|
|
|
#define _EN_ITEM(N) , E##N##_AXIS |
|
|
|
REPEAT(EXTRUDERS, _EN_ITEM) |
|
|
|
#undef _EN_ITEM |
|
|
|
|
|
|
|
// Core also keeps toolhead directions
|
|
|
|
#if EITHER(IS_CORE, MARKFORGED_XY) |
|
|
|
, X_HEAD, Y_HEAD, Z_HEAD |
|
|
|
#endif |
|
|
|
|
|
|
|
// Distinct axes, including all E and Core
|
|
|
|
, NUM_AXIS_ENUMS |
|
|
|
|
|
|
|
// Most of the time we refer only to the single E_AXIS
|
|
|
|
#if HAS_EXTRUDERS |
|
|
|
, E_AXIS = E0_AXIS |
|
|
|
#endif |
|
|
|
|
|
|
|
// A, B, and C are for DELTA, SCARA, etc.
|
|
|
|
, A_AXIS = X_AXIS |
|
|
|
#if LINEAR_AXES >= 2 |
|
|
|
, B_AXIS = Y_AXIS |
|
|
|
#endif |
|
|
|
#if LINEAR_AXES >= 3 |
|
|
|
, C_AXIS = Z_AXIS |
|
|
|
#endif |
|
|
|
|
|
|
|
// To refer to all or none
|
|
|
|
, ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF |
|
|
|
}; |
|
|
|
|
|
|
|
typedef IF<(NUM_AXIS_ENUMS > 8), uint16_t, uint8_t>::type axis_bits_t; |
|
|
|
|
|
|
|
//
|
|
|
|
// Loop over axes
|
|
|
|
//
|
|
|
@ -185,7 +238,7 @@ void toNative(xyz_pos_t &raw); |
|
|
|
void toNative(xyze_pos_t &raw); |
|
|
|
|
|
|
|
//
|
|
|
|
// XY coordinates, counters, etc.
|
|
|
|
// Paired XY coordinates, counters, flags, etc.
|
|
|
|
//
|
|
|
|
template<typename T> |
|
|
|
struct XYval { |
|
|
@ -194,18 +247,34 @@ struct XYval { |
|
|
|
struct { T a, b; }; |
|
|
|
T pos[2]; |
|
|
|
}; |
|
|
|
|
|
|
|
// Set all to 0
|
|
|
|
FI void reset() { x = y = 0; } |
|
|
|
|
|
|
|
// Setters taking struct types and arrays
|
|
|
|
FI void set(const T px) { x = px; } |
|
|
|
FI void set(const T px, const T py) { x = px; y = py; } |
|
|
|
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; } |
|
|
|
FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; } |
|
|
|
FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; } |
|
|
|
#if DISTINCT_AXES > LOGICAL_AXES |
|
|
|
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; } |
|
|
|
#if HAS_Y_AXIS |
|
|
|
FI void set(const T px, const T py) { x = px; y = py; } |
|
|
|
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; } |
|
|
|
#endif |
|
|
|
FI void reset() { x = y = 0; } |
|
|
|
#if LINEAR_AXES > XY |
|
|
|
FI void set(const T (&arr)[LINEAR_AXES]) { x = arr[0]; y = arr[1]; } |
|
|
|
#endif |
|
|
|
#if LOGICAL_AXES > LINEAR_AXES |
|
|
|
FI void set(const T (&arr)[LOGICAL_AXES]) { x = arr[0]; y = arr[1]; } |
|
|
|
#if DISTINCT_AXES > LOGICAL_AXES |
|
|
|
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; } |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
// Length reduced to one dimension
|
|
|
|
FI T magnitude() const { return (T)sqrtf(x*x + y*y); } |
|
|
|
// Pointer to the data as a simple array
|
|
|
|
FI operator T* () { return pos; } |
|
|
|
// If any element is true then it's true
|
|
|
|
FI operator bool() { return x || y; } |
|
|
|
|
|
|
|
// Explicit copy and copies with conversion
|
|
|
|
FI XYval<T> copy() const { return *this; } |
|
|
|
FI XYval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)) }; } |
|
|
|
FI XYval<int16_t> asInt() { return { int16_t(x), int16_t(y) }; } |
|
|
@ -217,17 +286,27 @@ struct XYval { |
|
|
|
FI XYval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y) }; } |
|
|
|
FI XYval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y) }; } |
|
|
|
FI XYval<float> reciprocal() const { return { _RECIP(x), _RECIP(y) }; } |
|
|
|
|
|
|
|
