Browse Source

2.0.9

pull/45/head
Sergey 3 years ago
parent
commit
398bb884ec
  1. 151
      Marlin/Configuration.h
  2. 175
      Marlin/Configuration_adv.h
  3. 4
      Marlin/Version.h
  4. 2
      Marlin/src/HAL/AVR/HAL.h
  5. 46
      Marlin/src/HAL/AVR/endstop_interrupts.h
  6. 6
      Marlin/src/HAL/DUE/endstop_interrupts.h
  7. 6
      Marlin/src/HAL/ESP32/endstop_interrupts.h
  8. 37
      Marlin/src/HAL/LINUX/include/pinmapping.cpp
  9. 24
      Marlin/src/HAL/LINUX/include/pinmapping.h
  10. 2
      Marlin/src/HAL/LPC1768/HAL.h
  11. 18
      Marlin/src/HAL/LPC1768/HAL_SPI.cpp
  12. 33
      Marlin/src/HAL/LPC1768/endstop_interrupts.h
  13. 2
      Marlin/src/HAL/LPC1768/tft/xpt2046.h
  14. 138
      Marlin/src/HAL/SAMD51/endstop_interrupts.h
  15. 1
      Marlin/src/HAL/STM32/HAL.h
  16. 8
      Marlin/src/HAL/STM32/HAL_SPI.cpp
  17. 82
      Marlin/src/HAL/STM32/eeprom_bl24cxx.cpp
  18. 4
      Marlin/src/HAL/STM32/eeprom_flash.cpp
  19. 54
      Marlin/src/HAL/STM32/eeprom_if_iic.cpp
  20. 0
      Marlin/src/HAL/STM32/eeprom_spi_w25q.cpp
  21. 7
      Marlin/src/HAL/STM32/eeprom_wired.cpp
  22. 6
      Marlin/src/HAL/STM32/endstop_interrupts.h
  23. 5
      Marlin/src/HAL/STM32/inc/Conditionals_adv.h
  24. 4
      Marlin/src/HAL/STM32/msc_sd.cpp
  25. 12
      Marlin/src/HAL/STM32/tft/tft_spi.cpp
  26. 2
      Marlin/src/HAL/STM32/tft/xpt2046.h
  27. 9
      Marlin/src/HAL/STM32F1/MarlinSerial.cpp
  28. 1
      Marlin/src/HAL/STM32F1/build_flags.py
  29. 6
      Marlin/src/HAL/STM32F1/endstop_interrupts.h
  30. 12
      Marlin/src/HAL/STM32F1/tft/tft_spi.cpp
  31. 2
      Marlin/src/HAL/STM32F1/tft/xpt2046.h
  32. 6
      Marlin/src/HAL/TEENSY31_32/endstop_interrupts.h
  33. 6
      Marlin/src/HAL/TEENSY35_36/endstop_interrupts.h
  34. 6
      Marlin/src/HAL/TEENSY40_41/endstop_interrupts.h
  35. 21
      Marlin/src/HAL/shared/eeprom_if_i2c.cpp
  36. 75
      Marlin/src/MarlinCore.cpp
  37. 4
      Marlin/src/MarlinCore.h
  38. 31
      Marlin/src/core/boards.h
  39. 12
      Marlin/src/core/drivers.h
  40. 140
      Marlin/src/core/language.h
  41. 9
      Marlin/src/core/macros.h
  42. 10
      Marlin/src/core/serial.cpp
  43. 16
      Marlin/src/core/serial.h
  44. 567
      Marlin/src/core/types.h
  45. 2
      Marlin/src/core/utility.cpp
  46. 8
      Marlin/src/core/utility.h
  47. 54
      Marlin/src/feature/ammeter.cpp
  48. 39
      Marlin/src/feature/ammeter.h
  49. 2
      Marlin/src/feature/bedlevel/bedlevel.h
  50. 4
      Marlin/src/feature/bedlevel/ubl/ubl.cpp
  51. 8
      Marlin/src/feature/bedlevel/ubl/ubl.h
  52. 30
      Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp
  53. 126
      Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp
  54. 14
      Marlin/src/feature/binary_stream.h
  55. 14
      Marlin/src/feature/dac/stepper_dac.cpp
  56. 43
      Marlin/src/feature/encoder_i2c.cpp
  57. 1
      Marlin/src/feature/leds/neopixel.h
  58. 9
      Marlin/src/feature/mmu/mmu.cpp
  59. 1
      Marlin/src/feature/mmu/mmu.h
  60. 13
      Marlin/src/feature/power.cpp
  61. 4
      Marlin/src/feature/powerloss.h
  62. 10
      Marlin/src/feature/probe_temp_comp.h
  63. 7
      Marlin/src/feature/spindle_laser.cpp
  64. 211
      Marlin/src/feature/tmc_util.cpp
  65. 12
      Marlin/src/feature/tmc_util.h
  66. 2
      Marlin/src/gcode/bedlevel/G26.cpp
  67. 4
      Marlin/src/gcode/bedlevel/G35.cpp
  68. 6
      Marlin/src/gcode/bedlevel/abl/G29.cpp
  69. 6
      Marlin/src/gcode/bedlevel/mbl/G29.cpp
  70. 137
      Marlin/src/gcode/calibrate/G28.cpp
  71. 2
      Marlin/src/gcode/calibrate/G34.cpp
  72. 91
      Marlin/src/gcode/calibrate/G34_M422.cpp
  73. 229
      Marlin/src/gcode/calibrate/G425.cpp
  74. 13
      Marlin/src/gcode/calibrate/M425.cpp
  75. 22
      Marlin/src/gcode/calibrate/M666.cpp
  76. 33
      Marlin/src/gcode/config/M200-M205.cpp
  77. 46
      Marlin/src/gcode/config/M92.cpp
  78. 30
      Marlin/src/gcode/control/M17_M18_M84.cpp
  79. 37
      Marlin/src/gcode/control/M605.cpp
  80. 60
      Marlin/src/gcode/control/M7-M9.cpp
  81. 148
      Marlin/src/gcode/feature/L6470/M906.cpp
  82. 1
      Marlin/src/gcode/feature/clean/G12.cpp
  83. 6
      Marlin/src/gcode/feature/digipot/M907-M910.cpp
  84. 19
      Marlin/src/gcode/feature/leds/M150.cpp
  85. 11
      Marlin/src/gcode/feature/pause/G60.cpp
  86. 17
      Marlin/src/gcode/feature/pause/G61.cpp
  87. 2
      Marlin/src/gcode/feature/pause/M125.cpp
  88. 2
      Marlin/src/gcode/feature/pause/M600.cpp
  89. 9
      Marlin/src/gcode/feature/runout/M412.cpp
  90. 8
      Marlin/src/gcode/feature/trinamic/M122.cpp
  91. 180
      Marlin/src/gcode/feature/trinamic/M569.cpp
  92. 122
      Marlin/src/gcode/feature/trinamic/M906.cpp
  93. 214
      Marlin/src/gcode/feature/trinamic/M911-M914.cpp
  94. 66
      Marlin/src/gcode/gcode.cpp
  95. 68
      Marlin/src/gcode/gcode.h
  96. 37
      Marlin/src/gcode/geometry/G92.cpp
  97. 13
      Marlin/src/gcode/geometry/M206_M428.cpp
  98. 27
      Marlin/src/gcode/host/M114.cpp
  99. 15
      Marlin/src/gcode/motion/G0_G1.cpp
  100. 63
      Marlin/src/gcode/motion/G2_G3.cpp

151
Marlin/Configuration.h

@ -35,7 +35,7 @@
*
* Advanced settings can be found in Configuration_adv.h
*/
#define CONFIGURATION_H_VERSION 02000801
#define CONFIGURATION_H_VERSION 02000901
//===========================================================================
//============================= Getting Started =============================
@ -149,6 +149,45 @@
// Choose your own or use a service like https://www.uuidgenerator.net/version4
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"
/**
* Define the number of coordinated linear axes.
* See https://github.com/DerAndere1/Marlin/wiki
* Each linear axis gets its own stepper control and endstop:
*
* Steppers: *_STEP_PIN, *_ENABLE_PIN, *_DIR_PIN, *_ENABLE_ON
* Endstops: *_STOP_PIN, USE_*MIN_PLUG, USE_*MAX_PLUG
* Axes: *_MIN_POS, *_MAX_POS, INVERT_*_DIR
* Planner: DEFAULT_AXIS_STEPS_PER_UNIT, DEFAULT_MAX_FEEDRATE
* DEFAULT_MAX_ACCELERATION, AXIS_RELATIVE_MODES,
* MICROSTEP_MODES, MANUAL_FEEDRATE
*
* :[3, 4, 5, 6]
*/
//#define LINEAR_AXES 3
/**
* Axis codes for additional axes:
* This defines the axis code that is used in G-code commands to
* reference a specific axis.
* 'A' for rotational axis parallel to X
* 'B' for rotational axis parallel to Y
* 'C' for rotational axis parallel to Z
* 'U' for secondary linear axis parallel to X
* 'V' for secondary linear axis parallel to Y
* 'W' for secondary linear axis parallel to Z
* Regardless of the settings, firmware-internal axis IDs are
* I (AXIS4), J (AXIS5), K (AXIS6).
*/
#if LINEAR_AXES >= 4
#define AXIS4_NAME 'A' // :['A', 'B', 'C', 'U', 'V', 'W']
#endif
#if LINEAR_AXES >= 5
#define AXIS5_NAME 'B' // :['A', 'B', 'C', 'U', 'V', 'W']
#endif
#if LINEAR_AXES >= 6
#define AXIS6_NAME 'C' // :['A', 'B', 'C', 'U', 'V', 'W']
#endif
// @section extruder
// This defines the number of extruders
@ -433,6 +472,7 @@
#define TEMP_SENSOR_PROBE 0
#define TEMP_SENSOR_CHAMBER 0
#define TEMP_SENSOR_COOLER 0
#define TEMP_SENSOR_REDUNDANT 0
// Dummy thermistor constant temperature readings, for use with 998 and 999
#define DUMMY_THERMISTOR_998_VALUE 25
@ -444,11 +484,6 @@
//#define MAX31865_SENSOR_OHMS_1 100
//#define MAX31865_CALIBRATION_OHMS_1 430
// Use temp sensor 1 as a redundant sensor with sensor 0. If the readings
// from the two sensors differ too much the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
#define TEMP_RESIDENCY_TIME 10 // (seconds) Time to wait for hotend to "settle" in M109
#define TEMP_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
@ -461,6 +496,28 @@
#define TEMP_CHAMBER_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_CHAMBER_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
/**
* Redundant Temperature Sensor (TEMP_SENSOR_REDUNDANT)
*
* Use a temp sensor as a redundant sensor for another reading. Select an unused temperature sensor, and another
* sensor you'd like it to be redundant for. If the two thermistors differ by TEMP_SENSOR_REDUNDANT_MAX_DIFF (°C),
* the print will be aborted. Whichever sensor is selected will have its normal functions disabled; i.e. selecting
* the Bed sensor (-1) will disable bed heating/monitoring.
*
* Use the following to select temp sensors:
* -5 : Cooler
* -4 : Probe
* -3 : not used
* -2 : Chamber
* -1 : Bed
* 0-7 : E0 through E7
*/
#if TEMP_SENSOR_REDUNDANT
#define TEMP_SENSOR_REDUNDANT_SOURCE 1 // The sensor that will provide the redundant reading.
#define TEMP_SENSOR_REDUNDANT_TARGET 0 // The sensor that we are providing a redundant reading for.
#define TEMP_SENSOR_REDUNDANT_MAX_DIFF 10 // (°C) Temperature difference that will trigger a print abort.
#endif
// Below this temperature the heater will be switched off
// because it probably indicates a broken thermistor wire.
#define HEATER_0_MINTEMP 5
@ -690,9 +747,15 @@
#define USE_XMIN_PLUG
#define USE_YMIN_PLUG
#define USE_ZMIN_PLUG
//#define USE_IMIN_PLUG
//#define USE_JMIN_PLUG
//#define USE_KMIN_PLUG
//#define USE_XMAX_PLUG
//#define USE_YMAX_PLUG
//#define USE_ZMAX_PLUG
//#define USE_IMAX_PLUG
//#define USE_JMAX_PLUG
//#define USE_KMAX_PLUG
// Enable pullup for all endstops to prevent a floating state
#define ENDSTOPPULLUPS
@ -701,9 +764,15 @@
//#define ENDSTOPPULLUP_XMAX
//#define ENDSTOPPULLUP_YMAX
//#define ENDSTOPPULLUP_ZMAX
//#define ENDSTOPPULLUP_IMAX
//#define ENDSTOPPULLUP_JMAX
//#define ENDSTOPPULLUP_KMAX
//#define ENDSTOPPULLUP_XMIN
//#define ENDSTOPPULLUP_YMIN
//#define ENDSTOPPULLUP_ZMIN
//#define ENDSTOPPULLUP_IMIN
//#define ENDSTOPPULLUP_JMIN
//#define ENDSTOPPULLUP_KMIN
//#define ENDSTOPPULLUP_ZMIN_PROBE
#endif
@ -714,19 +783,31 @@
//#define ENDSTOPPULLDOWN_XMAX
//#define ENDSTOPPULLDOWN_YMAX
//#define ENDSTOPPULLDOWN_ZMAX
//#define ENDSTOPPULLDOWN_IMAX
//#define ENDSTOPPULLDOWN_JMAX
//#define ENDSTOPPULLDOWN_KMAX
//#define ENDSTOPPULLDOWN_XMIN
//#define ENDSTOPPULLDOWN_YMIN
//#define ENDSTOPPULLDOWN_ZMIN
//#define ENDSTOPPULLDOWN_IMIN
//#define ENDSTOPPULLDOWN_JMIN
//#define ENDSTOPPULLDOWN_KMIN
//#define ENDSTOPPULLDOWN_ZMIN_PROBE
#endif
// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
#define X_MIN_ENDSTOP_INVERTING true // Set to true to invert the logic of the endstop.
#define Y_MIN_ENDSTOP_INVERTING true// Set to true to invert the logic of the endstop.
#define Y_MIN_ENDSTOP_INVERTING true // Set to true to invert the logic of the endstop.
#define Z_MIN_ENDSTOP_INVERTING true // Set to true to invert the logic of the endstop.
#define I_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define J_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define K_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define X_MAX_ENDSTOP_INVERTING true // Set to true to invert the logic of the endstop.
#define Y_MAX_ENDSTOP_INVERTING true // Set to true to invert the logic of the endstop.
#define Z_MAX_ENDSTOP_INVERTING true // Set to true to invert the logic of the endstop.
#define I_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define J_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define K_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Z_MIN_PROBE_ENDSTOP_INVERTING true // Set to true to invert the logic of the probe.
/**
@ -755,6 +836,9 @@
//#define Z2_DRIVER_TYPE A4988
//#define Z3_DRIVER_TYPE A4988
//#define Z4_DRIVER_TYPE A4988
//#define I_DRIVER_TYPE A4988
//#define J_DRIVER_TYPE A4988
//#define K_DRIVER_TYPE A4988
#define E0_DRIVER_TYPE A4988
//#define E1_DRIVER_TYPE A4988
//#define E2_DRIVER_TYPE A4988
@ -808,14 +892,14 @@
/**
* Default Axis Steps Per Unit (steps/mm)
* Override with M92
* X, Y, Z, E0 [, E1[, E2...]]
* X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 400, 421 }
/**
* Default Max Feed Rate (mm/s)
* Override with M203
* X, Y, Z, E0 [, E1[, E2...]]
* X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
*/
#define DEFAULT_MAX_FEEDRATE { 200, 200, 4, 50 }
@ -828,7 +912,7 @@
* Default Max Acceleration (change/s) change = mm/s
* (Maximum start speed for accelerated moves)
* Override with M201
* X, Y, Z, E0 [, E1[, E2...]]
* X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
*/
#define DEFAULT_MAX_ACCELERATION { 3000, 3000, 100, 3000 }
@ -862,6 +946,9 @@
#define DEFAULT_XJERK 10.0
#define DEFAULT_YJERK 10.0
#define DEFAULT_ZJERK 0.5
//#define DEFAULT_IJERK 0.3
//#define DEFAULT_JJERK 0.3
//#define DEFAULT_KJERK 0.3
//#define TRAVEL_EXTRA_XYJERK 0.0 // Additional jerk allowance for all travel moves
@ -1176,12 +1263,18 @@
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders
//#define I_ENABLE_ON 0
//#define J_ENABLE_ON 0
//#define K_ENABLE_ON 0
// Disable axis steppers immediately when they're not being stepped.
// WARNING: When motors turn off there is a chance of losing position accuracy!
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
//#define DISABLE_I false
//#define DISABLE_J false
//#define DISABLE_K false
// Turn off the display blinking that warns about possible accuracy reduction
//#define DISABLE_REDUCED_ACCURACY_WARNING
@ -1223,6 +1316,9 @@
#define INVERT_X_DIR USR_X_DIR
#define INVERT_Y_DIR USR_Y_DIR
#define INVERT_Z_DIR USR_Z_DIR
//#define INVERT_I_DIR false
//#define INVERT_J_DIR false
//#define INVERT_K_DIR false
// @section extruder
@ -1258,6 +1354,9 @@
#define X_HOME_DIR -1
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
//#define I_HOME_DIR -1
//#define J_HOME_DIR -1
//#define K_HOME_DIR -1
// @section machine
@ -1272,6 +1371,12 @@
#define X_MAX_POS X_BED_SIZE+X_MIN_POS
#define Y_MAX_POS Y_BED_SIZE
#define Z_MAX_POS 200
//#define I_MIN_POS 0
//#define I_MAX_POS 50
//#define J_MIN_POS 0
//#define J_MAX_POS 50
//#define K_MIN_POS 0
//#define K_MAX_POS 50
/**
* Software Endstops
@ -1288,6 +1393,9 @@
#define MIN_SOFTWARE_ENDSTOP_X
#define MIN_SOFTWARE_ENDSTOP_Y
#define MIN_SOFTWARE_ENDSTOP_Z
#define MIN_SOFTWARE_ENDSTOP_I
#define MIN_SOFTWARE_ENDSTOP_J
#define MIN_SOFTWARE_ENDSTOP_K
#endif
// Max software endstops constrain movement within maximum coordinate bounds
@ -1296,6 +1404,9 @@
#define MAX_SOFTWARE_ENDSTOP_X
#define MAX_SOFTWARE_ENDSTOP_Y
#define MAX_SOFTWARE_ENDSTOP_Z
#define MAX_SOFTWARE_ENDSTOP_I
#define MAX_SOFTWARE_ENDSTOP_J
#define MAX_SOFTWARE_ENDSTOP_K
#endif
#if EITHER(MIN_SOFTWARE_ENDSTOPS, MAX_SOFTWARE_ENDSTOPS)
@ -1607,6 +1718,9 @@
//#define MANUAL_X_HOME_POS 0
//#define MANUAL_Y_HOME_POS 0
//#define MANUAL_Z_HOME_POS 0
//#define MANUAL_I_HOME_POS 0
//#define MANUAL_J_HOME_POS 0
//#define MANUAL_K_HOME_POS 0
// Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
//
@ -1878,11 +1992,20 @@ EEPROM_W25Q
/**
* Print Job Timer
*
* Automatically start and stop the print job timer on M104/M109/M190.
* Automatically start and stop the print job timer on M104/M109/M140/M190/M141/M191.
* The print job timer will only be stopped if the bed/chamber target temp is
* below BED_MINTEMP/CHAMBER_MINTEMP.
*
* M104 (hotend, no wait) - high temp = none, low temp = stop timer
* M109 (hotend, wait) - high temp = start timer, low temp = stop timer
* M140 (bed, no wait) - high temp = none, low temp = stop timer
* M190 (bed, wait) - high temp = start timer, low temp = none
* M141 (chamber, no wait) - high temp = none, low temp = stop timer
* M191 (chamber, wait) - high temp = start timer, low temp = none
*
* M104 (hotend, no wait) - high temp = none, low temp = stop timer
* M109 (hotend, wait) - high temp = start timer, low temp = stop timer
* M190 (bed, wait) - high temp = start timer, low temp = none
* For M104/M109, high temp is anything over EXTRUDE_MINTEMP / 2.
* For M140/M190, high temp is anything over BED_MINTEMP.
* For M141/M191, high temp is anything over CHAMBER_MINTEMP.
*
* The timer can also be controlled with the following commands:
*