// Marlin workspace shifting is done with G92 and M206
|
|
|
|
FI XYval<float> asLogical() const { XYval<float> o = asFloat(); toLogical(o); return o; } |
|
|
|
FI XYval<float> asNative() const { XYval<float> o = asFloat(); toNative(o); return o; } |
|
|
|
|
|
|
|
// Cast to a type with more fields by making a new object
|
|
|
|
FI operator XYZval<T>() { return { x, y }; } |
|
|
|
FI operator XYZval<T>() const { return { x, y }; } |
|
|
|
FI operator XYZEval<T>() { return { x, y }; } |
|
|
|
FI operator XYZEval<T>() const { return { x, y }; } |
|
|
|
FI T& operator[](const int i) { return pos[i]; } |
|
|
|
FI const T& operator[](const int i) const { return pos[i]; } |
|
|
|
|
|
|
|
// Accessor via an AxisEnum (or any integer) [index]
|
|
|
|
FI T& operator[](const int n) { return pos[n]; } |
|
|
|
FI const T& operator[](const int n) const { return pos[n]; } |
|
|
|
|
|
|
|
// Assignment operator overrides do the expected thing
|
|
|
|
FI XYval<T>& operator= (const T v) { set(v, v ); return *this; } |
|
|
|
FI XYval<T>& operator= (const XYZval<T> &rs) { set(rs.x, rs.y); return *this; } |
|
|
|
FI XYval<T>& operator= (const XYZEval<T> &rs) { set(rs.x, rs.y); return *this; } |
|
|
|
|
|
|
|
// Override other operators to get intuitive behaviors
|
|
|
|
FI XYval<T> operator+ (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } |
|
|
|
FI XYval<T> operator+ (const XYval<T> &rs) { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } |
|
|
|
FI XYval<T> operator- (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } |
|
|
@ -264,6 +343,10 @@ struct XYval { |
|
|
|
FI XYval<T> operator>>(const int &v) { XYval<T> ls = *this; _RS(ls.x); _RS(ls.y); return ls; } |
|
|
|
FI XYval<T> operator<<(const int &v) const { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; } |
|
|
|
FI XYval<T> operator<<(const int &v) { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; } |
|
|
|
FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; } |
|
|
|
FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; } |
|
|
|
|
|
|
|
// Modifier operators
|
|
|
|
FI XYval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; } |
|
|
|
FI XYval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; } |
|
|
|
FI XYval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; } |
|
|
@ -277,6 +360,8 @@ struct XYval { |
|
|
|
FI XYval<T>& operator*=(const int &v) { x *= v; y *= v; return *this; } |
|
|
|
FI XYval<T>& operator>>=(const int &v) { _RS(x); _RS(y); return *this; } |
|
|
|
FI XYval<T>& operator<<=(const int &v) { _LS(x); _LS(y); return *this; } |
|
|
|
|
|
|
|
// Exact comparisons. For floats a "NEAR" operation may be better.
|
|
|
|
FI bool operator==(const XYval<T> &rs) { return x == rs.x && y == rs.y; } |
|
|
|
FI bool operator==(const XYZval<T> &rs) { return x == rs.x && y == rs.y; } |
|
|
|
FI bool operator==(const XYZEval<T> &rs) { return x == rs.x && y == rs.y; } |
|
|
@ -289,224 +374,291 @@ struct XYval { |
|
|
|
FI bool operator!=(const XYval<T> &rs) const { return !operator==(rs); } |
|
|
|
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); } |
|
|
|
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); } |
|
|
|
FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; } |
|
|
|
FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; } |
|
|
|
}; |
|
|
|
|
|
|
|
//
|
|
|
|
// XYZ coordinates, counters, etc.