175
Marlin/Configuration_adv.h

@ -30,7 +30,7 @@
*
* Basic settings can be found in Configuration.h
*/
#define CONFIGURATION_ADV_H_VERSION 02000801
#define CONFIGURATION_ADV_H_VERSION 02000901
//===========================================================================
//============================= Thermal Settings ============================
@ -125,6 +125,12 @@
#define PROBE_BETA 3950 // Beta value
#endif
#if TEMP_SENSOR_REDUNDANT == 1000
#define REDUNDANT_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor
#define REDUNDANT_RESISTANCE_25C_OHMS 100000 // Resistance at 25C
#define REDUNDANT_BETA 3950 // Beta value
#endif
//
// Hephestos 2 24V heated bed upgrade kit.
// https://store.bq.com/en/heated-bed-kit-hephestos2
@ -196,7 +202,7 @@
#define COOLER_MAXTEMP 26 // (°C)
#define COOLER_DEFAULT_TEMP 16 // (°C)
#define TEMP_COOLER_HYSTERESIS 1 // (°C) Temperature proximity considered "close enough" to the target
#define COOLER_PIN 8 // Laser cooler on/off pin used to control power to the cooling element e.g. TEC, External chiller via relay
#define COOLER_PIN 8 // Laser cooler on/off pin used to control power to the cooling element (e.g., TEC, External chiller via relay)
#define COOLER_INVERTING false
#define TEMP_COOLER_PIN 15 // Laser/Cooler temperature sensor pin. ADC is required.
#define COOLER_FAN // Enable a fan on the cooler, Fan# 0,1,2,3 etc.
@ -526,6 +532,11 @@
//#define USE_OCR2A_AS_TOP
#endif
/**
* Use one of the PWM fans as a redundant part-cooling fan
*/
//#define REDUNDANT_PART_COOLING_FAN 2 // Index of the fan to sync with FAN 0.
// @section extruder
/**
@ -671,6 +682,12 @@
#endif
#endif
// Drive the E axis with two synchronized steppers
//#define E_DUAL_STEPPER_DRIVERS
#if ENABLED(E_DUAL_STEPPER_DRIVERS)
//#define INVERT_E1_VS_E0_DIR // Enable if the E motors need opposite DIR states
#endif
/**
* Dual X Carriage
*
@ -734,7 +751,7 @@
* the position of the toolhead relative to the workspace.
*/
//#define SENSORLESS_BACKOFF_MM { 2, 2 } // (mm) Backoff from endstops before sensorless homing
//#define SENSORLESS_BACKOFF_MM { 2, 2, 0 } // (mm) Backoff from endstops before sensorless homing
#define HOMING_BUMP_MM { 5, 5, 2 } // (mm) Backoff from endstops after first bump
#define HOMING_BUMP_DIVISOR { 2, 2, 4 } // Re-Bump Speed Divisor (Divides the Homing Feedrate)
@ -918,6 +935,9 @@
#define INVERT_X_STEP_PIN false
#define INVERT_Y_STEP_PIN false
#define INVERT_Z_STEP_PIN false
#define INVERT_I_STEP_PIN false
#define INVERT_J_STEP_PIN false
#define INVERT_K_STEP_PIN false
#define INVERT_E_STEP_PIN false
/**
@ -929,6 +949,9 @@
#define DISABLE_INACTIVE_X true
#define DISABLE_INACTIVE_Y true
#define DISABLE_INACTIVE_Z true // Set 'false' if the nozzle could fall onto your printed part!
#define DISABLE_INACTIVE_I true
#define DISABLE_INACTIVE_J true
#define DISABLE_INACTIVE_K true
#define DISABLE_INACTIVE_E true
// Default Minimum Feedrates for printing and travel moves
@ -969,7 +992,7 @@
#if ENABLED(BACKLASH_COMPENSATION)
// Define values for backlash distance and correction.
// If BACKLASH_GCODE is enabled these values are the defaults.
#define BACKLASH_DISTANCE_MM { 0, 0, 0 } // (mm)
#define BACKLASH_DISTANCE_MM { 0, 0, 0 } // (mm) One value for each linear axis
#define BACKLASH_CORRECTION 0.0 // 0.0 = no correction; 1.0 = full correction
// Add steps for motor direction changes on CORE kinematics
@ -1040,6 +1063,13 @@
#define CALIBRATION_MEASURE_LEFT
#define CALIBRATION_MEASURE_BACK
//#define CALIBRATION_MEASURE_IMIN
//#define CALIBRATION_MEASURE_IMAX
//#define CALIBRATION_MEASURE_JMIN
//#define CALIBRATION_MEASURE_JMAX
//#define CALIBRATION_MEASURE_KMIN
//#define CALIBRATION_MEASURE_KMAX
// Probing at the exact top center only works if the center is flat. If
// probing on a screwhead or hollow washer, probe near the edges.
//#define CALIBRATION_MEASURE_AT_TOP_EDGES
@ -1566,7 +1596,7 @@
*/
//#define STATUS_COMBINE_HEATERS // Use combined heater images instead of separate ones
//#define STATUS_HOTEND_NUMBERLESS // Use plain hotend icons instead of numbered ones (with 2+ hotends)
#define STATUS_HOTEND_INVERTED // Show solid nozzle bitmaps when heating (Requires STATUS_HOTEND_ANIM)
#define STATUS_HOTEND_INVERTED // Show solid nozzle bitmaps when heating (Requires STATUS_HOTEND_ANIM for numbered hotends)
#define STATUS_HOTEND_ANIM // Use a second bitmap to indicate hotend heating
#define STATUS_BED_ANIM // Use a second bitmap to indicate bed heating
#define STATUS_CHAMBER_ANIM // Use a second bitmap to indicate chamber heating
@ -1944,30 +1974,30 @@
//#define USE_TEMP_EXT_COMPENSATION
// Probe temperature calibration generates a table of values starting at PTC_SAMPLE_START
// (e.g. 30), in steps of PTC_SAMPLE_RES (e.g. 5) with PTC_SAMPLE_COUNT (e.g. 10) samples.
// (e.g., 30), in steps of PTC_SAMPLE_RES (e.g., 5) with PTC_SAMPLE_COUNT (e.g., 10) samples.
//#define PTC_SAMPLE_START 30.0f
//#define PTC_SAMPLE_RES 5.0f
//#define PTC_SAMPLE_COUNT 10U
//#define PTC_SAMPLE_START 30 // (°C)
//#define PTC_SAMPLE_RES 5 // (°C)
//#define PTC_SAMPLE_COUNT 10
// Bed temperature calibration builds a similar table.
//#define BTC_SAMPLE_START 60.0f
//#define BTC_SAMPLE_RES 5.0f
//#define BTC_SAMPLE_COUNT 10U
//#define BTC_SAMPLE_START 60 // (°C)
//#define BTC_SAMPLE_RES 5 // (°C)
//#define BTC_SAMPLE_COUNT 10
// The temperature the probe should be at while taking measurements during bed temperature
// calibration.
//#define BTC_PROBE_TEMP 30.0f
//#define BTC_PROBE_TEMP 30 // (°C)
// Height above Z=0.0f to raise the nozzle. Lowering this can help the probe to heat faster.
// Note: the Z=0.0f offset is determined by the probe offset which can be set using M851.
//#define PTC_PROBE_HEATING_OFFSET 0.5f
// Height above Z=0.0 to raise the nozzle. Lowering this can help the probe to heat faster.
// Note: the Z=0.0 offset is determined by the probe offset which can be set using M851.
//#define PTC_PROBE_HEATING_OFFSET 0.5
// Height to raise the Z-probe between heating and taking the next measurement. Some probes
// may fail to untrigger if they have been triggered for a long time, which can be solved by
// increasing the height the probe is raised to.
//#define PTC_PROBE_RAISE 15U
//#define PTC_PROBE_RAISE 15
// If the probe is outside of the defined range, use linear extrapolation using the closest
// point and the PTC_LINEAR_EXTRAPOLATION'th next point. E.g. if set to 4 it will use data[0]
@ -2082,7 +2112,7 @@
// @section motion
// The number of linear moves that can be in the planner at once.
// The value of BLOCK_BUFFER_SIZE must be a power of 2 (e.g. 8, 16, 32)
// The value of BLOCK_BUFFER_SIZE must be a power of 2 (e.g., 8, 16, 32)
#if BOTH(SDSUPPORT, DIRECT_STEPPING)
#define BLOCK_BUFFER_SIZE 8
#elif ENABLED(SDSUPPORT)
@ -2238,6 +2268,13 @@
//#define EVENT_GCODE_AFTER_TOOLCHANGE "G12X" // Extra G-code to run after tool-change
#endif
/**
* Extra G-code to run while executing tool-change commands. Can be used to use an additional
* stepper motor (I axis, see option LINEAR_AXES in Configuration.h) to drive the tool-changer.
*/
//#define EVENT_GCODE_TOOLCHANGE_T0 "G28 A\nG1 A0" // Extra G-code to run while executing tool-change command T0
//#define EVENT_GCODE_TOOLCHANGE_T1 "G1 A10" // Extra G-code to run while executing tool-change command T1
/**
* Tool Sensors detect when tools have been picked up or dropped.
* Requires the pins TOOL_SENSOR1_PIN, TOOL_SENSOR2_PIN, etc.
@ -2415,6 +2452,24 @@
#define Z4_MICROSTEPS Z_MICROSTEPS
#endif
#if AXIS_DRIVER_TYPE_I(TMC26X)
#define I_MAX_CURRENT 1000
#define I_SENSE_RESISTOR 91
#define I_MICROSTEPS 16
#endif
#if AXIS_DRIVER_TYPE_J(TMC26X)
#define J_MAX_CURRENT 1000
#define J_SENSE_RESISTOR 91
#define J_MICROSTEPS 16
#endif
#if AXIS_DRIVER_TYPE_K(TMC26X)
#define K_MAX_CURRENT 1000
#define K_SENSE_RESISTOR 91
#define K_MICROSTEPS 16
#endif
#if AXIS_DRIVER_TYPE_E0(TMC26X)
#define E0_MAX_CURRENT 1000
#define E0_SENSE_RESISTOR 91
@ -2565,6 +2620,33 @@
//#define Z4_INTERPOLATE true
#endif
#if AXIS_IS_TMC(I)
#define I_CURRENT 800
#define I_CURRENT_HOME I_CURRENT
#define I_MICROSTEPS 16
#define I_RSENSE 0.11
#define I_CHAIN_POS -1
//#define I_INTERPOLATE true
#endif
#if AXIS_IS_TMC(J)
#define J_CURRENT 800
#define J_CURRENT_HOME J_CURRENT
#define J_MICROSTEPS 16
#define J_RSENSE 0.11
#define J_CHAIN_POS -1
//#define J_INTERPOLATE true
#endif
#if AXIS_IS_TMC(K)
#define K_CURRENT 800
#define K_CURRENT_HOME K_CURRENT
#define K_MICROSTEPS 16
#define K_RSENSE 0.11
#define K_CHAIN_POS -1
//#define K_INTERPOLATE true
#endif
#if AXIS_IS_TMC(E0)
#define E0_CURRENT 800
#define E0_MICROSTEPS 16
@ -2640,6 +2722,10 @@
//#define Y2_CS_PIN -1
//#define Z2_CS_PIN -1
//#define Z3_CS_PIN -1
//#define Z4_CS_PIN -1
//#define I_CS_PIN -1
//#define J_CS_PIN -1
//#define K_CS_PIN -1
//#define E0_CS_PIN -1
//#define E1_CS_PIN -1
//#define E2_CS_PIN -1
@ -2679,6 +2765,9 @@
//#define Z2_SLAVE_ADDRESS 0
//#define Z3_SLAVE_ADDRESS 0
//#define Z4_SLAVE_ADDRESS 0
//#define I_SLAVE_ADDRESS 0
//#define J_SLAVE_ADDRESS 0
//#define K_SLAVE_ADDRESS 0
//#define E0_SLAVE_ADDRESS 0
//#define E1_SLAVE_ADDRESS 0
//#define E2_SLAVE_ADDRESS 0
@ -2703,6 +2792,9 @@
*/
#define STEALTHCHOP_XY
#define STEALTHCHOP_Z
#define STEALTHCHOP_I
#define STEALTHCHOP_J
#define STEALTHCHOP_K
#define STEALTHCHOP_E
/**
@ -2774,6 +2866,9 @@
#define Z2_HYBRID_THRESHOLD 3
#define Z3_HYBRID_THRESHOLD 3
#define Z4_HYBRID_THRESHOLD 3
#define I_HYBRID_THRESHOLD 3
#define J_HYBRID_THRESHOLD 3
#define K_HYBRID_THRESHOLD 3
#define E0_HYBRID_THRESHOLD 30
#define E1_HYBRID_THRESHOLD 30
#define E2_HYBRID_THRESHOLD 30
@ -2799,7 +2894,7 @@
*
* It is recommended to set HOMING_BUMP_MM to { 0, 0, 0 }.
*
* SPI_ENDSTOPS *** Beta feature! *** TMC2130 Only ***
* SPI_ENDSTOPS *** Beta feature! *** TMC2130/TMC5160 Only ***
* Poll the driver through SPI to determine load when homing.
* Removes the need for a wire from DIAG1 to an endstop pin.
*
@ -2820,6 +2915,9 @@
//#define Z2_STALL_SENSITIVITY Z_STALL_SENSITIVITY
//#define Z3_STALL_SENSITIVITY Z_STALL_SENSITIVITY
//#define Z4_STALL_SENSITIVITY Z_STALL_SENSITIVITY
//#define I_STALL_SENSITIVITY 8
//#define J_STALL_SENSITIVITY 8
//#define K_STALL_SENSITIVITY 8
//#define SPI_ENDSTOPS // TMC2130 only
//#define IMPROVE_HOMING_RELIABILITY
#endif
@ -2960,6 +3058,33 @@
#define Z4_SLEW_RATE 1
#endif
#if AXIS_DRIVER_TYPE_I(L6470)
#define I_MICROSTEPS 128
#define I_OVERCURRENT 2000
#define I_STALLCURRENT 1500
#define I_MAX_VOLTAGE 127
#define I_CHAIN_POS -1
#define I_SLEW_RATE 1
#endif
#if AXIS_DRIVER_TYPE_J(L6470)
#define J_MICROSTEPS 128
#define J_OVERCURRENT 2000
#define J_STALLCURRENT 1500
#define J_MAX_VOLTAGE 127
#define J_CHAIN_POS -1
#define J_SLEW_RATE 1
#endif
#if AXIS_DRIVER_TYPE_K(L6470)
#define K_MICROSTEPS 128
#define K_OVERCURRENT 2000
#define K_STALLCURRENT 1500
#define K_MAX_VOLTAGE 127
#define K_CHAIN_POS -1
#define K_SLEW_RATE 1
#endif
#if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000
@ -3309,8 +3434,18 @@
#define SPINDLE_LASER_POWERDOWN_DELAY 50 // (ms) Delay to allow the spindle to stop
#endif
//
// Laser I2C Ammeter (High precision INA226 low/high side module)
//
//#define I2C_AMMETER
#if ENABLED(I2C_AMMETER)
#define I2C_AMMETER_IMAX 0.1 // (Amps) Calibration value for the expected current range
#define I2C_AMMETER_SHUNT_RESISTOR 0.1 // (Ohms) Calibration shunt resistor value
#endif
#endif
#endif
#endif // SPINDLE_FEATURE || LASER_FEATURE
/**
* Synchronous Laser Control with M106/M107

4
Marlin/Version.h

@ -28,7 +28,7 @@
/**
* Marlin release version identifier
*/
//#define SHORT_BUILD_VERSION "2.0.8.2"
//#define SHORT_BUILD_VERSION "2.0.9.1"
/**
* Verbose version identifier which should contain a reference to the location
@ -41,7 +41,7 @@
* here we define this default string as the date where the latest release
* version was tagged.
*/
//#define STRING_DISTRIBUTION_DATE "2021-05-29"
//#define STRING_DISTRIBUTION_DATE "2021-06-27"
/**
* Defines a generic printer name to be output to the LCD after booting Marlin.

2
Marlin/src/HAL/AVR/HAL.h

@ -186,7 +186,7 @@ inline void HAL_adc_init() {
#define GET_PIN_MAP_INDEX(pin) pin
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
#define HAL_SENSITIVE_PINS 0, 1
#define HAL_SENSITIVE_PINS 0, 1,
#ifdef __AVR_AT90USB1286__
#define JTAG_DISABLE() do{ MCUCR = 0x80; MCUCR = 0x80; }while(0)

46
Marlin/src/HAL/AVR/endstop_interrupts.h

@ -168,6 +168,51 @@ void setup_endstop_interrupts() {
pciSetup(Z_MIN_PIN);
#endif
#endif
#if HAS_I_MAX
#if (digitalPinToInterrupt(I_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(I_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(I_MAX_PIN), "I_MAX_PIN is not interrupt-capable");
pciSetup(I_MAX_PIN);
#endif
#elif HAS_I_MIN
#if (digitalPinToInterrupt(I_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(I_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(I_MIN_PIN), "I_MIN_PIN is not interrupt-capable");
pciSetup(I_MIN_PIN);
#endif
#endif
#if HAS_J_MAX
#if (digitalPinToInterrupt(J_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(J_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(J_MAX_PIN), "J_MAX_PIN is not interrupt-capable");
pciSetup(J_MAX_PIN);
#endif
#elif HAS_J_MIN
#if (digitalPinToInterrupt(J_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(J_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(J_MIN_PIN), "J_MIN_PIN is not interrupt-capable");
pciSetup(J_MIN_PIN);
#endif
#endif
#if HAS_K_MAX
#if (digitalPinToInterrupt(K_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(K_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(K_MAX_PIN), "K_MAX_PIN is not interrupt-capable");
pciSetup(K_MAX_PIN);
#endif
#elif HAS_K_MIN
#if (digitalPinToInterrupt(K_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(K_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(K_MIN_PIN), "K_MIN_PIN is not interrupt-capable");
pciSetup(K_MIN_PIN);
#endif
#endif
#if HAS_X2_MAX
#if (digitalPinToInterrupt(X2_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(X2_MAX_PIN);
@ -256,6 +301,5 @@ void setup_endstop_interrupts() {
pciSetup(Z_MIN_PROBE_PIN);
#endif
#endif
// If we arrive here without raising an assertion, each pin has either an EXT-interrupt or a PCI.
}

6
Marlin/src/HAL/DUE/endstop_interrupts.h

@ -64,4 +64,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
}

6
Marlin/src/HAL/ESP32/endstop_interrupts.h

@ -59,4 +59,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
}

37
Marlin/src/HAL/LINUX/include/pinmapping.cpp

@ -25,43 +25,6 @@
#include "../../../gcode/parser.h"
uint8_t analog_offset = NUM_DIGITAL_PINS - NUM_ANALOG_INPUTS;
// Get the digital pin for an analog index
pin_t analogInputToDigitalPin(const int8_t p) {
return (WITHIN(p, 0, NUM_ANALOG_INPUTS) ? analog_offset + p : P_NC);
}
// Return the index of a pin number
int16_t GET_PIN_MAP_INDEX(const pin_t pin) {
return pin;
}
// Test whether the pin is valid
bool VALID_PIN(const pin_t p) {
return WITHIN(p, 0, NUM_DIGITAL_PINS);
}
// Get the analog index for a digital pin
int8_t DIGITAL_PIN_TO_ANALOG_PIN(const pin_t p) {
return (WITHIN(p, analog_offset, NUM_DIGITAL_PINS) ? p - analog_offset : P_NC);
}
// Test whether the pin is PWM
bool PWM_PIN(const pin_t p) {
return false;
}
// Test whether the pin is interruptable
bool INTERRUPT_PIN(const pin_t p) {
return false;
}
// Get the pin number at the given index
pin_t GET_PIN_MAP_PIN(const int16_t ind) {
return ind;
}
int16_t PARSED_PIN_INDEX(const char code, const int16_t dval) {
return parser.intval(code, dval);
}

24
Marlin/src/HAL/LINUX/include/pinmapping.h

@ -34,26 +34,32 @@ constexpr uint8_t NUM_ANALOG_INPUTS = 16;
#define HAL_SENSITIVE_PINS
constexpr uint8_t analog_offset = NUM_DIGITAL_PINS - NUM_ANALOG_INPUTS;
// Get the digital pin for an analog index
pin_t analogInputToDigitalPin(const int8_t p);
constexpr pin_t analogInputToDigitalPin(const int8_t p) {
return (WITHIN(p, 0, NUM_ANALOG_INPUTS) ? analog_offset + p : P_NC);
}
// Get the analog index for a digital pin
constexpr int8_t DIGITAL_PIN_TO_ANALOG_PIN(const pin_t p) {
return (WITHIN(p, analog_offset, NUM_DIGITAL_PINS) ? p - analog_offset : P_NC);
}
// Return the index of a pin number
int16_t GET_PIN_MAP_INDEX(const pin_t pin);
constexpr int16_t GET_PIN_MAP_INDEX(const pin_t pin) { return pin; }
// Test whether the pin is valid
bool VALID_PIN(const pin_t p);
// Get the analog index for a digital pin
int8_t DIGITAL_PIN_TO_ANALOG_PIN(const pin_t p);
constexpr bool VALID_PIN(const pin_t p) { return WITHIN(p, 0, NUM_DIGITAL_PINS); }
// Test whether the pin is PWM
bool PWM_PIN(const pin_t p);
constexpr bool PWM_PIN(const pin_t p) { return false; }
// Test whether the pin is interruptable
bool INTERRUPT_PIN(const pin_t p);
constexpr bool INTERRUPT_PIN(const pin_t p) { return false; }
// Get the pin number at the given index
pin_t GET_PIN_MAP_PIN(const int16_t ind);
constexpr pin_t GET_PIN_MAP_PIN(const int16_t ind) { return ind; }
// Parse a G-code word into a pin index
int16_t PARSED_PIN_INDEX(const char code, const int16_t dval);

2
Marlin/src/HAL/LPC1768/HAL.h

@ -198,7 +198,7 @@ constexpr pin_t GET_PIN_MAP_PIN(const int16_t index) {
// Parse a G-code word into a pin index
int16_t PARSED_PIN_INDEX(const char code, const int16_t dval);
// P0.6 thru P0.9 are for the onboard SD card
#define HAL_SENSITIVE_PINS P0_06, P0_07, P0_08, P0_09
#define HAL_SENSITIVE_PINS P0_06, P0_07, P0_08, P0_09,
#define HAL_IDLETASK 1
void HAL_idletask();

18
Marlin/src/HAL/LPC1768/HAL_SPI.cpp

@ -66,11 +66,7 @@
#include <SoftwareSPI.h>
#ifndef HAL_SPI_SPEED
#define HAL_SPI_SPEED SPI_FULL_SPEED
#endif
static uint8_t SPI_speed = HAL_SPI_SPEED;
static uint8_t SPI_speed = SPI_FULL_SPEED;
static uint8_t spiTransfer(uint8_t b) {
return swSpiTransfer(b, SPI_speed, SD_SCK_PIN, SD_MISO_PIN, SD_MOSI_PIN);
@ -106,15 +102,13 @@
#else
#ifndef HAL_SPI_SPEED
#ifdef SD_SPI_SPEED
#define HAL_SPI_SPEED SD_SPI_SPEED
#else
#define HAL_SPI_SPEED SPI_FULL_SPEED
#endif
#ifdef SD_SPI_SPEED
#define INIT_SPI_SPEED SD_SPI_SPEED
#else
#define INIT_SPI_SPEED SPI_FULL_SPEED
#endif
void spiBegin() { spiInit(HAL_SPI_SPEED); } // Set up SCK, MOSI & MISO pins for SSP0
void spiBegin() { spiInit(INIT_SPI_SPEED); } // Set up SCK, MOSI & MISO pins for SSP0
void spiInit(uint8_t spiRate) {
#if SD_MISO_PIN == BOARD_SPI1_MISO_PIN

33
Marlin/src/HAL/LPC1768/endstop_interrupts.h

@ -122,4 +122,37 @@ void setup_endstop_interrupts() {
#endif
_ATTACH(Z_MIN_PROBE_PIN);
#endif
#if HAS_I_MAX
#if !LPC1768_PIN_INTERRUPT_M(I_MAX_PIN)
#error "I_MAX_PIN is not INTERRUPT-capable."
#endif
_ATTACH(I_MAX_PIN);
#elif HAS_I_MIN
#if !LPC1768_PIN_INTERRUPT_M(I_MIN_PIN)
#error "I_MIN_PIN is not INTERRUPT-capable."
#endif
_ATTACH(I_MIN_PIN);
#endif
#if HAS_J_MAX
#if !LPC1768_PIN_INTERRUPT_M(J_MAX_PIN)
#error "J_MAX_PIN is not INTERRUPT-capable."
#endif
_ATTACH(J_MAX_PIN);
#elif HAS_J_MIN
#if !LPC1768_PIN_INTERRUPT_M(J_MIN_PIN)
#error "J_MIN_PIN is not INTERRUPT-capable."
#endif
_ATTACH(J_MIN_PIN);
#endif
#if HAS_K_MAX
#if !LPC1768_PIN_INTERRUPT_M(K_MAX_PIN)
#error "K_MAX_PIN is not INTERRUPT-capable."
#endif
_ATTACH(K_MAX_PIN);
#elif HAS_K_MIN
#if !LPC1768_PIN_INTERRUPT_M(K_MIN_PIN)
#error "K_MIN_PIN is not INTERRUPT-capable."
#endif
_ATTACH(K_MIN_PIN);
#endif
}

2
Marlin/src/HAL/LPC1768/tft/xpt2046.h

@ -54,7 +54,7 @@ enum XPTCoordinate : uint8_t {
XPT2046_Z2 = 0x40 | XPT2046_CONTROL | XPT2046_DFR_MODE,
};
#if !defined(XPT2046_Z1_THRESHOLD)
#ifndef XPT2046_Z1_THRESHOLD
#define XPT2046_Z1_THRESHOLD 10
#endif

138
Marlin/src/HAL/SAMD51/endstop_interrupts.h

@ -47,80 +47,38 @@
#include "../../module/endstops.h"
#define MATCH_EILINE(P1,P2) (P1 != P2 && PIN_TO_EILINE(P1) == PIN_TO_EILINE(P2))
#if HAS_X_MAX
#define MATCH_X_MAX_EILINE(P) MATCH_EILINE(P, X_MAX_PIN)
#else
#define MATCH_X_MAX_EILINE(P) false
#endif
#if HAS_X_MIN
#define MATCH_X_MIN_EILINE(P) MATCH_EILINE(P, X_MIN_PIN)
#else
#define MATCH_X_MIN_EILINE(P) false
#endif
#if HAS_Y_MAX
#define MATCH_Y_MAX_EILINE(P) MATCH_EILINE(P, Y_MAX_PIN)
#else
#define MATCH_Y_MAX_EILINE(P) false
#endif
#if HAS_Y_MIN
#define MATCH_Y_MIN_EILINE(P) MATCH_EILINE(P, Y_MIN_PIN)
#else
#define MATCH_Y_MIN_EILINE(P) false
#endif
#if HAS_Z_MAX
#define MATCH_Z_MAX_EILINE(P) MATCH_EILINE(P, Z_MAX_PIN)
#else
#define MATCH_Z_MAX_EILINE(P) false
#endif
#if HAS_Z_MIN
#define MATCH_Z_MIN_EILINE(P) MATCH_EILINE(P, Z_MIN_PIN)
#else
#define MATCH_Z_MIN_EILINE(P) false
#endif
#if HAS_Z2_MAX
#define MATCH_Z2_MAX_EILINE(P) MATCH_EILINE(P, Z2_MAX_PIN)
#else
#define MATCH_Z2_MAX_EILINE(P) false
#endif
#if HAS_Z2_MIN
#define MATCH_Z2_MIN_EILINE(P) MATCH_EILINE(P, Z2_MIN_PIN)
#else
#define MATCH_Z2_MIN_EILINE(P) false
#endif
#if HAS_Z3_MAX
#define MATCH_Z3_MAX_EILINE(P) MATCH_EILINE(P, Z3_MAX_PIN)
#else
#define MATCH_Z3_MAX_EILINE(P) false
#endif
#if HAS_Z3_MIN
#define MATCH_Z3_MIN_EILINE(P) MATCH_EILINE(P, Z3_MIN_PIN)
#else
#define MATCH_Z3_MIN_EILINE(P) false
#endif
#if HAS_Z4_MAX
#define MATCH_Z4_MAX_EILINE(P) MATCH_EILINE(P, Z4_MAX_PIN)
#else
#define MATCH_Z4_MAX_EILINE(P) false
#endif
#if HAS_Z4_MIN
#define MATCH_Z4_MIN_EILINE(P) MATCH_EILINE(P, Z4_MIN_PIN)
#else
#define MATCH_Z4_MIN_EILINE(P) false
#endif
#if HAS_Z_MIN_PROBE_PIN
#define MATCH_Z_MIN_PROBE_EILINE(P) MATCH_EILINE(P, Z_MIN_PROBE_PIN)
#else
#define MATCH_Z_MIN_PROBE_EILINE(P) false
#endif
#define AVAILABLE_EILINE(P) (PIN_TO_EILINE(P) != -1 \
&& !MATCH_X_MAX_EILINE(P) && !MATCH_X_MIN_EILINE(P) \
&& !MATCH_Y_MAX_EILINE(P) && !MATCH_Y_MIN_EILINE(P) \
&& !MATCH_Z_MAX_EILINE(P) && !MATCH_Z_MIN_EILINE(P) \
&& !MATCH_Z2_MAX_EILINE(P) && !MATCH_Z2_MIN_EILINE(P) \
&& !MATCH_Z3_MAX_EILINE(P) && !MATCH_Z3_MIN_EILINE(P) \
&& !MATCH_Z4_MAX_EILINE(P) && !MATCH_Z4_MIN_EILINE(P) \
&& !MATCH_Z_MIN_PROBE_EILINE(P))
#define MATCH_EILINE(P1,P2) (P1 != P2 && PIN_TO_EILINE(P1) == PIN_TO_EILINE(P2))
#define MATCH_X_MAX_EILINE(P) TERN0(HAS_X_MAX, DEFER4(MATCH_EILINE)(P, X_MAX_PIN))
#define MATCH_X_MIN_EILINE(P) TERN0(HAS_X_MIN, DEFER4(MATCH_EILINE)(P, X_MIN_PIN))
#define MATCH_Y_MAX_EILINE(P) TERN0(HAS_Y_MAX, DEFER4(MATCH_EILINE)(P, Y_MAX_PIN))
#define MATCH_Y_MIN_EILINE(P) TERN0(HAS_Y_MIN, DEFER4(MATCH_EILINE)(P, Y_MIN_PIN))
#define MATCH_Z_MAX_EILINE(P) TERN0(HAS_Z_MAX, DEFER4(MATCH_EILINE)(P, Z_MAX_PIN))
#define MATCH_Z_MIN_EILINE(P) TERN0(HAS_Z_MIN, DEFER4(MATCH_EILINE)(P, Z_MIN_PIN))
#define MATCH_I_MAX_EILINE(P) TERN0(HAS_I_MAX, DEFER4(MATCH_EILINE)(P, I_MAX_PIN))
#define MATCH_I_MIN_EILINE(P) TERN0(HAS_I_MIN, DEFER4(MATCH_EILINE)(P, I_MIN_PIN))
#define MATCH_J_MAX_EILINE(P) TERN0(HAS_J_MAX, DEFER4(MATCH_EILINE)(P, J_MAX_PIN))
#define MATCH_J_MIN_EILINE(P) TERN0(HAS_J_MIN, DEFER4(MATCH_EILINE)(P, J_MIN_PIN))
#define MATCH_K_MAX_EILINE(P) TERN0(HAS_K_MAX, DEFER4(MATCH_EILINE)(P, K_MAX_PIN))
#define MATCH_K_MIN_EILINE(P) TERN0(HAS_K_MIN, DEFER4(MATCH_EILINE)(P, K_MIN_PIN))
#define MATCH_Z2_MAX_EILINE(P) TERN0(HAS_Z2_MAX, DEFER4(MATCH_EILINE)(P, Z2_MAX_PIN))
#define MATCH_Z2_MIN_EILINE(P) TERN0(HAS_Z2_MIN, DEFER4(MATCH_EILINE)(P, Z2_MIN_PIN))
#define MATCH_Z3_MAX_EILINE(P) TERN0(HAS_Z3_MAX, DEFER4(MATCH_EILINE)(P, Z3_MAX_PIN))
#define MATCH_Z3_MIN_EILINE(P) TERN0(HAS_Z3_MIN, DEFER4(MATCH_EILINE)(P, Z3_MIN_PIN))
#define MATCH_Z4_MAX_EILINE(P) TERN0(HAS_Z4_MAX, DEFER4(MATCH_EILINE)(P, Z4_MAX_PIN))
#define MATCH_Z4_MIN_EILINE(P) TERN0(HAS_Z4_MIN, DEFER4(MATCH_EILINE)(P, Z4_MIN_PIN))
#define MATCH_Z_MIN_PROBE_EILINE(P) TERN0(HAS_Z_MIN_PROBE_PIN, DEFER4(MATCH_EILINE)(P, Z_MIN_PROBE_PIN))
#define AVAILABLE_EILINE(P) ( PIN_TO_EILINE(P) != -1 \
&& !MATCH_X_MAX_EILINE(P) && !MATCH_X_MIN_EILINE(P) \
&& !MATCH_Y_MAX_EILINE(P) && !MATCH_Y_MIN_EILINE(P) \
&& !MATCH_Z_MAX_EILINE(P) && !MATCH_Z_MIN_EILINE(P) \
&& !MATCH_I_MAX_EILINE(P) && !MATCH_I_MIN_EILINE(P) \
&& !MATCH_J_MAX_EILINE(P) && !MATCH_J_MIN_EILINE(P) \
&& !MATCH_K_MAX_EILINE(P) && !MATCH_K_MIN_EILINE(P) \
&& !MATCH_Z2_MAX_EILINE(P) && !MATCH_Z2_MIN_EILINE(P) \
&& !MATCH_Z3_MAX_EILINE(P) && !MATCH_Z3_MIN_EILINE(P) \
&& !MATCH_Z4_MAX_EILINE(P) && !MATCH_Z4_MIN_EILINE(P) \
&& !MATCH_Z_MIN_PROBE_EILINE(P) )
// One ISR for all EXT-Interrupts
void endstop_ISR() { endstops.update(); }
@ -204,5 +162,37 @@ void setup_endstop_interrupts() {
#error "Z_MIN_PROBE_PIN has no EXTINT line available."
#endif
_ATTACH(Z_MIN_PROBE_PIN);
#elif HAS_I_MAX
#if !AVAILABLE_EILINE(I_MAX_PIN)
#error "I_MAX_PIN has no EXTINT line available."
#endif
attachInterrupt(I_MAX_PIN, endstop_ISR, CHANGE);
#elif HAS_I_MIN
#if !AVAILABLE_EILINE(I_MIN_PIN)
#error "I_MIN_PIN has no EXTINT line available."
#endif
attachInterrupt(I_MIN_PIN, endstop_ISR, CHANGE);
#endif
#if HAS_J_MAX
#if !AVAILABLE_EILINE(J_MAX_PIN)
#error "J_MAX_PIN has no EXTINT line available."
#endif
attachInterrupt(J_MAX_PIN, endstop_ISR, CHANGE);
#elif HAS_J_MIN
#if !AVAILABLE_EILINE(J_MIN_PIN)
#error "J_MIN_PIN has no EXTINT line available."
#endif
attachInterrupt(J_MIN_PIN, endstop_ISR, CHANGE);
#endif
#if HAS_K_MAX
#if !AVAILABLE_EILINE(K_MAX_PIN)
#error "K_MAX_PIN has no EXTINT line available."
#endif
attachInterrupt(K_MAX_PIN, endstop_ISR, CHANGE);
#elif HAS_K_MIN
#if !AVAILABLE_EILINE(K_MIN_PIN)
#error "K_MIN_PIN has no EXTINT line available."
#endif
attachInterrupt(K_MIN_PIN, endstop_ISR, CHANGE);
#endif
}

1
Marlin/src/HAL/STM32/HAL.h

@ -195,6 +195,7 @@ uint16_t HAL_adc_get_result();
#ifdef STM32F1xx
#define JTAG_DISABLE() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_JTAGDISABLE)
#define JTAGSWD_DISABLE() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_DISABLE)
#define JTAGSWD_RESET() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_RESET); // Reset: FULL SWD+JTAG
#endif
#define PLATFORM_M997_SUPPORT

8
Marlin/src/HAL/STM32/HAL_SPI.cpp

@ -163,11 +163,9 @@ static SPISettings spiConfig;
}
spiConfig = SPISettings(clock, MSBFIRST, SPI_MODE0);
#if ENABLED(CUSTOM_SPI_PINS)
SPI.setMISO(SD_MISO_PIN);
SPI.setMOSI(SD_MOSI_PIN);
SPI.setSCLK(SD_SCK_PIN);
#endif
SPI.setMISO(SD_MISO_PIN);
SPI.setMOSI(SD_MOSI_PIN);
SPI.setSCLK(SD_SCK_PIN);
SPI.begin();
}

82
Marlin/src/HAL/STM32/eeprom_bl24cxx.cpp

@ -0,0 +1,82 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef STM32F1
/**
* PersistentStore for Arduino-style EEPROM interface
* with simple implementations supplied by Marlin.
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(IIC_BL24CXX_EEPROM)
#include "../shared/eeprom_if.h"
#include "../shared/eeprom_api.h"
//
// PersistentStore
//
#ifndef MARLIN_EEPROM_SIZE
#error "MARLIN_EEPROM_SIZE is required for IIC_BL24CXX_EEPROM."
#endif
size_t PersistentStore::capacity() { return MARLIN_EEPROM_SIZE; }
bool PersistentStore::access_start() { eeprom_init(); return true; }
bool PersistentStore::access_finish() { return true; }
bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) {
uint16_t written = 0;
while (size--) {
uint8_t v = *value;
uint8_t * const p = (uint8_t * const)pos;
if (v != eeprom_read_byte(p)) { // EEPROM has only ~100,000 write cycles, so only write bytes that have changed!
eeprom_write_byte(p, v);
if (++written & 0x7F) delay(2); else safe_delay(2); // Avoid triggering watchdog during long EEPROM writes
if (eeprom_read_byte(p) != v) {
SERIAL_ECHO_MSG(STR_ERR_EEPROM_WRITE);
return true;
}
}
crc16(crc, &v, 1);
pos++;
value++;
}
return false;
}
bool PersistentStore::read_data(int &pos, uint8_t *value, size_t size, uint16_t *crc, const bool writing/*=true*/) {
do {
uint8_t * const p = (uint8_t * const)pos;
uint8_t c = eeprom_read_byte(p);
if (writing) *value = c;
crc16(crc, &c, 1);
pos++;
value++;
} while (--size);
return false;
}
#endif // IIC_BL24CXX_EEPROM
#endif // STM32F1

4
Marlin/src/HAL/STM32/eeprom_flash.cpp

@ -28,6 +28,10 @@
#include "../shared/eeprom_api.h"
// Better: "utility/stm32_eeprom.h", but only after updating stm32duino to 2.0.0
// Use EEPROM.h for compatibility, for now.
#include <EEPROM.h>
/**
* The STM32 HAL supports chips that deal with "pages" and some with "sectors" and some that
* even have multiple "banks" of flash.