|
|
|
|
// Linear Axes coordinates, counters, flags, etc.
|
|
|
|
//
|
|
|
|
template<typename T> |
|
|
|
struct XYZval { |
|
|
|
union { |
|
|
|
struct { T x, y, z; }; |
|
|
|
struct { T a, b, c; }; |
|
|
|
T pos[3]; |
|
|
|
struct { T LINEAR_AXIS_ARGS(); }; |
|
|
|
struct { T LINEAR_AXIS_LIST(a, b, c, u, v, w); }; |
|
|
|
T pos[LINEAR_AXES]; |
|
|
|
}; |
|
|
|
|
|
|
|
// Set all to 0
|
|
|
|
FI void reset() { LINEAR_AXIS_GANG(x =, y =, z =, i =, j =, k =) 0; } |
|
|
|
|
|
|
|
// Setters taking struct types and arrays
|
|
|
|
FI void set(const T px) { x = px; } |
|
|
|
FI void set(const T px, const T py) { x = px; y = py; } |
|
|
|
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; } |
|
|
|
FI void set(const XYval<T> pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; } |
|
|
|
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; } |
|
|
|
FI void set(const XYval<T> pxy, const T pz) { LINEAR_AXIS_CODE(x = pxy.x, y = pxy.y, z = pz, NOOP, NOOP, NOOP); } |
|
|
|
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; } |
|
|
|
FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; z = arr[2]; } |
|
|
|
FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; z = arr[2]; } |
|
|
|
#if DISTINCT_AXES > XYZE |
|
|
|
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; z = arr[2]; } |
|
|
|
#if HAS_Z_AXIS |
|
|
|
FI void set(const T (&arr)[LINEAR_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); } |
|
|
|
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); } |
|
|
|
#endif |
|
|
|
#if LOGICAL_AXES > LINEAR_AXES |
|
|
|
FI void set(const T (&arr)[LOGICAL_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); } |
|
|
|
FI void set(LOGICAL_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); } |
|
|
|
#if DISTINCT_AXES > LOGICAL_AXES |
|
|
|
FI void set(const T (&arr)[DISTINCT_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); } |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
#if LINEAR_AXES >= 4 |
|
|
|
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; } |
|
|
|
#endif |
|
|
|
#if LINEAR_AXES >= 5 |
|
|
|
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; } |
|
|
|
#endif |
|
|
|
FI void reset() { x = y = z = 0; } |
|
|
|
FI T magnitude() const { return (T)sqrtf(x*x + y*y + z*z); } |
|
|
|
#if LINEAR_AXES >= 6 |
|
|
|
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; } |
|
|
|
#endif |
|
|
|
|
|
|
|
// Length reduced to one dimension
|
|
|
|
FI T magnitude() const { return (T)sqrtf(LINEAR_AXIS_GANG(x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); } |
|
|
|
// Pointer to the data as a simple array
|
|
|
|
FI operator T* () { return pos; } |
|
|
|
FI operator bool() { return z || x || y; } |
|
|
|
// If any element is true then it's true
|
|
|
|
FI operator bool() { return LINEAR_AXIS_GANG(x, || y, || z, || i, || j, || k); } |
|
|
|
|
|
|
|
// Explicit copy and copies with conversion
|
|
|
|
FI XYZval<T> copy() const { XYZval<T> o = *this; return o; } |
|
|
|
FI XYZval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)), T(_ABS(z)) }; } |
|
|
|
FI XYZval<int16_t> asInt() { return { int16_t(x), int16_t(y), int16_t(z) }; } |
|
|
|
FI XYZval<int16_t> asInt() const { return { int16_t(x), int16_t(y), int16_t(z) }; } |
|
|
|
FI XYZval<int32_t> asLong() { return { int32_t(x), int32_t(y), int32_t(z) }; } |
|
|
|
FI XYZval<int32_t> asLong() const { return { int32_t(x), int32_t(y), int32_t(z) }; } |
|
|
|
FI XYZval<int32_t> ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)) }; } |
|
|
|
FI XYZval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)) }; } |
|
|
|
FI XYZval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) }; } |
|
|
|
FI XYZval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) }; } |
|
|
|
FI XYZval<float> reciprocal() const { return { _RECIP(x), _RECIP(y), _RECIP(z) }; } |
|
|
|
FI XYZval<T> ABS() const { return LINEAR_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); } |
|
|
|
FI XYZval<int16_t> asInt() { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); } |
|
|
|
FI XYZval<int16_t> asInt() const { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); } |
|
|
|
FI XYZval<int32_t> asLong() { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); } |
|
|
|
FI XYZval<int32_t> asLong() const { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); } |
|
|
|
FI XYZval<int32_t> ROUNDL() { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); } |
|
|
|
FI XYZval<int32_t> ROUNDL() const { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); } |
|
|
|
FI XYZval<float> asFloat() { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); } |
|
|
|
FI XYZval<float> asFloat() const { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); } |
|
|
|
FI XYZval<float> reciprocal() const { return LINEAR_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); } |
|
|
|
|
|
|
|
// Marlin workspace shifting is done with G92 and M206
|
|
|
|
FI XYZval<float> asLogical() const { XYZval<float> o = asFloat(); toLogical(o); return o; } |
|
|
|
FI XYZval<float> asNative() const { XYZval<float> o = asFloat(); toNative(o); return o; } |
|
|
|
|
|
|
|
// In-place cast to types having fewer fields
|
|
|
|
FI operator XYval<T>&() { return *(XYval<T>*)this; } |
|
|
|
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; } |
|
|
|
FI operator XYZEval<T>() const { return { x, y, z }; } |
|
|
|
FI T& operator[](const int i) { return pos[i]; } |
|
|
|
FI const T& operator[](const int i) const { return pos[i]; } |
|
|
|
FI XYZval<T>& operator= (const T v) { set(v, v, v ); return *this; } |
|
|
|
|
|
|
|
// Cast to a type with more fields by making a new object
|
|
|
|
FI operator XYZEval<T>() const { return LINEAR_AXIS_ARRAY(x, y, z, i, j, k); } |
|
|
|
|
|
|
|
// Accessor via an AxisEnum (or any integer) [index]
|
|
|
|
FI T& operator[](const int n) { return pos[n]; } |
|
|
|
FI const T& operator[](const int n) const { return pos[n]; } |
|
|
|
|
|
|
|
// Assignment operator overrides do the expected thing
|
|
|
|
FI XYZval<T>& operator= (const T v) { set(ARRAY_N_1(LINEAR_AXES, v)); return *this; } |
|
|
|
FI XYZval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y ); return *this; } |
|
|
|
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(rs.x, rs.y, rs.z); return *this; } |
|
|
|
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } |
|
|
|
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } |
|
|
|
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } |
|
|
|
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } |
|
|
|
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } |
|
|
|
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } |
|
|
|
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } |
|
|
|
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } |
|
|
|
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; } |
|
|
|
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; } |
|
|
|
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; } |
|
|
|
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; } |
|
|
|
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; } |
|
|
|
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; } |
|
|
|
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; } |
|
|
|
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; } |
|
|
|
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; } |
|
|
|
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; } |
|
|
|
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; } |
|
|
|
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; } |
|
|
|
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; } |
|
|
|
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; } |
|
|
|
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; } |
|
|
|
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; } |
|
|
|
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; } |
|
|
|
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; } |
|
|
|
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; } |
|
|
|
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; } |
|
|
|
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; } |
|
|
|
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; } |
|
|
|
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; } |
|
|
|
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; } |
|
|
|
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); return ls; } |
|
|
|
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); return ls; } |
|
|
|
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); return ls; } |
|
|
|
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); return ls; } |
|
|
|
FI XYZval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; } |
|
|
|
FI XYZval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; } |
|
|
|
FI XYZval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; } |
|
|
|
FI XYZval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; } |
|
|
|
FI XYZval<T>& operator+=(const XYZval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; } |
|
|
|
FI XYZval<T>& operator-=(const XYZval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; } |
|
|
|
FI XYZval<T>& operator*=(const XYZval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; } |
|
|
|
FI XYZval<T>& operator/=(const XYZval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; } |
|
|
|
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; } |
|
|
|
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; } |
|
|
|
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; } |
|
|
|
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; } |
|
|
|
FI XYZval<T>& operator*=(const float &v) { x *= v; y *= v; z *= v; return *this; } |
|
|
|
FI XYZval<T>& operator*=(const int &v) { x *= v; y *= v; z *= v; return *this; } |
|
|
|
FI XYZval<T>& operator>>=(const int &v) { _RS(x); _RS(y); _RS(z); return *this; } |
|
|
|
FI XYZval<T>& operator<<=(const int &v) { _LS(x); _LS(y); _LS(z); return *this; } |