54
Marlin/src/HAL/STM32/eeprom_if_iic.cpp

@ -0,0 +1,54 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* Platform-independent Arduino functions for I2C EEPROM.
* Enable USE_SHARED_EEPROM if not supplied by the framework.
*/
#ifdef STM32F1
#include "../../inc/MarlinConfig.h"
#if ENABLED(IIC_BL24CXX_EEPROM)
#include "../../libs/BL24CXX.h"
#include "../shared/eeprom_if.h"
void eeprom_init() { BL24CXX::init(); }
// ------------------------
// Public functions
// ------------------------
void eeprom_write_byte(uint8_t *pos, uint8_t value) {
const unsigned eeprom_address = (unsigned)pos;
return BL24CXX::writeOneByte(eeprom_address, value);
}
uint8_t eeprom_read_byte(uint8_t *pos) {
const unsigned eeprom_address = (unsigned)pos;
return BL24CXX::readOneByte(eeprom_address);
}
#endif // IIC_BL24CXX_EEPROM
#endif // STM32F1

0
Marlin/src/HAL/STM32F1/eeprom_spi_w25q.cpp → Marlin/src/HAL/STM32/eeprom_spi_w25q.cpp

7
Marlin/src/HAL/STM32/eeprom_wired.cpp

@ -40,7 +40,12 @@
size_t PersistentStore::capacity() { return MARLIN_EEPROM_SIZE; }
bool PersistentStore::access_start() { eeprom_init(); return true; }
bool PersistentStore::access_finish() { return true; }
bool PersistentStore::access_finish() {
#if ENABLED(EEPROM_W25Q)
eeprom_hw_deinit();
#endif
return true;
}
bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) {
uint16_t written = 0;

6
Marlin/src/HAL/STM32/endstop_interrupts.h

@ -46,4 +46,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
}

5
Marlin/src/HAL/STM32/inc/Conditionals_adv.h

@ -21,7 +21,7 @@
*/
#pragma once
#if defined(USBD_USE_CDC_MSC) && DISABLED(NO_SD_HOST_DRIVE)
#if BOTH(SDSUPPORT, USBD_USE_CDC_MSC) && DISABLED(NO_SD_HOST_DRIVE)
#define HAS_SD_HOST_DRIVE 1
#endif
@ -30,3 +30,6 @@
#undef F_CPU
#define F_CPU BOARD_F_CPU
#endif
// The Sensitive Pins array is not optimizable
#define RUNTIME_ONLY_ANALOG_TO_DIGITAL

4
Marlin/src/HAL/STM32/msc_sd.cpp

@ -33,9 +33,9 @@ public:
DiskIODriver* diskIODriver() {
#if ENABLED(MULTI_VOLUME)
#if SHARED_VOLUME_IS(SD_ONBOARD)
return &card.media_sd_spi;
return &card.media_driver_sdcard;
#elif SHARED_VOLUME_IS(USB_FLASH_DRIVE)
return &card.media_usbFlashDrive;
return &card.media_driver_usbFlash;
#endif
#else
return card.diskIODriver();

12
Marlin/src/HAL/STM32/tft/tft_spi.cpp

@ -125,12 +125,20 @@ void TFT_SPI::DataTransferBegin(uint16_t DataSize) {
WRITE(TFT_CS_PIN, LOW);
}
#ifdef TFT_DEFAULT_DRIVER
#include "../../../lcd/tft_io/tft_ids.h"
#endif
uint32_t TFT_SPI::GetID() {
uint32_t id;
id = ReadID(LCD_READ_ID);
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF) {
id = ReadID(LCD_READ_ID4);
#ifdef TFT_DEFAULT_DRIVER
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
id = TFT_DEFAULT_DRIVER;
#endif
}
return id;
}

2
Marlin/src/HAL/STM32/tft/xpt2046.h

@ -56,7 +56,7 @@ enum XPTCoordinate : uint8_t {
XPT2046_Z2 = 0x40 | XPT2046_CONTROL | XPT2046_DFR_MODE,
};
#if !defined(XPT2046_Z1_THRESHOLD)
#ifndef XPT2046_Z1_THRESHOLD
#define XPT2046_Z1_THRESHOLD 10
#endif

9
Marlin/src/HAL/STM32F1/MarlinSerial.cpp

@ -167,6 +167,15 @@ constexpr bool IsSerialClassAllowed(const HardwareSerial&) { return false; }
#if AXIS_HAS_HW_SERIAL(Z4)
CHECK_AXIS_SERIAL(Z4);
#endif
#if AXIS_HAS_HW_SERIAL(I)
CHECK_AXIS_SERIAL(I);
#endif
#if AXIS_HAS_HW_SERIAL(J)
CHECK_AXIS_SERIAL(J);
#endif
#if AXIS_HAS_HW_SERIAL(K)
CHECK_AXIS_SERIAL(K);
#endif
#if AXIS_HAS_HW_SERIAL(E0)
CHECK_AXIS_SERIAL(E0);
#endif

1
Marlin/src/HAL/STM32F1/build_flags.py

@ -11,6 +11,7 @@ if __name__ == "__main__":
"-fsigned-char",
"-fno-move-loop-invariants",
"-fno-strict-aliasing",
"-fsingle-precision-constant",
"--specs=nano.specs",
"--specs=nosys.specs",

6
Marlin/src/HAL/STM32F1/endstop_interrupts.h

@ -71,4 +71,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
}

12
Marlin/src/HAL/STM32F1/tft/tft_spi.cpp

@ -90,12 +90,20 @@ void TFT_SPI::DataTransferBegin(uint16_t DataSize) {
TFT_CS_L;
}
#ifdef TFT_DEFAULT_DRIVER
#include "../../../lcd/tft_io/tft_ids.h"
#endif
uint32_t TFT_SPI::GetID() {
uint32_t id;
id = ReadID(LCD_READ_ID);
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF) {
id = ReadID(LCD_READ_ID4);
#ifdef TFT_DEFAULT_DRIVER
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
id = TFT_DEFAULT_DRIVER;
#endif
}
return id;
}

2
Marlin/src/HAL/STM32F1/tft/xpt2046.h

@ -54,7 +54,7 @@ enum XPTCoordinate : uint8_t {
XPT2046_Z2 = 0x40 | XPT2046_CONTROL | XPT2046_DFR_MODE,
};
#if !defined(XPT2046_Z1_THRESHOLD)
#ifndef XPT2046_Z1_THRESHOLD
#define XPT2046_Z1_THRESHOLD 10
#endif

6
Marlin/src/HAL/TEENSY31_32/endstop_interrupts.h

@ -64,4 +64,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
}

6
Marlin/src/HAL/TEENSY35_36/endstop_interrupts.h

@ -63,4 +63,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
}

6
Marlin/src/HAL/TEENSY40_41/endstop_interrupts.h

@ -63,4 +63,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
}

21
Marlin/src/HAL/shared/eeprom_if_i2c.cpp

@ -61,11 +61,24 @@ static constexpr uint8_t eeprom_device_address = I2C_ADDRESS(EEPROM_DEVICE_ADDRE
// Public functions
// ------------------------
#define SMALL_EEPROM (MARLIN_EEPROM_SIZE <= 2048)
// Combine Address high bits into the device address on <=16Kbit (2K) and >512Kbit (64K) EEPROMs.
// Note: MARLIN_EEPROM_SIZE is specified in bytes, whereas EEPROM model numbers refer to bits.
// e.g., The "16" in BL24C16 indicates a 16Kbit (2KB) size.
static uint8_t _eeprom_calc_device_address(uint8_t * const pos) {
const unsigned eeprom_address = (unsigned)pos;
return (SMALL_EEPROM || MARLIN_EEPROM_SIZE > 65536)
? uint8_t(eeprom_device_address | ((eeprom_address >> (SMALL_EEPROM ? 8 : 16)) & 0x07))
: eeprom_device_address;
}
static void _eeprom_begin(uint8_t * const pos) {
const unsigned eeprom_address = (unsigned)pos;
Wire.beginTransmission(eeprom_device_address);
Wire.write(int(eeprom_address >> 8)); // Address High
Wire.write(int(eeprom_address & 0xFF)); // Address Low
Wire.beginTransmission(_eeprom_calc_device_address(pos));
if (!SMALL_EEPROM)
Wire.write(uint8_t((eeprom_address >> 8) & 0xFF)); // Address High, if needed
Wire.write(uint8_t(eeprom_address & 0xFF)); // Address Low
}
void eeprom_write_byte(uint8_t *pos, uint8_t value) {
@ -81,7 +94,7 @@ void eeprom_write_byte(uint8_t *pos, uint8_t value) {
uint8_t eeprom_read_byte(uint8_t *pos) {
_eeprom_begin(pos);
Wire.endTransmission();
Wire.requestFrom(eeprom_device_address, (byte)1);
Wire.requestFrom(_eeprom_calc_device_address(pos), (byte)1);
return Wire.available() ? Wire.read() : 0xFF;
}

75
Marlin/src/MarlinCore.cpp

@ -282,12 +282,22 @@ bool wait_for_heatup = true;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnarrowing"
#ifndef RUNTIME_ONLY_ANALOG_TO_DIGITAL
template <pin_t ...D>
constexpr pin_t OnlyPins<_SP_END, D...>::table[sizeof...(D)];
#endif
bool pin_is_protected(const pin_t pin) {
static const pin_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
LOOP_L_N(i, COUNT(sensitive_pins)) {
pin_t sensitive_pin;
memcpy_P(&sensitive_pin, &sensitive_pins[i], sizeof(pin_t));
if (pin == sensitive_pin) return true;
#ifdef RUNTIME_ONLY_ANALOG_TO_DIGITAL
static const pin_t sensitive_pins[] PROGMEM = { SENSITIVE_PINS };
const size_t pincount = COUNT(sensitive_pins);
#else
static constexpr size_t pincount = OnlyPins<SENSITIVE_PINS>::size;
static const pin_t (&sensitive_pins)[pincount] PROGMEM = OnlyPins<SENSITIVE_PINS>::table;
#endif
LOOP_L_N(i, pincount) {
const pin_t * const pptr = &sensitive_pins[i];
if (pin == (sizeof(pin_t) == 2 ? (pin_t)pgm_read_word(pptr) : (pin_t)pgm_read_byte(pptr))) return true;
}
return false;
}
@ -304,6 +314,9 @@ void enable_all_steppers() {
ENABLE_AXIS_X();
ENABLE_AXIS_Y();
ENABLE_AXIS_Z();
ENABLE_AXIS_I(); // Marlin 6-axis support by DerAndere (https://github.com/DerAndere1/Marlin/wiki)
ENABLE_AXIS_J();
ENABLE_AXIS_K();
enable_e_steppers();
TERN_(EXTENSIBLE_UI, ExtUI::onSteppersEnabled());
@ -317,7 +330,7 @@ void disable_e_steppers() {
void disable_e_stepper(const uint8_t e) {
#define _CASE_DIS_E(N) case N: DISABLE_AXIS_E##N(); break;
switch (e) {
REPEAT(EXTRUDERS, _CASE_DIS_E)
REPEAT(E_STEPPERS, _CASE_DIS_E)
}
}
@ -325,6 +338,9 @@ void disable_all_steppers() {
DISABLE_AXIS_X();
DISABLE_AXIS_Y();
DISABLE_AXIS_Z();
DISABLE_AXIS_I();
DISABLE_AXIS_J();
DISABLE_AXIS_K();
disable_e_steppers();
TERN_(EXTENSIBLE_UI, ExtUI::onSteppersDisabled());
@ -408,19 +424,18 @@ void startOrResumeJob() {
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
* - Pulse FET_SAFETY_PIN if it exists
*/
inline void manage_inactivity(const bool ignore_stepper_queue=false) {
inline void manage_inactivity(const bool no_stepper_sleep=false) {
queue.get_available_commands();
const millis_t ms = millis();
// Prevent steppers timing-out in the middle of M600
// unless PAUSE_PARK_NO_STEPPER_TIMEOUT is disabled
const bool parked_or_ignoring = ignore_stepper_queue
// Prevent steppers timing-out
const bool do_reset_timeout = no_stepper_sleep
|| TERN0(PAUSE_PARK_NO_STEPPER_TIMEOUT, did_pause_print);
// Reset both the M18/M84 activity timeout and the M85 max 'kill' timeout
if (parked_or_ignoring) gcode.reset_stepper_timeout(ms);
if (do_reset_timeout) gcode.reset_stepper_timeout(ms);
if (gcode.stepper_max_timed_out(ms)) {
SERIAL_ERROR_MSG(STR_KILL_INACTIVE_TIME, parser.command_ptr);
@ -436,7 +451,7 @@ inline void manage_inactivity(const bool ignore_stepper_queue=false) {
// activity timeout and the M85 max 'kill' timeout
if (planner.has_blocks_queued())
gcode.reset_stepper_timeout(ms);
else if (!parked_or_ignoring && gcode.stepper_inactive_timeout()) {
else if (!do_reset_timeout && gcode.stepper_inactive_timeout()) {
if (!already_shutdown_steppers) {
already_shutdown_steppers = true; // L6470 SPI will consume 99% of free time without this
@ -444,6 +459,9 @@ inline void manage_inactivity(const bool ignore_stepper_queue=false) {
if (ENABLED(DISABLE_INACTIVE_X)) DISABLE_AXIS_X();
if (ENABLED(DISABLE_INACTIVE_Y)) DISABLE_AXIS_Y();
if (ENABLED(DISABLE_INACTIVE_Z)) DISABLE_AXIS_Z();
if (ENABLED(DISABLE_INACTIVE_I)) DISABLE_AXIS_I();
if (ENABLED(DISABLE_INACTIVE_J)) DISABLE_AXIS_J();
if (ENABLED(DISABLE_INACTIVE_K)) DISABLE_AXIS_K();
if (ENABLED(DISABLE_INACTIVE_E)) disable_e_steppers();
TERN_(AUTO_BED_LEVELING_UBL, ubl.steppers_were_disabled());
@ -716,14 +734,14 @@ inline void manage_inactivity(const bool ignore_stepper_queue=false) {
* - Update the Průša MMU2
* - Handle Joystick jogging
*/
void idle(TERN_(ADVANCED_PAUSE_FEATURE, bool no_stepper_sleep/*=false*/)) {
void idle(bool no_stepper_sleep/*=false*/) {
#if ENABLED(MARLIN_DEV_MODE)
static uint16_t idle_depth = 0;
if (++idle_depth > 5) SERIAL_ECHOLNPAIR("idle() call depth: ", idle_depth);
#endif
// Core Marlin activities
manage_inactivity(TERN_(ADVANCED_PAUSE_FEATURE, no_stepper_sleep));
manage_inactivity(no_stepper_sleep);
// Manage Heaters (and Watchdog)
thermalManager.manage_heater();
@ -935,6 +953,15 @@ inline void tmc_standby_setup() {
#if PIN_EXISTS(Z4_STDBY)
SET_INPUT_PULLDOWN(Z4_STDBY_PIN);
#endif
#if PIN_EXISTS(I_STDBY)
SET_INPUT_PULLDOWN(I_STDBY_PIN);
#endif
#if PIN_EXISTS(J_STDBY)
SET_INPUT_PULLDOWN(J_STDBY_PIN);
#endif
#if PIN_EXISTS(K_STDBY)
SET_INPUT_PULLDOWN(K_STDBY_PIN);
#endif
#if PIN_EXISTS(E0_STDBY)
SET_INPUT_PULLDOWN(E0_STDBY_PIN);
#endif
@ -1101,6 +1128,7 @@ void setup() {
#endif
#if HAS_FREEZE_PIN
SETUP_LOG("FREEZE_PIN");
SET_INPUT_PULLUP(FREEZE_PIN);
#endif
@ -1109,11 +1137,19 @@ void setup() {
OUT_WRITE(SUICIDE_PIN, !SUICIDE_PIN_INVERTING);
#endif
#ifdef JTAGSWD_RESET
SETUP_LOG("JTAGSWD_RESET");
JTAGSWD_RESET();
#endif
#if EITHER(DISABLE_DEBUG, DISABLE_JTAG)
delay(10);
// Disable any hardware debug to free up pins for IO
#if ENABLED(DISABLE_DEBUG) && defined(JTAGSWD_DISABLE)
SETUP_LOG("JTAGSWD_DISABLE");
JTAGSWD_DISABLE();
#elif defined(JTAG_DISABLE)
SETUP_LOG("JTAG_DISABLE");
JTAG_DISABLE();
#else
#error "DISABLE_(DEBUG|JTAG) is not supported for the selected MCU/Board."
@ -1132,10 +1168,10 @@ void setup() {
SETUP_RUN(HAL_init());
// Init and disable SPI thermocouples; this is still needed
#if TEMP_SENSOR_0_IS_MAX_TC
#if TEMP_SENSOR_0_IS_MAX_TC || (TEMP_SENSOR_REDUNDANT_IS_MAX_TC && TEMP_SENSOR_REDUNDANT_SOURCE == 0)
OUT_WRITE(MAX6675_SS_PIN, HIGH); // Disable
#endif
#if TEMP_SENSOR_1_IS_MAX_TC
#if TEMP_SENSOR_1_IS_MAX_TC || (TEMP_SENSOR_REDUNDANT_IS_MAX_TC && TEMP_SENSOR_REDUNDANT_SOURCE == 1)
OUT_WRITE(MAX6675_SS2_PIN, HIGH); // Disable
#endif
@ -1423,10 +1459,7 @@ void setup() {
#endif
#if HAS_PRUSA_MMU1
SETUP_LOG("Prusa MMU1");
SET_OUTPUT(E_MUX0_PIN);
SET_OUTPUT(E_MUX1_PIN);
SET_OUTPUT(E_MUX2_PIN);
SETUP_RUN(mmu_init());
#endif
#if HAS_FANMUX
@ -1553,11 +1586,9 @@ void setup() {
#if BOTH(HAS_LCD_MENU, TOUCH_SCREEN_CALIBRATION) && EITHER(TFT_CLASSIC_UI, TFT_COLOR_UI)
ui.check_touch_calibration();
#endif
#if ENABLED(MKS_WIFI)
mks_wifi_init();
#endif
marlin_state = MF_RUNNING;
SETUP_LOG("setup() completed.");

4
Marlin/src/MarlinCore.h

@ -34,8 +34,8 @@
void stop();
// Pass true to keep steppers from timing out
void idle(TERN_(ADVANCED_PAUSE_FEATURE, bool no_stepper_sleep=false));
inline void idle_no_sleep() { idle(TERN_(ADVANCED_PAUSE_FEATURE, true)); }
void idle(bool no_stepper_sleep=false);
inline void idle_no_sleep() { idle(true); }
#if ENABLED(G38_PROBE_TARGET)
extern uint8_t G38_move; // Flag to tell the ISR that G38 is in progress, and the type