|
|
|
FI bool operator==(const XYZEval<T> &rs) { return x == rs.x && y == rs.y && z == rs.z; } |
|
|
|
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; } |
|
|
|
|
|
|
|
// Override other operators to get intuitive behaviors
|
|
|
|
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } |
|
|
|
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } |
|
|
|
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } |
|
|
|
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } |
|
|
|
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } |
|
|
|
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } |
|
|
|
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } |
|
|
|
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } |
|
|
|
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } |
|
|
|
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } |
|
|
|
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } |
|
|
|
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } |
|
|
|
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } |
|
|
|
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } |
|
|
|
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } |
|
|
|
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } |
|
|
|
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } |
|
|
|
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } |
|
|
|
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } |
|
|
|
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } |
|
|
|
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } |
|
|
|
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } |
|
|
|
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } |
|
|
|
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } |
|
|
|
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } |
|
|
|
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } |
|
|
|
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } |
|
|
|
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } |
|
|
|
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } |
|
|
|
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } |
|
|
|
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } |
|
|
|
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } |
|
|
|
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; } |
|
|
|
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; } |
|
|
|
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; } |
|
|
|
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; } |
|
|
|
FI const XYZval<T> operator-() const { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; } |
|
|
|
FI XYZval<T> operator-() { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; } |
|
|
|
|
|
|
|
// Modifier operators
|
|
|
|
FI XYZval<T>& operator+=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; } |
|
|
|
FI XYZval<T>& operator-=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; } |
|
|
|
FI XYZval<T>& operator*=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; } |
|
|
|
FI XYZval<T>& operator/=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; } |
|
|
|
FI XYZval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; } |
|
|
|
FI XYZval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; } |
|
|
|
FI XYZval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; } |
|
|
|
FI XYZval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; } |
|
|
|
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; } |
|
|
|
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; } |
|
|
|
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; } |
|
|
|
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; } |
|
|
|
FI XYZval<T>& operator*=(const float &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; } |
|
|
|
FI XYZval<T>& operator*=(const int &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; } |
|
|
|
FI XYZval<T>& operator>>=(const int &v) { LINEAR_AXIS_CODE(_RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; } |
|
|
|
FI XYZval<T>& operator<<=(const int &v) { LINEAR_AXIS_CODE(_LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; } |
|
|
|
|
|
|
|
// Exact comparisons. For floats a "NEAR" operation may be better.
|
|
|
|
FI bool operator==(const XYZEval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); } |
|
|
|
FI bool operator==(const XYZEval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); } |
|
|
|
FI bool operator!=(const XYZEval<T> &rs) { return !operator==(rs); } |
|
|
|
FI bool operator==(const XYZEval<T> &rs) const { return x == rs.x && y == rs.y && z == rs.z; } |
|
|
|
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); } |
|
|
|
FI XYZval<T> operator-() { XYZval<T> o = *this; o.x = -x; o.y = -y; o.z = -z; return o; } |
|
|
|
FI const XYZval<T> operator-() const { XYZval<T> o = *this; o.x = -x; o.y = -y; o.z = -z; return o; } |
|
|
|
}; |
|
|
|
|
|
|
|
//
|
|
|
|
// XYZE coordinates, counters, etc.
|
|
|
|
// Logical Axes coordinates, counters, etc.
|
|
|
|
//
|
|
|
|
template<typename T> |
|
|
|
struct XYZEval { |
|
|
|
union { |
|
|
|
struct{ T x, y, z, e; }; |
|
|
|
struct{ T a, b, c; }; |
|
|
|
T pos[4]; |
|
|
|
struct { T LOGICAL_AXIS_ARGS(); }; |
|
|
|
struct { T LOGICAL_AXIS_LIST(_e, a, b, c, u, v, w); }; |
|
|
|
T pos[LOGICAL_AXES]; |
|
|
|
}; |
|
|
|
FI void reset() { x = y = z = e = 0; } |
|
|
|
FI T magnitude() const { return (T)sqrtf(x*x + y*y + z*z + e*e); } |
|
|
|
FI operator T* () { return pos; } |
|
|
|
FI operator bool() { return e || z || x || y; } |
|
|
|
FI void set(const T px) { x = px; } |
|
|
|
FI void set(const T px, const T py) { x = px; y = py; } |
|
|
|
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; } |
|
|
|
FI void set(const T px, const T py, const T pz, const T pe) { x = px; y = py; z = pz; e = pe; } |
|
|
|
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; } |
|
|
|
FI void set(const XYval<T> pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; } |
|
|
|
FI void set(const XYZval<T> pxyz) { x = pxyz.x; y = pxyz.y; z = pxyz.z; } |
|
|
|
FI void set(const XYval<T> pxy, const T pz, const T pe) { x = pxy.x; y = pxy.y; z = pz; e = pe; } |
|
|
|
FI void set(const XYval<T> pxy, const XYval<T> pze) { x = pxy.x; y = pxy.y; z = pze.z; e = pze.e; } |
|
|
|
FI void set(const XYZval<T> pxyz, const T pe) { x = pxyz.x; y = pxyz.y; z = pxyz.z; e = pe; } |
|
|
|
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; } |
|
|
|
FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; z = arr[2]; } |
|
|
|
FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; z = arr[2]; e = arr[3]; } |
|
|
|
#if DISTINCT_AXES > XYZE |
|
|
|
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; z = arr[2]; e = arr[3]; } |
|
|
|
// Reset all to 0
|
|
|
|
FI void reset() { LOGICAL_AXIS_GANG(e =, x =, y =, z =, i =, j =, k =) 0; } |
|
|
|
|
|
|
|
// Setters taking struct types and arrays
|
|
|
|
FI void set(const T px) { x = px; } |
|
|
|
FI void set(const T px, const T py) { x = px; y = py; } |
|
|
|
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; } |
|
|
|
FI void set(const XYZval<T> pxyz) { set(LINEAR_AXIS_ELEM(pxyz)); } |
|
|
|
#if HAS_Z_AXIS |
|
|
|
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k); } |
|
|
|
#endif |
|
|
|
FI XYZEval<T> copy() const { return *this; } |
|
|
|
FI XYZEval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(e)) }; } |
|
|
|
FI XYZEval<int16_t> asInt() { return { int16_t(x), int16_t(y), int16_t(z), int16_t(e) }; } |
|
|
|
FI XYZEval<int16_t> asInt() const { return { int16_t(x), int16_t(y), int16_t(z), int16_t(e) }; } |
|
|
|
FI XYZEval<int32_t> asLong() { return { int32_t(x), int32_t(y), int32_t(z), int32_t(e) }; } |
|
|
|
FI XYZEval<int32_t> asLong() const { return { int32_t(x), int32_t(y), int32_t(z), int32_t(e) }; } |
|
|
|
FI XYZEval<int32_t> ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(e)) }; } |
|
|
|
FI XYZEval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(e)) }; } |
|
|
|
FI XYZEval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(e) }; } |
|
|
|
FI XYZEval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(e) }; } |
|
|
|
FI XYZEval<float> reciprocal() const { return { _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(e) }; } |
|
|
|
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; } |
|
|
|
FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; } |
|
|
|
FI operator XYval<T>&() { return *(XYval<T>*)this; } |
|
|
|
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; } |
|
|
|
FI operator XYZval<T>&() { return *(XYZval<T>*)this; } |
|
|
|
FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; } |
|
|
|
FI T& operator[](const int i) { return pos[i]; } |
|
|
|
FI const T& operator[](const int i) const { return pos[i]; } |
|
|
|
FI XYZEval<T>& operator= (const T v) { set(v, v, v, v); return *this; } |
|
|
|
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; } |
|
|
|
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(rs.x, rs.y, rs.z); return *this; } |
|
|
|
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; } |
|
|
|
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; } |
|
|
|
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; } |
|
|
|
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; } |
|
|
|
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; } |
|
|
|
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; } |
|
|
|
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; } |
|
|
|
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; } |
|
|
|
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; ls.e += rs.e; return ls; } |
|
|
|
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; ls.e += rs.e; return ls; } |
|
|
|