31
Marlin/src/core/boards.h

@ -321,7 +321,7 @@
#define BOARD_BTT_SKR_MINI_V1_1 4023 // BigTreeTech SKR Mini v1.1 (STM32F103RC)
#define BOARD_BTT_SKR_MINI_E3_V1_0 4024 // BigTreeTech SKR Mini E3 (STM32F103RC)
#define BOARD_BTT_SKR_MINI_E3_V1_2 4025 // BigTreeTech SKR Mini E3 V1.2 (STM32F103RC)
#define BOARD_BTT_SKR_MINI_E3_V2_0 4026 // BigTreeTech SKR Mini E3 V2.0 (STM32F103RC)
#define BOARD_BTT_SKR_MINI_E3_V2_0 4026 // BigTreeTech SKR Mini E3 V2.0 (STM32F103RC / STM32F103RE)
#define BOARD_BTT_SKR_MINI_MZ_V1_0 4027 // BigTreeTech SKR Mini MZ V1.0 (STM32F103RC)
#define BOARD_BTT_SKR_E3_DIP 4028 // BigTreeTech SKR E3 DIP V1.0 (STM32F103RC / STM32F103RE)
#define BOARD_BTT_SKR_CR6 4029 // BigTreeTech SKR CR6 v1.0 (STM32F103RE)
@ -372,20 +372,21 @@
#define BOARD_BTT_SKR_V2_0_REV_B 4212 // BigTreeTech SKR v2.0 Rev B (STM32F407VGT6)
#define BOARD_BTT_GTR_V1_0 4213 // BigTreeTech GTR v1.0 (STM32F407IGT)
#define BOARD_BTT_OCTOPUS_V1_0 4214 // BigTreeTech Octopus v1.0 (STM32F446ZET6)
#define BOARD_LERDGE_K 4215 // Lerdge K (STM32F407ZG)
#define BOARD_LERDGE_S 4216 // Lerdge S (STM32F407VE)
#define BOARD_LERDGE_X 4217 // Lerdge X (STM32F407VE)
#define BOARD_VAKE403D 4218 // VAkE 403D (STM32F446VET6)
#define BOARD_FYSETC_S6 4219 // FYSETC S6 (STM32F446VET6)
#define BOARD_FYSETC_S6_V2_0 4220 // FYSETC S6 v2.0 (STM32F446VET6)
#define BOARD_FYSETC_SPIDER 4221 // FYSETC Spider (STM32F446VET6)
#define BOARD_FLYF407ZG 4222 // FLYF407ZG (STM32F407ZG)
#define BOARD_MKS_ROBIN2 4223 // MKS_ROBIN2 (STM32F407ZE)
#define BOARD_MKS_ROBIN_PRO_V2 4224 // MKS Robin Pro V2 (STM32F407VE)
#define BOARD_MKS_ROBIN_NANO_V3 4225 // MKS Robin Nano V3 (STM32F407VG)
#define BOARD_ANET_ET4 4226 // ANET ET4 V1.x (STM32F407VGT6)
#define BOARD_ANET_ET4P 4227 // ANET ET4P V1.x (STM32F407VGT6)
#define BOARD_FYSETC_CHEETAH_V20 4228 // FYSETC Cheetah V2.0
#define BOARD_BTT_OCTOPUS_V1_1 4215 // BigTreeTech Octopus v1.1 (STM32F446ZET6)
#define BOARD_LERDGE_K 4216 // Lerdge K (STM32F407ZG)
#define BOARD_LERDGE_S 4217 // Lerdge S (STM32F407VE)
#define BOARD_LERDGE_X 4218 // Lerdge X (STM32F407VE)
#define BOARD_VAKE403D 4219 // VAkE 403D (STM32F446VET6)
#define BOARD_FYSETC_S6 4220 // FYSETC S6 (STM32F446VET6)
#define BOARD_FYSETC_S6_V2_0 4221 // FYSETC S6 v2.0 (STM32F446VET6)
#define BOARD_FYSETC_SPIDER 4222 // FYSETC Spider (STM32F446VET6)
#define BOARD_FLYF407ZG 4223 // FLYF407ZG (STM32F407ZG)
#define BOARD_MKS_ROBIN2 4224 // MKS_ROBIN2 (STM32F407ZE)
#define BOARD_MKS_ROBIN_PRO_V2 4225 // MKS Robin Pro V2 (STM32F407VE)
#define BOARD_MKS_ROBIN_NANO_V3 4226 // MKS Robin Nano V3 (STM32F407VG)
#define BOARD_ANET_ET4 4227 // ANET ET4 V1.x (STM32F407VGT6)
#define BOARD_ANET_ET4P 4228 // ANET ET4P V1.x (STM32F407VGT6)
#define BOARD_FYSETC_CHEETAH_V20 4229 // FYSETC Cheetah V2.0
//

12
Marlin/src/core/drivers.h

@ -60,6 +60,9 @@
#define AXIS_DRIVER_TYPE_X(T) _AXIS_DRIVER_TYPE(X,T)
#define AXIS_DRIVER_TYPE_Y(T) _AXIS_DRIVER_TYPE(Y,T)
#define AXIS_DRIVER_TYPE_Z(T) _AXIS_DRIVER_TYPE(Z,T)
#define AXIS_DRIVER_TYPE_I(T) _AXIS_DRIVER_TYPE(I,T)
#define AXIS_DRIVER_TYPE_J(T) _AXIS_DRIVER_TYPE(J,T)
#define AXIS_DRIVER_TYPE_K(T) _AXIS_DRIVER_TYPE(K,T)
#define AXIS_DRIVER_TYPE_X2(T) (EITHER(X_DUAL_STEPPER_DRIVERS, DUAL_X_CARRIAGE) && _AXIS_DRIVER_TYPE(X2,T))
#define AXIS_DRIVER_TYPE_Y2(T) (ENABLED(Y_DUAL_STEPPER_DRIVERS) && _AXIS_DRIVER_TYPE(Y2,T))
@ -83,6 +86,7 @@
#define HAS_E_DRIVER(T) (0 RREPEAT2(E_STEPPERS, _OR_ADTE, T))
#define HAS_DRIVER(T) ( AXIS_DRIVER_TYPE_X(T) || AXIS_DRIVER_TYPE_Y(T) || AXIS_DRIVER_TYPE_Z(T) \
|| AXIS_DRIVER_TYPE_I(T) || AXIS_DRIVER_TYPE_J(T) || AXIS_DRIVER_TYPE_K(T) \
|| AXIS_DRIVER_TYPE_X2(T) || AXIS_DRIVER_TYPE_Y2(T) || AXIS_DRIVER_TYPE_Z2(T) \
|| AXIS_DRIVER_TYPE_Z3(T) || AXIS_DRIVER_TYPE_Z4(T) || HAS_E_DRIVER(T) )
@ -153,9 +157,11 @@
#define _OR_EAH(N,T) || AXIS_HAS_##T(E##N)
#define E_AXIS_HAS(T) (0 _OR_EAH(0,T) _OR_EAH(1,T) _OR_EAH(2,T) _OR_EAH(3,T) _OR_EAH(4,T) _OR_EAH(5,T) _OR_EAH(6,T) _OR_EAH(7,T))
#define ANY_AXIS_HAS(T) ( AXIS_HAS_##T(X) || AXIS_HAS_##T(Y) || AXIS_HAS_##T(Z) \
|| AXIS_HAS_##T(X2) || AXIS_HAS_##T(Y2) || AXIS_HAS_##T(Z2) \
|| AXIS_HAS_##T(Z3) || AXIS_HAS_##T(Z4) || E_AXIS_HAS(T) )
#define ANY_AXIS_HAS(T) ( AXIS_HAS_##T(X) || AXIS_HAS_##T(X2) \
|| AXIS_HAS_##T(Y) || AXIS_HAS_##T(Y2) \
|| AXIS_HAS_##T(Z) || AXIS_HAS_##T(Z2) || AXIS_HAS_##T(Z3) || AXIS_HAS_##T(Z4) \
|| AXIS_HAS_##T(I) || AXIS_HAS_##T(J) || AXIS_HAS_##T(K) \
|| E_AXIS_HAS(T) )
#if ANY_AXIS_HAS(STEALTHCHOP)
#define HAS_STEALTHCHOP 1

140
Marlin/src/core/language.h

@ -266,18 +266,25 @@
#define STR_X_MAX "x_max"
#define STR_X2_MIN "x2_min"
#define STR_X2_MAX "x2_max"
#define STR_Y_MIN "y_min"
#define STR_Y_MAX "y_max"
#define STR_Y2_MIN "y2_min"
#define STR_Y2_MAX "y2_max"
#define STR_Z_MIN "z_min"
#define STR_Z_MAX "z_max"
#define STR_Z2_MIN "z2_min"
#define STR_Z2_MAX "z2_max"
#define STR_Z3_MIN "z3_min"
#define STR_Z3_MAX "z3_max"
#define STR_Z4_MIN "z4_min"
#define STR_Z4_MAX "z4_max"
#if HAS_Y_AXIS
#define STR_Y_MIN "y_min"
#define STR_Y_MAX "y_max"
#define STR_Y2_MIN "y2_min"
#define STR_Y2_MAX "y2_max"
#endif
#if HAS_Z_AXIS
#define STR_Z_MIN "z_min"
#define STR_Z_MAX "z_max"
#define STR_Z2_MIN "z2_min"
#define STR_Z2_MAX "z2_max"
#define STR_Z3_MIN "z3_min"
#define STR_Z3_MAX "z3_max"
#define STR_Z4_MIN "z4_min"
#define STR_Z4_MAX "z4_max"
#endif
#define STR_Z_PROBE "z_probe"
#define STR_PROBE_EN "probe_en"
#define STR_FILAMENT_RUNOUT_SENSOR "filament"
@ -286,6 +293,9 @@
#define STR_X "X"
#define STR_Y "Y"
#define STR_Z "Z"
#define STR_I AXIS4_STR
#define STR_J AXIS5_STR
#define STR_K AXIS6_STR
#define STR_E "E"
#if IS_KINEMATIC
#define STR_A "A"
@ -305,8 +315,114 @@
#define LCD_STR_A STR_A
#define LCD_STR_B STR_B
#define LCD_STR_C STR_C
#define LCD_STR_I STR_I
#define LCD_STR_J STR_J
#define LCD_STR_K STR_K
#define LCD_STR_E STR_E
// Extra Axis and Endstop Names
#if LINEAR_AXES >= 4
#if AXIS4_NAME == 'A'
#define AXIS4_STR "A"
#define STR_I_MIN "a_min"
#define STR_I_MAX "a_max"
#elif AXIS4_NAME == 'B'
#define AXIS4_STR "B"
#define STR_I_MIN "b_min"
#define STR_I_MAX "b_max"
#elif AXIS4_NAME == 'C'
#define AXIS4_STR "C"
#define STR_I_MIN "c_min"
#define STR_I_MAX "c_max"
#elif AXIS4_NAME == 'U'
#define AXIS4_STR "U"
#define STR_I_MIN "u_min"
#define STR_I_MAX "u_max"
#elif AXIS4_NAME == 'V'
#define AXIS4_STR "V"
#define STR_I_MIN "v_min"
#define STR_I_MAX "v_max"
#elif AXIS4_NAME == 'W'
#define AXIS4_STR "W"
#define STR_I_MIN "w_min"
#define STR_I_MAX "w_max"
#else
#define AXIS4_STR "A"
#define STR_I_MIN "a_min"
#define STR_I_MAX "a_max"
#endif
#else
#define AXIS4_STR ""
#endif
#if LINEAR_AXES >= 5
#if AXIS5_NAME == 'A'
#define AXIS5_STR "A"
#define STR_J_MIN "a_min"
#define STR_J_MAX "a_max"
#elif AXIS5_NAME == 'B'
#define AXIS5_STR "B"
#define STR_J_MIN "b_min"
#define STR_J_MAX "b_max"
#elif AXIS5_NAME == 'C'
#define AXIS5_STR "C"
#define STR_J_MIN "c_min"
#define STR_J_MAX "c_max"
#elif AXIS5_NAME == 'U'
#define AXIS5_STR "U"
#define STR_J_MIN "u_min"
#define STR_J_MAX "u_max"
#elif AXIS5_NAME == 'V'
#define AXIS5_STR "V"
#define STR_J_MIN "v_min"
#define STR_J_MAX "v_max"
#elif AXIS5_NAME == 'W'
#define AXIS5_STR "W"
#define STR_J_MIN "w_min"
#define STR_J_MAX "w_max"
#else
#define AXIS5_STR "B"
#define STR_J_MIN "b_min"
#define STR_J_MAX "b_max"
#endif
#else
#define AXIS5_STR ""
#endif
#if LINEAR_AXES >= 6
#if AXIS6_NAME == 'A'
#define AXIS6_STR "A"
#define STR_K_MIN "a_min"
#define STR_K_MAX "a_max"
#elif AXIS6_NAME == 'B'
#define AXIS6_STR "B"
#define STR_K_MIN "b_min"
#define STR_K_MAX "b_max"
#elif AXIS6_NAME == 'C'
#define AXIS6_STR "C"
#define STR_K_MIN "c_min"
#define STR_K_MAX "c_max"
#elif AXIS6_NAME == 'U'
#define AXIS6_STR "U"
#define STR_K_MIN "u_min"
#define STR_K_MAX "u_max"
#elif AXIS6_NAME == 'V'
#define AXIS6_STR "V"
#define STR_K_MIN "v_min"
#define STR_K_MAX "v_max"
#elif AXIS6_NAME == 'W'
#define AXIS6_STR "W"
#define STR_K_MIN "w_min"
#define STR_K_MAX "w_max"
#else
#define AXIS6_STR "C"
#define STR_K_MIN "c_min"
#define STR_K_MAX "c_max"
#endif
#else
#define AXIS6_STR ""
#endif
#if EITHER(HAS_MARLINUI_HD44780, IS_TFTGLCD_PANEL)
// Custom characters defined in the first 8 characters of the LCD

9
Marlin/src/core/macros.h

@ -36,12 +36,21 @@
#define _XMIN_ 100
#define _YMIN_ 200
#define _ZMIN_ 300
#define _IMIN_ 500
#define _JMIN_ 600
#define _KMIN_ 700
#define _XMAX_ 101
#define _YMAX_ 201
#define _ZMAX_ 301
#define _IMAX_ 501
#define _JMAX_ 601
#define _KMAX_ 701
#define _XDIAG_ 102
#define _YDIAG_ 202
#define _ZDIAG_ 302
#define _IDIAG_ 502
#define _JDIAG_ 602
#define _KDIAG_ 702
#define _E0DIAG_ 400
#define _E1DIAG_ 401
#define _E2DIAG_ 402

10
Marlin/src/core/serial.cpp

@ -36,6 +36,10 @@ PGMSTR(X_LBL, "X:"); PGMSTR(Y_LBL, "Y:"); PGMSTR(Z_LBL, "Z:"); PGMST
PGMSTR(SP_A_STR, " A"); PGMSTR(SP_B_STR, " B"); PGMSTR(SP_C_STR, " C");
PGMSTR(SP_X_STR, " X"); PGMSTR(SP_Y_STR, " Y"); PGMSTR(SP_Z_STR, " Z"); PGMSTR(SP_E_STR, " E");
PGMSTR(SP_X_LBL, " X:"); PGMSTR(SP_Y_LBL, " Y:"); PGMSTR(SP_Z_LBL, " Z:"); PGMSTR(SP_E_LBL, " E:");
PGMSTR(I_STR, AXIS4_STR); PGMSTR(J_STR, AXIS5_STR); PGMSTR(K_STR, AXIS6_STR);
PGMSTR(I_LBL, AXIS4_STR ":"); PGMSTR(J_LBL, AXIS5_STR ":"); PGMSTR(K_LBL, AXIS6_STR ":");
PGMSTR(SP_I_STR, " " AXIS4_STR); PGMSTR(SP_J_STR, " " AXIS5_STR); PGMSTR(SP_K_STR, " " AXIS6_STR);
PGMSTR(SP_I_LBL, " " AXIS4_STR ":"); PGMSTR(SP_J_LBL, " " AXIS5_STR ":"); PGMSTR(SP_K_LBL, " " AXIS6_STR ":");
// Hook Meatpack if it's enabled on the first leaf
#if ENABLED(MEATPACK_ON_SERIAL_PORT_1)
@ -101,8 +105,10 @@ void print_bin(uint16_t val) {
}
}
void print_pos(const_float_t x, const_float_t y, const_float_t z, PGM_P const prefix/*=nullptr*/, PGM_P const suffix/*=nullptr*/) {
void print_pos(LINEAR_AXIS_ARGS(const_float_t), PGM_P const prefix/*=nullptr*/, PGM_P const suffix/*=nullptr*/) {
if (prefix) serialprintPGM(prefix);
SERIAL_ECHOPAIR_P(SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z);
SERIAL_ECHOPAIR_P(
LIST_N(DOUBLE(LINEAR_AXES), SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z, SP_I_STR, i, SP_J_STR, j, SP_K_STR, k)
);
if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
}

16
Marlin/src/core/serial.h

@ -29,12 +29,16 @@
#endif
// Commonly-used strings in serial output
extern const char NUL_STR[], SP_P_STR[], SP_T_STR[],
extern const char NUL_STR[],
SP_X_STR[], SP_Y_STR[], SP_Z_STR[],
SP_A_STR[], SP_B_STR[], SP_C_STR[], SP_E_STR[],
SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[],
SP_I_STR[], SP_J_STR[], SP_K_STR[],
SP_I_LBL[], SP_J_LBL[], SP_K_LBL[],
SP_P_STR[], SP_T_STR[],
X_STR[], Y_STR[], Z_STR[], E_STR[],
X_LBL[], Y_LBL[], Z_LBL[], E_LBL[],
SP_A_STR[], SP_B_STR[], SP_C_STR[],
SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[],
SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[];
I_LBL[], J_LBL[], K_LBL[];
//
// Debugging flags for use by M111
@ -310,10 +314,10 @@ void serialprint_truefalse(const bool tf);
void serial_spaces(uint8_t count);
void print_bin(const uint16_t val);
void print_pos(const_float_t x, const_float_t y, const_float_t z, PGM_P const prefix=nullptr, PGM_P const suffix=nullptr);
void print_pos(LINEAR_AXIS_ARGS(const_float_t), PGM_P const prefix=nullptr, PGM_P const suffix=nullptr);
inline void print_pos(const xyz_pos_t &xyz, PGM_P const prefix=nullptr, PGM_P const suffix=nullptr) {
print_pos(xyz.x, xyz.y, xyz.z, prefix, suffix);
print_pos(LINEAR_AXIS_ELEM(xyz), prefix, suffix);
}
#define SERIAL_POS(SUFFIX,VAR) do { print_pos(VAR, PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n")); }while(0)