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; ls.e -= rs.e; return ls; } |
|
|
|
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; ls.e -= rs.e; return ls; } |
|
|
|
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; ls.e *= rs.e; return ls; } |
|
|
|
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; ls.e *= rs.e; return ls; } |
|
|
|
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; ls.e /= rs.e; return ls; } |
|
|
|
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; ls.e /= rs.e; return ls; } |
|
|
|
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; } |
|
|
|
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; } |
|
|
|
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; } |
|
|
|
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; } |
|
|
|
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; } |
|
|
|
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; } |
|
|
|
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; } |
|
|
|
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; } |
|
|
|
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); _RS(ls.e); return ls; } |
|
|
|
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); _RS(ls.e); return ls; } |
|
|
|
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); _LS(ls.e); return ls; } |
|
|
|
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); _LS(ls.e); return ls; } |
|
|
|
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; } |
|
|
|
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; } |
|
|
|
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; } |
|
|
|
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; } |
|
|
|
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; } |
|
|
|
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; } |
|
|
|
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; } |
|
|
|
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; } |
|
|
|
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; e += rs.e; return *this; } |
|
|
|
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; e -= rs.e; return *this; } |
|
|
|
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; e *= rs.e; return *this; } |
|
|
|
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; e /= rs.e; return *this; } |
|
|
|
FI XYZEval<T>& operator*=(const T &v) { x *= v; y *= v; z *= v; e *= v; return *this; } |
|
|
|
FI XYZEval<T>& operator>>=(const int &v) { _RS(x); _RS(y); _RS(z); _RS(e); return *this; } |
|
|
|
FI XYZEval<T>& operator<<=(const int &v) { _LS(x); _LS(y); _LS(z); _LS(e); return *this; } |
|
|
|
FI bool operator==(const XYZval<T> &rs) { return x == rs.x && y == rs.y && z == rs.z; } |
|
|
|
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); } |
|
|
|
FI bool operator==(const XYZval<T> &rs) const { return x == rs.x && y == rs.y && z == rs.z; } |
|
|
|
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); } |
|
|
|
FI XYZEval<T> operator-() { return { -x, -y, -z, -e }; } |
|
|
|
FI const XYZEval<T> operator-() const { return { -x, -y, -z, -e }; } |
|
|
|
#if LOGICAL_AXES > LINEAR_AXES |
|
|
|
FI void set(const XYval<T> pxy, const T pe) { set(pxy); e = pe; } |
|
|
|
FI void set(const XYZval<T> pxyz, const T pe) { set(pxyz); e = pe; } |
|
|
|
FI void set(LOGICAL_AXIS_ARGS(const T)) { LOGICAL_AXIS_CODE(_e = e, a = x, b = y, c = z, u = i, v = j, w = k); } |
|
|
|
#endif |
|
|
|
#if LINEAR_AXES >= 4 |
|
|
|
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; } |
|
|
|
#endif |
|
|
|
#if LINEAR_AXES >= 5 |
|
|
|
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; } |
|
|
|
#endif |
|
|
|
#if LINEAR_AXES >= 6 |
|
|
|
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; } |
|
|
|
#endif |
|
|
|
|
|
|
|
// Length reduced to one dimension
|
|
|
|
FI T magnitude() const { return (T)sqrtf(LOGICAL_AXIS_GANG(+ e*e, + x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); } |
|
|
|
// Pointer to the data as a simple array
|
|
|
|
FI operator T* () { return pos; } |
|
|
|
// If any element is true then it's true
|
|
|
|
FI operator bool() { return 0 LOGICAL_AXIS_GANG(|| e, || x, || y, || z, || i, || j, || k); } |
|
|
|
|
|
|
|
// Explicit copy and copies with conversion
|
|
|
|
FI XYZEval<T> copy() const { XYZEval<T> o = *this; return o; } |
|
|
|
FI XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); } |
|
|
|
FI XYZEval<int16_t> asInt() { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); } |
|
|
|
FI XYZEval<int16_t> asInt() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); } |
|
|
|
FI XYZEval<int32_t> asLong() { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); } |
|
|
|
FI XYZEval<int32_t> asLong() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); } |
|
|
|