567
Marlin/src/core/types.h

@ -39,6 +39,32 @@ struct IF { typedef R type; };
template <class L, class R>
struct IF<true, L, R> { typedef L type; };
#define LINEAR_AXIS_GANG(V...) GANG_N(LINEAR_AXES, V)
#define LINEAR_AXIS_CODE(V...) CODE_N(LINEAR_AXES, V)
#define LINEAR_AXIS_LIST(V...) LIST_N(LINEAR_AXES, V)
#define LINEAR_AXIS_ARRAY(V...) { LINEAR_AXIS_LIST(V) }
#define LINEAR_AXIS_ARGS(T...) LINEAR_AXIS_LIST(T x, T y, T z, T i, T j, T k)
#define LINEAR_AXIS_ELEM(O) LINEAR_AXIS_LIST(O.x, O.y, O.z, O.i, O.j, O.k)
#define LINEAR_AXIS_DEFS(T,V) LINEAR_AXIS_LIST(T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
#define LOGICAL_AXIS_GANG(E,V...) LINEAR_AXIS_GANG(V) GANG_ITEM_E(E)
#define LOGICAL_AXIS_CODE(E,V...) LINEAR_AXIS_CODE(V) CODE_ITEM_E(E)
#define LOGICAL_AXIS_LIST(E,V...) LINEAR_AXIS_LIST(V) LIST_ITEM_E(E)
#define LOGICAL_AXIS_ARRAY(E,V...) { LOGICAL_AXIS_LIST(E,V) }
#define LOGICAL_AXIS_ARGS(T...) LOGICAL_AXIS_LIST(T e, T x, T y, T z, T i, T j, T k)
#define LOGICAL_AXIS_ELEM(O) LOGICAL_AXIS_LIST(O.e, O.x, O.y, O.z, O.i, O.j, O.k)
#define LOGICAL_AXIS_DECL(T,V) LOGICAL_AXIS_LIST(T e=V, T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
#if HAS_EXTRUDERS
#define LIST_ITEM_E(N) , N
#define CODE_ITEM_E(N) ; N
#define GANG_ITEM_E(N) N
#else
#define LIST_ITEM_E(N)
#define CODE_ITEM_E(N)
#define GANG_ITEM_E(N)
#endif
//
// Enumerated axis indices
//
@ -47,16 +73,43 @@ struct IF<true, L, R> { typedef L type; };
// - X_HEAD, Y_HEAD, and Z_HEAD should be used for Steppers on Core kinematics
//
enum AxisEnum : uint8_t {
X_AXIS = 0, A_AXIS = X_AXIS,
Y_AXIS = 1, B_AXIS = Y_AXIS,
Z_AXIS = 2, C_AXIS = Z_AXIS,
E_AXIS,
X_HEAD, Y_HEAD, Z_HEAD,
E0_AXIS = E_AXIS,
E1_AXIS, E2_AXIS, E3_AXIS, E4_AXIS, E5_AXIS, E6_AXIS, E7_AXIS,
ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF
// Linear axes may be controlled directly or indirectly
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS)
// Extruder axes may be considered distinctly
#define _EN_ITEM(N) , E##N##_AXIS
REPEAT(EXTRUDERS, _EN_ITEM)
#undef _EN_ITEM
// Core also keeps toolhead directions
#if EITHER(IS_CORE, MARKFORGED_XY)
, X_HEAD, Y_HEAD, Z_HEAD
#endif
// Distinct axes, including all E and Core
, NUM_AXIS_ENUMS
// Most of the time we refer only to the single E_AXIS
#if HAS_EXTRUDERS
, E_AXIS = E0_AXIS
#endif
// A, B, and C are for DELTA, SCARA, etc.
, A_AXIS = X_AXIS
#if LINEAR_AXES >= 2
, B_AXIS = Y_AXIS
#endif
#if LINEAR_AXES >= 3
, C_AXIS = Z_AXIS
#endif
// To refer to all or none
, ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF
};
typedef IF<(NUM_AXIS_ENUMS > 8), uint16_t, uint8_t>::type axis_bits_t;
//
// Loop over axes
//
@ -185,7 +238,7 @@ void toNative(xyz_pos_t &raw);
void toNative(xyze_pos_t &raw);
//
// XY coordinates, counters, etc.
// Paired XY coordinates, counters, flags, etc.
//
template<typename T>
struct XYval {
@ -194,18 +247,34 @@ struct XYval {
struct { T a, b; };
T pos[2];
};
// Set all to 0
FI void reset() { x = y = 0; }
// Setters taking struct types and arrays
FI void set(const T px) { x = px; }
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; }
FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; }
#if DISTINCT_AXES > LOGICAL_AXES
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; }
#if HAS_Y_AXIS
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
#endif
FI void reset() { x = y = 0; }
#if LINEAR_AXES > XY
FI void set(const T (&arr)[LINEAR_AXES]) { x = arr[0]; y = arr[1]; }
#endif
#if LOGICAL_AXES > LINEAR_AXES
FI void set(const T (&arr)[LOGICAL_AXES]) { x = arr[0]; y = arr[1]; }
#if DISTINCT_AXES > LOGICAL_AXES
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; }
#endif
#endif
// Length reduced to one dimension
FI T magnitude() const { return (T)sqrtf(x*x + y*y); }
// Pointer to the data as a simple array
FI operator T* () { return pos; }
// If any element is true then it's true
FI operator bool() { return x || y; }
// Explicit copy and copies with conversion
FI XYval<T> copy() const { return *this; }
FI XYval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)) }; }
FI XYval<int16_t> asInt() { return { int16_t(x), int16_t(y) }; }
@ -217,17 +286,27 @@ struct XYval {
FI XYval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y) }; }
FI XYval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y) }; }
FI XYval<float> reciprocal() const { return { _RECIP(x), _RECIP(y) }; }
// Marlin workspace shifting is done with G92 and M206
FI XYval<float> asLogical() const { XYval<float> o = asFloat(); toLogical(o); return o; }
FI XYval<float> asNative() const { XYval<float> o = asFloat(); toNative(o); return o; }
// Cast to a type with more fields by making a new object
FI operator XYZval<T>() { return { x, y }; }
FI operator XYZval<T>() const { return { x, y }; }
FI operator XYZEval<T>() { return { x, y }; }
FI operator XYZEval<T>() const { return { x, y }; }
FI T& operator[](const int i) { return pos[i]; }
FI const T& operator[](const int i) const { return pos[i]; }
// Accessor via an AxisEnum (or any integer) [index]
FI T& operator[](const int n) { return pos[n]; }
FI const T& operator[](const int n) const { return pos[n]; }
// Assignment operator overrides do the expected thing
FI XYval<T>& operator= (const T v) { set(v, v ); return *this; }
FI XYval<T>& operator= (const XYZval<T> &rs) { set(rs.x, rs.y); return *this; }
FI XYval<T>& operator= (const XYZEval<T> &rs) { set(rs.x, rs.y); return *this; }
// Override other operators to get intuitive behaviors
FI XYval<T> operator+ (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYval<T> operator+ (const XYval<T> &rs) { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYval<T> operator- (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
@ -264,6 +343,10 @@ struct XYval {
FI XYval<T> operator>>(const int &v) { XYval<T> ls = *this; _RS(ls.x); _RS(ls.y); return ls; }
FI XYval<T> operator<<(const int &v) const { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; }
FI XYval<T> operator<<(const int &v) { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; }
FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
// Modifier operators
FI XYval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
FI XYval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
FI XYval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
@ -277,6 +360,8 @@ struct XYval {
FI XYval<T>& operator*=(const int &v) { x *= v; y *= v; return *this; }
FI XYval<T>& operator>>=(const int &v) { _RS(x); _RS(y); return *this; }
FI XYval<T>& operator<<=(const int &v) { _LS(x); _LS(y); return *this; }
// Exact comparisons. For floats a "NEAR" operation may be better.
FI bool operator==(const XYval<T> &rs) { return x == rs.x && y == rs.y; }
FI bool operator==(const XYZval<T> &rs) { return x == rs.x && y == rs.y; }
FI bool operator==(const XYZEval<T> &rs) { return x == rs.x && y == rs.y; }
@ -289,224 +374,291 @@ struct XYval {
FI bool operator!=(const XYval<T> &rs) const { return !operator==(rs); }
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
};
//
// XYZ coordinates, counters, etc.
// Linear Axes coordinates, counters, flags, etc.
//
template<typename T>
struct XYZval {
union {
struct { T x, y, z; };
struct { T a, b, c; };
T pos[3];
struct { T LINEAR_AXIS_ARGS(); };
struct { T LINEAR_AXIS_LIST(a, b, c, u, v, w); };
T pos[LINEAR_AXES];
};
// Set all to 0
FI void reset() { LINEAR_AXIS_GANG(x =, y =, z =, i =, j =, k =) 0; }
// Setters taking struct types and arrays
FI void set(const T px) { x = px; }
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
FI void set(const XYval<T> pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; }
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
FI void set(const XYval<T> pxy, const T pz) { LINEAR_AXIS_CODE(x = pxy.x, y = pxy.y, z = pz, NOOP, NOOP, NOOP); }
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; z = arr[2]; }
FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; z = arr[2]; }
#if DISTINCT_AXES > XYZE
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; z = arr[2]; }
#if HAS_Z_AXIS
FI void set(const T (&arr)[LINEAR_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
#endif
#if LOGICAL_AXES > LINEAR_AXES
FI void set(const T (&arr)[LOGICAL_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
FI void set(LOGICAL_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
#if DISTINCT_AXES > LOGICAL_AXES
FI void set(const T (&arr)[DISTINCT_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
#endif
#endif
#if LINEAR_AXES >= 4
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
#endif
#if LINEAR_AXES >= 5
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
#endif
FI void reset() { x = y = z = 0; }
FI T magnitude() const { return (T)sqrtf(x*x + y*y + z*z); }
#if LINEAR_AXES >= 6
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
#endif
// Length reduced to one dimension
FI T magnitude() const { return (T)sqrtf(LINEAR_AXIS_GANG(x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
// Pointer to the data as a simple array
FI operator T* () { return pos; }
FI operator bool() { return z || x || y; }
// If any element is true then it's true
FI operator bool() { return LINEAR_AXIS_GANG(x, || y, || z, || i, || j, || k); }
// Explicit copy and copies with conversion
FI XYZval<T> copy() const { XYZval<T> o = *this; return o; }
FI XYZval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)), T(_ABS(z)) }; }
FI XYZval<int16_t> asInt() { return { int16_t(x), int16_t(y), int16_t(z) }; }
FI XYZval<int16_t> asInt() const { return { int16_t(x), int16_t(y), int16_t(z) }; }
FI XYZval<int32_t> asLong() { return { int32_t(x), int32_t(y), int32_t(z) }; }
FI XYZval<int32_t> asLong() const { return { int32_t(x), int32_t(y), int32_t(z) }; }
FI XYZval<int32_t> ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)) }; }
FI XYZval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)) }; }
FI XYZval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) }; }
FI XYZval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) }; }
FI XYZval<float> reciprocal() const { return { _RECIP(x), _RECIP(y), _RECIP(z) }; }
FI XYZval<T> ABS() const { return LINEAR_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
FI XYZval<int16_t> asInt() { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
FI XYZval<int16_t> asInt() const { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
FI XYZval<int32_t> asLong() { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
FI XYZval<int32_t> asLong() const { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
FI XYZval<int32_t> ROUNDL() { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
FI XYZval<int32_t> ROUNDL() const { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
FI XYZval<float> asFloat() { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
FI XYZval<float> asFloat() const { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
FI XYZval<float> reciprocal() const { return LINEAR_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
// Marlin workspace shifting is done with G92 and M206
FI XYZval<float> asLogical() const { XYZval<float> o = asFloat(); toLogical(o); return o; }
FI XYZval<float> asNative() const { XYZval<float> o = asFloat(); toNative(o); return o; }
// In-place cast to types having fewer fields
FI operator XYval<T>&() { return *(XYval<T>*)this; }
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
FI operator XYZEval<T>() const { return { x, y, z }; }
FI T& operator[](const int i) { return pos[i]; }
FI const T& operator[](const int i) const { return pos[i]; }
FI XYZval<T>& operator= (const T v) { set(v, v, v ); return *this; }
// Cast to a type with more fields by making a new object
FI operator XYZEval<T>() const { return LINEAR_AXIS_ARRAY(x, y, z, i, j, k); }
// Accessor via an AxisEnum (or any integer) [index]
FI T& operator[](const int n) { return pos[n]; }
FI const T& operator[](const int n) const { return pos[n]; }
// Assignment operator overrides do the expected thing
FI XYZval<T>& operator= (const T v) { set(ARRAY_N_1(LINEAR_AXES, v)); return *this; }
FI XYZval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y ); return *this; }
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(rs.x, rs.y, rs.z); return *this; }
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; }
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; }
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; }
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; }
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; }
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; }
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; }
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; }
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); return ls; }
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); return ls; }
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); return ls; }
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); return ls; }
FI XYZval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
FI XYZval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
FI XYZval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
FI XYZval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
FI XYZval<T>& operator+=(const XYZval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; }
FI XYZval<T>& operator-=(const XYZval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; }
FI XYZval<T>& operator*=(const XYZval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; }
FI XYZval<T>& operator/=(const XYZval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; }
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; }
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; }
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; }
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; }
FI XYZval<T>& operator*=(const float &v) { x *= v; y *= v; z *= v; return *this; }
FI XYZval<T>& operator*=(const int &v) { x *= v; y *= v; z *= v; return *this; }
FI XYZval<T>& operator>>=(const int &v) { _RS(x); _RS(y); _RS(z); return *this; }
FI XYZval<T>& operator<<=(const int &v) { _LS(x); _LS(y); _LS(z); return *this; }
FI bool operator==(const XYZEval<T> &rs) { return x == rs.x && y == rs.y && z == rs.z; }
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
// Override other operators to get intuitive behaviors
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
FI const XYZval<T> operator-() const { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
FI XYZval<T> operator-() { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
// Modifier operators
FI XYZval<T>& operator+=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator-=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator*=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator/=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
FI XYZval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
FI XYZval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
FI XYZval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
FI XYZval<T>& operator*=(const float &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
FI XYZval<T>& operator*=(const int &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
FI XYZval<T>& operator>>=(const int &v) { LINEAR_AXIS_CODE(_RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; }
FI XYZval<T>& operator<<=(const int &v) { LINEAR_AXIS_CODE(_LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; }
// Exact comparisons. For floats a "NEAR" operation may be better.
FI bool operator==(const XYZEval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
FI bool operator==(const XYZEval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
FI bool operator!=(const XYZEval<T> &rs) { return !operator==(rs); }
FI bool operator==(const XYZEval<T> &rs) const { return x == rs.x && y == rs.y && z == rs.z; }
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
FI XYZval<T> operator-() { XYZval<T> o = *this; o.x = -x; o.y = -y; o.z = -z; return o; }
FI const XYZval<T> operator-() const { XYZval<T> o = *this; o.x = -x; o.y = -y; o.z = -z; return o; }
};
//
// XYZE coordinates, counters, etc.
// Logical Axes coordinates, counters, etc.
//
template<typename T>
struct XYZEval {
union {
struct{ T x, y, z, e; };
struct{ T a, b, c; };
T pos[4];
struct { T LOGICAL_AXIS_ARGS(); };
struct { T LOGICAL_AXIS_LIST(_e, a, b, c, u, v, w); };
T pos[LOGICAL_AXES];
};
FI void reset() { x = y = z = e = 0; }
FI T magnitude() const { return (T)sqrtf(x*x + y*y + z*z + e*e); }
FI operator T* () { return pos; }
FI operator bool() { return e || z || x || y; }
FI void set(const T px) { x = px; }
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
FI void set(const T px, const T py, const T pz, const T pe) { x = px; y = py; z = pz; e = pe; }
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
FI void set(const XYval<T> pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; }
FI void set(const XYZval<T> pxyz) { x = pxyz.x; y = pxyz.y; z = pxyz.z; }
FI void set(const XYval<T> pxy, const T pz, const T pe) { x = pxy.x; y = pxy.y; z = pz; e = pe; }
FI void set(const XYval<T> pxy, const XYval<T> pze) { x = pxy.x; y = pxy.y; z = pze.z; e = pze.e; }
FI void set(const XYZval<T> pxyz, const T pe) { x = pxyz.x; y = pxyz.y; z = pxyz.z; e = pe; }
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; z = arr[2]; }
FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; z = arr[2]; e = arr[3]; }
#if DISTINCT_AXES > XYZE
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; z = arr[2]; e = arr[3]; }
// Reset all to 0
FI void reset() { LOGICAL_AXIS_GANG(e =, x =, y =, z =, i =, j =, k =) 0; }
// Setters taking struct types and arrays
FI void set(const T px) { x = px; }
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
FI void set(const XYZval<T> pxyz) { set(LINEAR_AXIS_ELEM(pxyz)); }
#if HAS_Z_AXIS
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k); }
#endif
FI XYZEval<T> copy() const { return *this; }
FI XYZEval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(e)) }; }
FI XYZEval<int16_t> asInt() { return { int16_t(x), int16_t(y), int16_t(z), int16_t(e) }; }
FI XYZEval<int16_t> asInt() const { return { int16_t(x), int16_t(y), int16_t(z), int16_t(e) }; }
FI XYZEval<int32_t> asLong() { return { int32_t(x), int32_t(y), int32_t(z), int32_t(e) }; }
FI XYZEval<int32_t> asLong() const { return { int32_t(x), int32_t(y), int32_t(z), int32_t(e) }; }
FI XYZEval<int32_t> ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(e)) }; }
FI XYZEval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(e)) }; }
FI XYZEval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(e) }; }
FI XYZEval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(e) }; }
FI XYZEval<float> reciprocal() const { return { _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(e) }; }
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; }
FI operator XYval<T>&() { return *(XYval<T>*)this; }
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
FI operator XYZval<T>&() { return *(XYZval<T>*)this; }
FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; }
FI T& operator[](const int i) { return pos[i]; }
FI const T& operator[](const int i) const { return pos[i]; }
FI XYZEval<T>& operator= (const T v) { set(v, v, v, v); return *this; }
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; }
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(rs.x, rs.y, rs.z); return *this; }
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; ls.e += rs.e; return ls; }
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; ls.e += rs.e; return ls; }
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; ls.e -= rs.e; return ls; }
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; ls.e -= rs.e; return ls; }
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; ls.e *= rs.e; return ls; }
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; ls.e *= rs.e; return ls; }
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; ls.e /= rs.e; return ls; }
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; ls.e /= rs.e; return ls; }
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; }
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; }
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; }
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; }
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; }
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; }
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; }
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; }
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); _RS(ls.e); return ls; }
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); _RS(ls.e); return ls; }
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); _LS(ls.e); return ls; }
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); _LS(ls.e); return ls; }
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; }
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; }
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; }
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; }
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; e += rs.e; return *this; }
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; e -= rs.e; return *this; }
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; e *= rs.e; return *this; }
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; e /= rs.e; return *this; }
FI XYZEval<T>& operator*=(const T &v) { x *= v; y *= v; z *= v; e *= v; return *this; }
FI XYZEval<T>& operator>>=(const int &v) { _RS(x); _RS(y); _RS(z); _RS(e); return *this; }
FI XYZEval<T>& operator<<=(const int &v) { _LS(x); _LS(y); _LS(z); _LS(e); return *this; }
FI bool operator==(const XYZval<T> &rs) { return x == rs.x && y == rs.y && z == rs.z; }
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); }
FI bool operator==(const XYZval<T> &rs) const { return x == rs.x && y == rs.y && z == rs.z; }
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
FI XYZEval<T> operator-() { return { -x, -y, -z, -e }; }
FI const XYZEval<T> operator-() const { return { -x, -y, -z, -e }; }
#if LOGICAL_AXES > LINEAR_AXES
FI void set(const XYval<T> pxy, const T pe) { set(pxy); e = pe; }
FI void set(const XYZval<T> pxyz, const T pe) { set(pxyz); e = pe; }
FI void set(LOGICAL_AXIS_ARGS(const T)) { LOGICAL_AXIS_CODE(_e = e, a = x, b = y, c = z, u = i, v = j, w = k); }
#endif
#if LINEAR_AXES >= 4
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
#endif
#if LINEAR_AXES >= 5
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
#endif
#if LINEAR_AXES >= 6
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
#endif
// Length reduced to one dimension
FI T magnitude() const { return (T)sqrtf(LOGICAL_AXIS_GANG(+ e*e, + x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
// Pointer to the data as a simple array
FI operator T* () { return pos; }
// If any element is true then it's true
FI operator bool() { return 0 LOGICAL_AXIS_GANG(|| e, || x, || y, || z, || i, || j, || k); }
// Explicit copy and copies with conversion
FI XYZEval<T> copy() const { XYZEval<T> o = *this; return o; }
FI XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
FI XYZEval<int16_t> asInt() { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
FI XYZEval<int16_t> asInt() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
FI XYZEval<int32_t> asLong() { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
FI XYZEval<int32_t> asLong() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
FI XYZEval<int32_t> ROUNDL() { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
FI XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
FI XYZEval<float> asFloat() { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
FI XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
FI XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
// Marlin workspace shifting is done with G92 and M206
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; }
// In-place cast to types having fewer fields
FI operator XYval<T>&() { return *(XYval<T>*)this; }
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
FI operator XYZval<T>&() { return *(XYZval<T>*)this; }
FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; }
// Accessor via an AxisEnum (or any integer) [index]
FI T& operator[](const int n) { return pos[n]; }
FI const T& operator[](const int n) const { return pos[n]; }
// Assignment operator overrides do the expected thing
FI XYZEval<T>& operator= (const T v) { set(LIST_N_1(LINEAR_AXES, v)); return *this; }
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; }
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
// Override other operators to get intuitive behaviors
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
FI const XYZEval<T> operator-() const { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); }
FI XYZEval<T> operator-() { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); }
// Modifier operators
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e += rs.e, x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e -= rs.e, x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e *= rs.e, x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e /= rs.e, x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
FI XYZEval<T>& operator*=(const T &v) { LOGICAL_AXIS_CODE(e *= v, x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
FI XYZEval<T>& operator>>=(const int &v) { LOGICAL_AXIS_CODE(_RS(e), _RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; }
FI XYZEval<T>& operator<<=(const int &v) { LOGICAL_AXIS_CODE(_LS(e), _LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; }
// Exact comparisons. For floats a "NEAR" operation may be better.
FI bool operator==(const XYZval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
FI bool operator==(const XYZval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); }
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
};
#undef _RECIP
@ -514,6 +666,3 @@ struct XYZEval {
#undef _LS
#undef _RS
#undef FI
const xyze_char_t axis_codes { 'X', 'Y', 'Z', 'E' };
#define AXIS_CHAR(A) ((char)('X' + A))

2
Marlin/src/core/utility.cpp

@ -122,7 +122,7 @@ void safe_delay(millis_t ms) {
SERIAL_ECHOLNPAIR("Z Fade: ", planner.z_fade_height);
#endif
#if ABL_PLANAR
SERIAL_ECHOPGM("ABL Adjustment X");
SERIAL_ECHOPGM("ABL Adjustment");
LOOP_LINEAR_AXES(a) {
const float v = planner.get_axis_position_mm(AxisEnum(a)) - current_position[a];
SERIAL_CHAR(' ', AXIS_CHAR(a));

8
Marlin/src/core/utility.h

@ -76,3 +76,11 @@ public:
// Converts from an uint8_t in the range of 0-255 to an uint8_t
// in the range 0-100 while avoiding rounding artifacts
constexpr uint8_t ui8_to_percent(const uint8_t i) { return (int(i) * 100 + 127) / 255; }
const xyze_char_t axis_codes LOGICAL_AXIS_ARRAY('E', 'X', 'Y', 'Z', AXIS4_NAME, AXIS5_NAME, AXIS6_NAME);
#if LINEAR_AXES <= XYZ
#define AXIS_CHAR(A) ((char)('X' + A))
#else
#define AXIS_CHAR(A) axis_codes[A]
#endif

54
Marlin/src/feature/ammeter.cpp

@ -0,0 +1,54 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../inc/MarlinConfig.h"
#if ENABLED(I2C_AMMETER)
#include "ammeter.h"
#ifndef I2C_AMMETER_IMAX
#define I2C_AMMETER_IMAX 0.500 // Calibration range 500 Milliamps
#endif
INA226 ina;
Ammeter ammeter;
float Ammeter::scale;
float Ammeter::current;
void Ammeter::init() {
ina.begin();
ina.configure(INA226_AVERAGES_16, INA226_BUS_CONV_TIME_1100US, INA226_SHUNT_CONV_TIME_1100US, INA226_MODE_SHUNT_BUS_CONT);
ina.calibrate(I2C_AMMETER_SHUNT_RESISTOR, I2C_AMMETER_IMAX);
}
float Ammeter::read() {
scale = 1;
current = ina.readShuntCurrent();
if (current <= 0.0001f) current = 0; // Clean up least-significant-bit amplification errors
if (current < 0.1f) scale = 1000;
return current * scale;
}
#endif // I2C_AMMETER

39
Marlin/src/feature/ammeter.h

@ -0,0 +1,39 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include "../inc/MarlinConfigPre.h"
#include <Wire.h>
#include <INA226.h>
class Ammeter {
private:
static float scale;
public:
static float current;
static void init();
static float read();
};
extern Ammeter ammeter;

2
Marlin/src/feature/bedlevel/bedlevel.h

@ -24,7 +24,7 @@
#include "../../inc/MarlinConfigPre.h"
#if EITHER(RESTORE_LEVELING_AFTER_G28, ENABLE_LEVELING_AFTER_G28)
#define G28_L0_ENSURES_LEVELING_OFF 1
#define CAN_SET_LEVELING_AFTER_G28 1
#endif
#if ENABLED(PROBE_MANUALLY)

4
Marlin/src/feature/bedlevel/ubl/ubl.cpp

@ -164,7 +164,7 @@ static void serial_echo_column_labels(const uint8_t sp) {
* 2: TODO: Display on Graphical LCD
* 4: Compact Human-Readable
*/
void unified_bed_leveling::display_map(const int map_type) {
void unified_bed_leveling::display_map(const uint8_t map_type) {
const bool was = gcode.set_autoreport_paused(true);
constexpr uint8_t eachsp = 1 + 6 + 1, // [-3.567]
@ -263,7 +263,7 @@ bool unified_bed_leveling::sanity_check() {
void GcodeSuite::M1004() {
#define ALIGN_GCODE TERN(Z_STEPPER_AUTO_ALIGN, "G34", "")
#define PROBE_GCODE TERN(HAS_BED_PROBE, "G29P1\nG29P3", "G29P4R255")
#define PROBE_GCODE TERN(HAS_BED_PROBE, "G29P1\nG29P3", "G29P4R")
#if HAS_HOTEND
if (parser.seenval('H')) { // Handle H# parameter to set Hotend temp

8
Marlin/src/feature/bedlevel/ubl/ubl.h

@ -47,10 +47,10 @@ struct mesh_index_pair;
typedef struct {
bool C_seen;
int8_t V_verbosity,
int8_t KLS_storage_slot;
uint8_t R_repetition,
V_verbosity,
P_phase,
R_repetition,
KLS_storage_slot,
T_map_type;
float B_shim_thickness,
C_constant;
@ -98,7 +98,7 @@ public:
static void report_state();
static void save_ubl_active_state_and_disable();
static void restore_ubl_active_state_and_leave();
static void display_map(const int) _O0;
static void display_map(const uint8_t) _O0;
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const xy_pos_t&, const bool=false, MeshFlags *done_flags=nullptr) _O0;
static mesh_index_pair find_furthest_invalid_mesh_point() _O0;
static void reset();

30
Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp

@ -305,7 +305,7 @@ void unified_bed_leveling::G29() {
bool probe_deployed = false;
if (G29_parse_parameters()) return; // Abort on parameter error
const int8_t p_val = parser.intval('P', -1);
const uint8_t p_val = parser.byteval('P');
const bool may_move = p_val == 1 || p_val == 2 || p_val == 4 || parser.seen_test('J');
#if ENABLED(HAS_MULTI_HOTEND)
const uint8_t old_tool_index = active_extruder;
@ -321,7 +321,7 @@ void unified_bed_leveling::G29() {
// Invalidate one or more nearby mesh points, possibly all.
if (parser.seen('I')) {
int16_t count = parser.has_value() ? parser.value_int() : 1;
uint8_t count = parser.has_value() ? parser.value_byte() : 1;
bool invalidate_all = count >= GRID_MAX_POINTS;
if (!invalidate_all) {
while (count--) {
@ -345,7 +345,7 @@ void unified_bed_leveling::G29() {
}
if (parser.seen('Q')) {
const int test_pattern = parser.has_value() ? parser.value_int() : -99;
const int16_t test_pattern = parser.has_value() ? parser.value_int() : -99;
if (!WITHIN(test_pattern, -1, 2)) {
SERIAL_ECHOLNPGM("Invalid test_pattern value. (-1 to 2)\n");
return;
@ -592,7 +592,7 @@ void unified_bed_leveling::G29() {
//
if (parser.seen('L')) { // Load Current Mesh Data
param.KLS_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
param.KLS_storage_slot = parser.has_value() ? (int8_t)parser.value_int() : storage_slot;
int16_t a = settings.calc_num_meshes();
@ -617,10 +617,10 @@ void unified_bed_leveling::G29() {
//
if (parser.seen('S')) { // Store (or Save) Current Mesh Data
param.KLS_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
param.KLS_storage_slot = parser.has_value() ? (int8_t)parser.value_int() : storage_slot;
if (param.KLS_storage_slot == -1) // Special case, the user wants to 'Export' the mesh to the
return report_current_mesh(); // host program to be saved on the user's computer
if (param.KLS_storage_slot == -1) // Special case: 'Export' the mesh to the
return report_current_mesh(); // host so it can be saved in a file.
int16_t a = settings.calc_num_meshes();
@ -673,7 +673,7 @@ void unified_bed_leveling::G29() {
*/
void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const_float_t offset) {
float sum = 0;
int n = 0;
uint8_t n = 0;
GRID_LOOP(x, y)
if (!isnan(z_values[x][y])) {
sum += z_values[x][y];
@ -734,7 +734,7 @@ void unified_bed_leveling::shift_mesh_height() {
do {
if (do_ubl_mesh_map) display_map(param.T_map_type);
const int point_num = (GRID_MAX_POINTS) - count + 1;
const uint8_t point_num = (GRID_MAX_POINTS - count) + 1;
SERIAL_ECHOLNPAIR("Probing mesh point ", point_num, "/", GRID_MAX_POINTS, ".");
TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), point_num, int(GRID_MAX_POINTS)));
@ -1025,7 +1025,7 @@ void set_message_with_feedback(PGM_P const msg_P) {
SET_SOFT_ENDSTOP_LOOSE(true);
do {
idle();
idle_no_sleep();
new_z = ui.ubl_mesh_value();
TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset + new_z)); // Move the nozzle as the point is edited
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
@ -1083,7 +1083,7 @@ bool unified_bed_leveling::G29_parse_parameters() {
param.R_repetition = 0;
if (parser.seen('R')) {
param.R_repetition = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
param.R_repetition = parser.has_value() ? parser.value_byte() : GRID_MAX_POINTS;
NOMORE(param.R_repetition, GRID_MAX_POINTS);
if (param.R_repetition < 1) {
SERIAL_ECHOLNPGM("?(R)epetition count invalid (1+).\n");
@ -1091,14 +1091,14 @@ bool unified_bed_leveling::G29_parse_parameters() {
}
}
param.V_verbosity = parser.intval('V');
param.V_verbosity = parser.byteval('V');
if (!WITHIN(param.V_verbosity, 0, 4)) {
SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).\n");
err_flag = true;
}
if (parser.seen('P')) {
const int pv = parser.value_int();
const uint8_t pv = parser.value_byte();
#if !HAS_BED_PROBE
if (pv == 1) {
SERIAL_ECHOLNPGM("G29 P1 requires a probe.\n");
@ -1181,7 +1181,7 @@ bool unified_bed_leveling::G29_parse_parameters() {
}
#endif
param.T_map_type = parser.intval('T');
param.T_map_type = parser.byteval('T');
if (!WITHIN(param.T_map_type, 0, 2)) {
SERIAL_ECHOLNPGM("Invalid map type.\n");
return UBL_ERR;
@ -1833,7 +1833,7 @@ void unified_bed_leveling::smart_fill_mesh() {
return;
}
param.KLS_storage_slot = parser.value_int();
param.KLS_storage_slot = (int8_t)parser.value_int();
float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
settings.load_mesh(param.KLS_storage_slot, &tmp_z_values);

126
Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp

@ -113,20 +113,22 @@
const xy_float_t ad = sign * dist;
const bool use_x_dist = ad.x > ad.y;
float on_axis_distance = use_x_dist ? dist.x : dist.y,
e_position = end.e - start.e,
z_position = end.z - start.z;
float on_axis_distance = use_x_dist ? dist.x : dist.y;
const float e_normalized_dist = e_position / on_axis_distance, // Allow divide by zero
z_normalized_dist = z_position / on_axis_distance;
const float z_normalized_dist = (end.z - start.z) / on_axis_distance; // Allow divide by zero
#if HAS_EXTRUDERS
const float e_normalized_dist = (end.e - start.e) / on_axis_distance;
const bool inf_normalized_flag = isinf(e_normalized_dist);
#endif
xy_int8_t icell = istart;
const float ratio = dist.y / dist.x, // Allow divide by zero
c = start.y - ratio * start.x;
const bool inf_normalized_flag = isinf(e_normalized_dist),
inf_ratio_flag = isinf(ratio);
const bool inf_ratio_flag = isinf(ratio);
xyze_pos_t dest; // Stores XYZE for segmented moves
/**
* Handle vertical lines that stay within one column.
@ -143,34 +145,36 @@
* For others the next X is the same so this can continue.
* Calculate X at the next Y mesh line.
*/
const float rx = inf_ratio_flag ? start.x : (next_mesh_line_y - c) / ratio;
dest.x = inf_ratio_flag ? start.x : (next_mesh_line_y - c) / ratio;
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, icell.x, icell.y)
float z0 = z_correction_for_x_on_horizontal_mesh_line(dest.x, icell.x, icell.y)
* planner.fade_scaling_factor_for_z(end.z);
// Undefined parts of the Mesh in z_values[][] are NAN.
// Replace NAN corrections with 0.0 to prevent NAN propagation.
if (isnan(z0)) z0 = 0.0;
const float ry = mesh_index_to_ypos(icell.y);
dest.y = mesh_index_to_ypos(icell.y);
/**
* Without this check, it's possible to generate a zero length move, as in the case where
* the line is heading down, starting exactly on a mesh line boundary. Since this is rare
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
*/
if (ry != start.y) {
if (dest.y != start.y) {
if (!inf_normalized_flag) { // fall-through faster than branch
on_axis_distance = use_x_dist ? rx - start.x : ry - start.y;
e_position = start.e + on_axis_distance * e_normalized_dist;
z_position = start.z + on_axis_distance * z_normalized_dist;
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist);
dest.z = start.z + on_axis_distance * z_normalized_dist;
}
else {
e_position = end.e;
z_position = end.z;
TERN_(HAS_EXTRUDERS, dest.e = end.e);
dest.z = end.z;
}
planner.buffer_segment(rx, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder);
dest.z += z0;
planner.buffer_segment(dest, scaled_fr_mm_s, extruder);
} //else printf("FIRST MOVE PRUNED ");
}
@ -188,12 +192,13 @@
*/
if (iadd.y == 0) { // Horizontal line?
icell.x += ineg.x; // Heading left? Just go to the left edge of the cell for the first move.
while (icell.x != iend.x + ineg.x) {
icell.x += iadd.x;
const float rx = mesh_index_to_xpos(icell.x);
const float ry = ratio * rx + c; // Calculate Y at the next X mesh line
dest.x = mesh_index_to_xpos(icell.x);
dest.y = ratio * dest.x + c; // Calculate Y at the next X mesh line
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, icell.x, icell.y)
float z0 = z_correction_for_y_on_vertical_mesh_line(dest.y, icell.x, icell.y)
* planner.fade_scaling_factor_for_z(end.z);
// Undefined parts of the Mesh in z_values[][] are NAN.
@ -205,19 +210,20 @@
* the line is heading left, starting exactly on a mesh line boundary. Since this is rare
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
*/
if (rx != start.x) {
if (dest.x != start.x) {
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? rx - start.x : ry - start.y;
e_position = start.e + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
z_position = start.z + on_axis_distance * z_normalized_dist;
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist); // Based on X or Y because the move is horizontal
dest.z = start.z + on_axis_distance * z_normalized_dist;
}
else {
e_position = end.e;
z_position = end.z;
TERN_(HAS_EXTRUDERS, dest.e = end.e);
dest.z = end.z;
}
if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder))
break;
dest.z += z0;
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
} //else printf("FIRST MOVE PRUNED ");
}
@ -239,57 +245,65 @@
while (cnt) {
const float next_mesh_line_x = mesh_index_to_xpos(icell.x + iadd.x),
next_mesh_line_y = mesh_index_to_ypos(icell.y + iadd.y),
ry = ratio * next_mesh_line_x + c, // Calculate Y at the next X mesh line
rx = (next_mesh_line_y - c) / ratio; // Calculate X at the next Y mesh line
// (No need to worry about ratio == 0.
// In that case, it was already detected
// as a vertical line move above.)
if (neg.x == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
next_mesh_line_y = mesh_index_to_ypos(icell.y + iadd.y);
dest.y = ratio * next_mesh_line_x + c; // Calculate Y at the next X mesh line
dest.x = (next_mesh_line_y - c) / ratio; // Calculate X at the next Y mesh line
// (No need to worry about ratio == 0.
// In that case, it was already detected
// as a vertical line move above.)
if (neg.x == (dest.x > next_mesh_line_x)) { // Check if we hit the Y line first
// Yes! Crossing a Y Mesh Line next
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, icell.x - ineg.x, icell.y + iadd.y)
float z0 = z_correction_for_x_on_horizontal_mesh_line(dest.x, icell.x - ineg.x, icell.y + iadd.y)
* planner.fade_scaling_factor_for_z(end.z);
// Undefined parts of the Mesh in z_values[][] are NAN.
// Replace NAN corrections with 0.0 to prevent NAN propagation.
if (isnan(z0)) z0 = 0.0;
dest.y = next_mesh_line_y;
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? rx - start.x : next_mesh_line_y - start.y;
e_position = start.e + on_axis_distance * e_normalized_dist;
z_position = start.z + on_axis_distance * z_normalized_dist;
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist);
dest.z = start.z + on_axis_distance * z_normalized_dist;
}
else {
e_position = end.e;
z_position = end.z;
TERN_(HAS_EXTRUDERS, dest.e = end.e);
dest.z = end.z;
}
if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, scaled_fr_mm_s, extruder))
break;
dest.z += z0;
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
icell.y += iadd.y;
cnt.y--;
}
else {
// Yes! Crossing a X Mesh Line next
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, icell.x + iadd.x, icell.y - ineg.y)
float z0 = z_correction_for_y_on_vertical_mesh_line(dest.y, icell.x + iadd.x, icell.y - ineg.y)
* planner.fade_scaling_factor_for_z(end.z);
// Undefined parts of the Mesh in z_values[][] are NAN.
// Replace NAN corrections with 0.0 to prevent NAN propagation.
if (isnan(z0)) z0 = 0.0;
dest.x = next_mesh_line_x;
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? next_mesh_line_x - start.x : ry - start.y;
e_position = start.e + on_axis_distance * e_normalized_dist;
z_position = start.z + on_axis_distance * z_normalized_dist;
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist);
dest.z = start.z + on_axis_distance * z_normalized_dist;
}
else {
e_position = end.e;
z_position = end.z;
TERN_(HAS_EXTRUDERS, dest.e = end.e);
dest.z = end.z;
}
if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder))
break;
dest.z += z0;
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
icell.x += iadd.x;
cnt.x--;
}
@ -438,11 +452,9 @@
#endif
;
planner.buffer_line(raw.x, raw.y, raw.z + z_cxcy, raw.e, scaled_fr_mm_s, active_extruder, segment_xyz_mm
#if ENABLED(SCARA_FEEDRATE_SCALING)
, inv_duration
#endif
);
const float oldz = raw.z; raw.z += z_cxcy;
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm OPTARG(SCARA_FEEDRATE_SCALING, inv_duration) );
raw.z = oldz;
if (segments == 0) // done with last segment
return false; // didn't set current from destination