FI XYZEval<int32_t> ROUNDL() { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); } |
|
|
|
FI XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); } |
|
|
|
FI XYZEval<float> asFloat() { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); } |
|
|
|
FI XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); } |
|
|
|
FI XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); } |
|
|
|
|
|
|
|
// Marlin workspace shifting is done with G92 and M206
|
|
|
|
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; } |
|
|
|
FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; } |
|
|
|
|
|
|
|
// In-place cast to types having fewer fields
|
|
|
|
FI operator XYval<T>&() { return *(XYval<T>*)this; } |
|
|
|
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; } |
|
|
|
FI operator XYZval<T>&() { return *(XYZval<T>*)this; } |
|
|
|
FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; } |
|
|
|
|
|
|
|
// Accessor via an AxisEnum (or any integer) [index]
|
|
|
|
FI T& operator[](const int n) { return pos[n]; } |
|
|
|
FI const T& operator[](const int n) const { return pos[n]; } |
|
|
|
|
|
|
|
// Assignment operator overrides do the expected thing
|
|
|
|
FI XYZEval<T>& operator= (const T v) { set(LIST_N_1(LINEAR_AXES, v)); return *this; } |
|
|
|
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; } |
|
|
|
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; } |
|
|
|
|
|
|
|
// Override other operators to get intuitive behaviors
|
|
|
|
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } |
|
|
|
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } |
|
|
|
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } |
|
|
|
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } |
|
|
|
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } |
|
|
|
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } |
|
|
|
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } |
|
|
|
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } |
|
|
|
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } |
|
|
|
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } |
|
|
|
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; } |
|
|
|
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; } |
|
|
|
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; } |
|
|
|
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; } |
|
|
|
FI const XYZEval<T> operator-() const { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); } |
|
|
|
FI XYZEval<T> operator-() { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); } |
|
|
|
|
|
|
|
// Modifier operators
|
|
|
|
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; } |
|
|
|
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; } |
|
|
|
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; } |
|
|
|
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; } |
|
|
|
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; } |
|
|
|
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; } |
|
|
|
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; } |
|
|
|
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; } |
|
|
|
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e += rs.e, x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; } |
|
|
|
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e -= rs.e, x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; } |
|
|
|
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e *= rs.e, x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; } |
|
|
|
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e /= rs.e, x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; } |
|
|
|
FI XYZEval<T>& operator*=(const T &v) { LOGICAL_AXIS_CODE(e *= v, x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; } |
|
|
|
FI XYZEval<T>& operator>>=(const int &v) { LOGICAL_AXIS_CODE(_RS(e), _RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; } |
|
|
|
FI XYZEval<T>& operator<<=(const int &v) { LOGICAL_AXIS_CODE(_LS(e), _LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; } |
|
|
|
|
|
|
|
// Exact comparisons. For floats a "NEAR" operation may be better.
|
|
|
|
FI bool operator==(const XYZval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); } |
|
|
|
FI bool operator==(const XYZval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); } |
|
|
|
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); } |
|
|
|
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); } |
|
|
|
}; |
|
|
|
|
|
|
|
#undef _RECIP |
|
|
@ -514,6 +666,3 @@ struct XYZEval { |
|
|
|
#undef _LS |
|
|
|
#undef _RS |
|
|
|
#undef FI |
|
|
|
|
|
|
|
const xyze_char_t axis_codes { 'X', 'Y', 'Z', 'E' }; |
|
|
|
#define AXIS_CHAR(A) ((char)('X' + A)) |
|
|
|