14
Marlin/src/feature/binary_stream.h

@ -24,9 +24,11 @@
#include "../inc/MarlinConfig.h"
#define BINARY_STREAM_COMPRESSION
#if ENABLED(BINARY_STREAM_COMPRESSION)
#include "../libs/heatshrink/heatshrink_decoder.h"
// STM32 (and others?) require a word-aligned buffer for SD card transfers via DMA
static __attribute__((aligned(sizeof(size_t)))) uint8_t decode_buffer[512] = {};
static heatshrink_decoder hsd;
#endif
inline bool bs_serial_data_available(const serial_index_t index) {
@ -37,16 +39,6 @@ inline int bs_read_serial(const serial_index_t index) {
return SERIAL_IMPL.read(index);
}
#if ENABLED(BINARY_STREAM_COMPRESSION)
static heatshrink_decoder hsd;
#if BOTH(ARDUINO_ARCH_STM32F1, SDIO_SUPPORT)
// STM32 requires a word-aligned buffer for SD card transfers via DMA
static __attribute__((aligned(sizeof(size_t)))) uint8_t decode_buffer[512] = {};
#else
static uint8_t decode_buffer[512] = {};
#endif
#endif
class SDFileTransferProtocol {
private:
struct Packet {

14
Marlin/src/feature/dac/stepper_dac.cpp

@ -85,10 +85,16 @@ void StepperDAC::print_values() {
if (!dac_present) return;
SERIAL_ECHO_MSG("Stepper current values in % (Amps):");
SERIAL_ECHO_START();
SERIAL_ECHOPAIR_P( SP_X_LBL, dac_perc(X_AXIS), PSTR(" ("), dac_amps(X_AXIS), PSTR(")"));
SERIAL_ECHOPAIR_P( SP_Y_LBL, dac_perc(Y_AXIS), PSTR(" ("), dac_amps(Y_AXIS), PSTR(")"));
SERIAL_ECHOPAIR_P( SP_Z_LBL, dac_perc(Z_AXIS), PSTR(" ("), dac_amps(Z_AXIS), PSTR(")"));
SERIAL_ECHOLNPAIR_P(SP_E_LBL, dac_perc(E_AXIS), PSTR(" ("), dac_amps(E_AXIS), PSTR(")"));
SERIAL_ECHOPAIR_P(SP_X_LBL, dac_perc(X_AXIS), PSTR(" ("), dac_amps(X_AXIS), PSTR(")"));
#if HAS_Y_AXIS
SERIAL_ECHOPAIR_P(SP_Y_LBL, dac_perc(Y_AXIS), PSTR(" ("), dac_amps(Y_AXIS), PSTR(")"));
#endif
#if HAS_Z_AXIS
SERIAL_ECHOPAIR_P(SP_Z_LBL, dac_perc(Z_AXIS), PSTR(" ("), dac_amps(Z_AXIS), PSTR(")"));
#endif
#if HAS_EXTRUDERS
SERIAL_ECHOLNPAIR_P(SP_E_LBL, dac_perc(E_AXIS), PSTR(" ("), dac_amps(E_AXIS), PSTR(")"));
#endif
}
void StepperDAC::commit_eeprom() {

43
Marlin/src/feature/encoder_i2c.cpp

@ -327,7 +327,7 @@ int32_t I2CPositionEncoder::get_raw_count() {
}
bool I2CPositionEncoder::test_axis() {
//only works on XYZ cartesian machines for the time being
// Only works on XYZ Cartesian machines for the time being
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false;
const float startPosition = soft_endstop.min[encoderAxis] + 10,
@ -344,11 +344,14 @@ bool I2CPositionEncoder::test_axis() {
startCoord[encoderAxis] = startPosition;
endCoord[encoderAxis] = endPosition;
planner.synchronize();
startCoord.e = planner.get_axis_position_mm(E_AXIS);
planner.buffer_line(startCoord, fr_mm_s, 0);
planner.synchronize();
#if HAS_EXTRUDERS
startCoord.e = planner.get_axis_position_mm(E_AXIS);
planner.buffer_line(startCoord, fr_mm_s, 0);
planner.synchronize();
#endif
// if the module isn't currently trusted, wait until it is (or until it should be if things are working)
if (!trusted) {
int32_t startWaitingTime = millis();
@ -357,7 +360,7 @@ bool I2CPositionEncoder::test_axis() {
}
if (trusted) { // if trusted, commence test
endCoord.e = planner.get_axis_position_mm(E_AXIS);
TERN_(HAS_EXTRUDERS, endCoord.e = planner.get_axis_position_mm(E_AXIS));
planner.buffer_line(endCoord, fr_mm_s, 0);
planner.synchronize();
}
@ -402,7 +405,7 @@ void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
planner.synchronize();
LOOP_L_N(i, iter) {
startCoord.e = planner.get_axis_position_mm(E_AXIS);
TERN_(HAS_EXTRUDERS, startCoord.e = planner.get_axis_position_mm(E_AXIS));
planner.buffer_line(startCoord, fr_mm_s, 0);
planner.synchronize();
@ -411,7 +414,7 @@ void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
//do_blocking_move_to(endCoord);
endCoord.e = planner.get_axis_position_mm(E_AXIS);
TERN_(HAS_EXTRUDERS, endCoord.e = planner.get_axis_position_mm(E_AXIS));
planner.buffer_line(endCoord, fr_mm_s, 0);
planner.synchronize();
@ -497,9 +500,7 @@ void I2CPositionEncodersMgr::init() {
encoders[i].set_active(encoders[i].passes_test(true));
#if I2CPE_ENC_1_AXIS == E_AXIS
encoders[i].set_homed();
#endif
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_1_AXIS == E_AXIS) encoders[i].set_homed());
#endif
#if I2CPE_ENCODER_CNT > 1
@ -528,9 +529,7 @@ void I2CPositionEncodersMgr::init() {
encoders[i].set_active(encoders[i].passes_test(true));
#if I2CPE_ENC_2_AXIS == E_AXIS
encoders[i].set_homed();
#endif
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_2_AXIS == E_AXIS) encoders[i].set_homed());
#endif
#if I2CPE_ENCODER_CNT > 2
@ -557,11 +556,9 @@ void I2CPositionEncodersMgr::init() {
encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH);
#endif
encoders[i].set_active(encoders[i].passes_test(true));
encoders[i].set_active(encoders[i].passes_test(true));
#if I2CPE_ENC_3_AXIS == E_AXIS
encoders[i].set_homed();
#endif
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_3_AXIS == E_AXIS) encoders[i].set_homed());
#endif
#if I2CPE_ENCODER_CNT > 3
@ -590,9 +587,7 @@ void I2CPositionEncodersMgr::init() {
encoders[i].set_active(encoders[i].passes_test(true));
#if I2CPE_ENC_4_AXIS == E_AXIS
encoders[i].set_homed();
#endif
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_4_AXIS == E_AXIS) encoders[i].set_homed());
#endif
#if I2CPE_ENCODER_CNT > 4
@ -621,9 +616,7 @@ void I2CPositionEncodersMgr::init() {
encoders[i].set_active(encoders[i].passes_test(true));
#if I2CPE_ENC_5_AXIS == E_AXIS
encoders[i].set_homed();
#endif
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_5_AXIS == E_AXIS) encoders[i].set_homed());
#endif
#if I2CPE_ENCODER_CNT > 5
@ -652,9 +645,7 @@ void I2CPositionEncodersMgr::init() {
encoders[i].set_active(encoders[i].passes_test(true));
#if I2CPE_ENC_6_AXIS == E_AXIS
encoders[i].set_homed();
#endif
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_6_AXIS == E_AXIS) encoders[i].set_homed());
#endif
}

1
Marlin/src/feature/leds/neopixel.h

@ -114,7 +114,6 @@ public:
#if CONJOINED_NEOPIXEL
adaneo2.show();
#else
IF_DISABLED(NEOPIXEL2_SEPARATE, adaneo1.setPin(NEOPIXEL2_PIN));
adaneo1.show();
adaneo1.setPin(NEOPIXEL_PIN);
#endif

9
Marlin/src/feature/mmu/mmu.cpp

@ -24,7 +24,14 @@
#if HAS_PRUSA_MMU1
#include "../module/stepper.h"
#include "../MarlinCore.h"
#include "../module/planner.h"
void mmu_init() {
SET_OUTPUT(E_MUX0_PIN);
SET_OUTPUT(E_MUX1_PIN);
SET_OUTPUT(E_MUX2_PIN);
}
void select_multiplexed_stepper(const uint8_t e) {
planner.synchronize();

1
Marlin/src/feature/mmu/mmu.h

@ -21,4 +21,5 @@
*/
#pragma once
void mmu_init();
void select_multiplexed_stepper(const uint8_t e);

13
Marlin/src/feature/power.cpp

@ -81,7 +81,10 @@ bool Power::is_power_needed() {
#endif
) return true;
HOTEND_LOOP() if (thermalManager.degTargetHotend(e) > 0 || thermalManager.temp_hotend[e].soft_pwm_amount > 0) return true;
#if HAS_HOTEND
HOTEND_LOOP() if (thermalManager.degTargetHotend(e) > 0 || thermalManager.temp_hotend[e].soft_pwm_amount > 0) return true;
#endif
if (TERN0(HAS_HEATED_BED, thermalManager.degTargetBed() > 0 || thermalManager.temp_bed.soft_pwm_amount > 0)) return true;
#if HAS_HOTEND && AUTO_POWER_E_TEMP
@ -105,12 +108,12 @@ bool Power::is_power_needed() {
void Power::check() {
static millis_t nextPowerCheck = 0;
millis_t ms = millis();
if (ELAPSED(ms, nextPowerCheck)) {
nextPowerCheck = ms + 2500UL;
millis_t now = millis();
if (ELAPSED(now, nextPowerCheck)) {
nextPowerCheck = now + 2500UL;
if (is_power_needed())
power_on();
else if (!lastPowerOn || (POWER_TIMEOUT > 0 && ELAPSED(ms, lastPowerOn + SEC_TO_MS(POWER_TIMEOUT))))
else if (!lastPowerOn || (POWER_TIMEOUT > 0 && ELAPSED(now, lastPowerOn + SEC_TO_MS(POWER_TIMEOUT))))
power_off();
}
}

4
Marlin/src/feature/powerloss.h

@ -88,7 +88,7 @@ typedef struct {
uint8_t fan_speed[FAN_COUNT];
#endif
#if ENABLED(HAS_LEVELING)
#if HAS_LEVELING
float fade;
#endif
@ -120,7 +120,7 @@ typedef struct {
bool raised:1; // Raised before saved
bool dryrun:1; // M111 S8
bool allow_cold_extrusion:1; // M302 P1
#if ENABLED(HAS_LEVELING)
#if HAS_LEVELING
bool leveling:1; // M420 S
#endif
#if DISABLED(NO_VOLUMETRICS)

10
Marlin/src/feature/probe_temp_comp.h

@ -47,7 +47,7 @@ typedef struct {
// Probe temperature calibration constants
#ifndef PTC_SAMPLE_COUNT
#define PTC_SAMPLE_COUNT 10U
#define PTC_SAMPLE_COUNT 10
#endif
#ifndef PTC_SAMPLE_RES
#define PTC_SAMPLE_RES 5
@ -55,22 +55,22 @@ typedef struct {
#ifndef PTC_SAMPLE_START
#define PTC_SAMPLE_START 30
#endif
#define PTC_SAMPLE_END ((PTC_SAMPLE_START) + (PTC_SAMPLE_COUNT) * (PTC_SAMPLE_RES))
#define PTC_SAMPLE_END (PTC_SAMPLE_START + (PTC_SAMPLE_COUNT) * PTC_SAMPLE_RES)
// Bed temperature calibration constants
#ifndef BTC_PROBE_TEMP
#define BTC_PROBE_TEMP 30
#endif
#ifndef BTC_SAMPLE_COUNT
#define BTC_SAMPLE_COUNT 10U
#define BTC_SAMPLE_COUNT 10
#endif
#ifndef BTC_SAMPLE_STEP
#ifndef BTC_SAMPLE_RES
#define BTC_SAMPLE_RES 5
#endif
#ifndef BTC_SAMPLE_START
#define BTC_SAMPLE_START 60
#endif
#define BTC_SAMPLE_END ((BTC_SAMPLE_START) + (BTC_SAMPLE_COUNT) * (BTC_SAMPLE_RES))
#define BTC_SAMPLE_END (BTC_SAMPLE_START + (BTC_SAMPLE_COUNT) * BTC_SAMPLE_RES)
#ifndef PTC_PROBE_HEATING_OFFSET
#define PTC_PROBE_HEATING_OFFSET 0.5f

7
Marlin/src/feature/spindle_laser.cpp

@ -34,6 +34,10 @@
#include "../module/servo.h"
#endif
#if ENABLED(I2C_AMMETER)
#include "../feature/ammeter.h"
#endif
SpindleLaser cutter;
uint8_t SpindleLaser::power;
#if ENABLED(LASER_FEATURE)
@ -74,6 +78,9 @@ void SpindleLaser::init() {
#if ENABLED(AIR_ASSIST)
OUT_WRITE(AIR_ASSIST_PIN, !AIR_ASSIST_ACTIVE); // Init Air Assist OFF
#endif
#if ENABLED(I2C_AMMETER)
ammeter.init(); // Init I2C Ammeter
#endif
}
#if ENABLED(SPINDLE_LASER_PWM)

211
Marlin/src/feature/tmc_util.cpp

@ -417,6 +417,21 @@
}
#endif
#if AXIS_IS_TMC(I)
if (monitor_tmc_driver(stepperI, need_update_error_counters, need_debug_reporting))
step_current_down(stepperI);
#endif
#if AXIS_IS_TMC(J)
if (monitor_tmc_driver(stepperJ, need_update_error_counters, need_debug_reporting))
step_current_down(stepperJ);
#endif
#if AXIS_IS_TMC(K)
if (monitor_tmc_driver(stepperK, need_update_error_counters, need_debug_reporting))
step_current_down(stepperK);
#endif
#if AXIS_IS_TMC(E0)
(void)monitor_tmc_driver(stepperE0, need_update_error_counters, need_debug_reporting);
#endif
@ -757,128 +772,148 @@
}
}
static void tmc_debug_loop(const TMC_debug_enum i, const bool print_x, const bool print_y, const bool print_z, const bool print_e) {
if (print_x) {
static void tmc_debug_loop(const TMC_debug_enum n, LOGICAL_AXIS_ARGS(const bool)) {
if (x) {
#if AXIS_IS_TMC(X)
tmc_status(stepperX, i);
tmc_status(stepperX, n);
#endif
#if AXIS_IS_TMC(X2)
tmc_status(stepperX2, i);
tmc_status(stepperX2, n);
#endif
}
if (print_y) {
if (TERN0(HAS_Y_AXIS, y)) {
#if AXIS_IS_TMC(Y)
tmc_status(stepperY, i);
tmc_status(stepperY, n);
#endif
#if AXIS_IS_TMC(Y2)
tmc_status(stepperY2, i);
tmc_status(stepperY2, n);
#endif
}
if (print_z) {
if (TERN0(HAS_Z_AXIS, z)) {
#if AXIS_IS_TMC(Z)
tmc_status(stepperZ, i);
tmc_status(stepperZ, n);
#endif
#if AXIS_IS_TMC(Z2)
tmc_status(stepperZ2, i);
tmc_status(stepperZ2, n);
#endif
#if AXIS_IS_TMC(Z3)
tmc_status(stepperZ3, i);
tmc_status(stepperZ3, n);
#endif
#if AXIS_IS_TMC(Z4)
tmc_status(stepperZ4, i);
tmc_status(stepperZ4, n);
#endif
}
if (print_e) {
#if AXIS_IS_TMC(I)
if (i) tmc_status(stepperI, n);
#endif
#if AXIS_IS_TMC(J)
if (j) tmc_status(stepperJ, n);
#endif
#if AXIS_IS_TMC(K)
if (k) tmc_status(stepperK, n);
#endif
if (TERN0(HAS_EXTRUDERS, e)) {
#if AXIS_IS_TMC(E0)
tmc_status(stepperE0, i);
tmc_status(stepperE0, n);
#endif
#if AXIS_IS_TMC(E1)
tmc_status(stepperE1, i);
tmc_status(stepperE1, n);
#endif
#if AXIS_IS_TMC(E2)
tmc_status(stepperE2, i);
tmc_status(stepperE2, n);
#endif
#if AXIS_IS_TMC(E3)
tmc_status(stepperE3, i);
tmc_status(stepperE3, n);
#endif
#if AXIS_IS_TMC(E4)
tmc_status(stepperE4, i);
tmc_status(stepperE4, n);
#endif
#if AXIS_IS_TMC(E5)
tmc_status(stepperE5, i);
tmc_status(stepperE5, n);
#endif
#if AXIS_IS_TMC(E6)
tmc_status(stepperE6, i);
tmc_status(stepperE6, n);
#endif
#if AXIS_IS_TMC(E7)
tmc_status(stepperE7, i);
tmc_status(stepperE7, n);
#endif
}
SERIAL_EOL();
}
static void drv_status_loop(const TMC_drv_status_enum i, const bool print_x, const bool print_y, const bool print_z, const bool print_e) {
if (print_x) {
static void drv_status_loop(const TMC_drv_status_enum n, LOGICAL_AXIS_ARGS(const bool)) {
if (x) {
#if AXIS_IS_TMC(X)
tmc_parse_drv_status(stepperX, i);
tmc_parse_drv_status(stepperX, n);
#endif
#if AXIS_IS_TMC(X2)
tmc_parse_drv_status(stepperX2, i);
tmc_parse_drv_status(stepperX2, n);
#endif
}
if (print_y) {
if (TERN0(HAS_Y_AXIS, y)) {
#if AXIS_IS_TMC(Y)
tmc_parse_drv_status(stepperY, i);
tmc_parse_drv_status(stepperY, n);
#endif
#if AXIS_IS_TMC(Y2)
tmc_parse_drv_status(stepperY2, i);
tmc_parse_drv_status(stepperY2, n);
#endif
}
if (print_z) {
if (TERN0(HAS_Z_AXIS, z)) {
#if AXIS_IS_TMC(Z)
tmc_parse_drv_status(stepperZ, i);
tmc_parse_drv_status(stepperZ, n);
#endif
#if AXIS_IS_TMC(Z2)
tmc_parse_drv_status(stepperZ2, i);
tmc_parse_drv_status(stepperZ2, n);
#endif
#if AXIS_IS_TMC(Z3)
tmc_parse_drv_status(stepperZ3, i);
tmc_parse_drv_status(stepperZ3, n);
#endif
#if AXIS_IS_TMC(Z4)
tmc_parse_drv_status(stepperZ4, i);
tmc_parse_drv_status(stepperZ4, n);
#endif
}
if (print_e) {
#if AXIS_IS_TMC(I)
if (i) tmc_parse_drv_status(stepperI, n);
#endif
#if AXIS_IS_TMC(J)
if (j) tmc_parse_drv_status(stepperJ, n);
#endif
#if AXIS_IS_TMC(K)
if (k) tmc_parse_drv_status(stepperK, n);
#endif
if (TERN0(HAS_EXTRUDERS, e)) {
#if AXIS_IS_TMC(E0)
tmc_parse_drv_status(stepperE0, i);
tmc_parse_drv_status(stepperE0, n);
#endif
#if AXIS_IS_TMC(E1)
tmc_parse_drv_status(stepperE1, i);
tmc_parse_drv_status(stepperE1, n);
#endif
#if AXIS_IS_TMC(E2)
tmc_parse_drv_status(stepperE2, i);
tmc_parse_drv_status(stepperE2, n);
#endif
#if AXIS_IS_TMC(E3)
tmc_parse_drv_status(stepperE3, i);
tmc_parse_drv_status(stepperE3, n);
#endif
#if AXIS_IS_TMC(E4)
tmc_parse_drv_status(stepperE4, i);
tmc_parse_drv_status(stepperE4, n);
#endif
#if AXIS_IS_TMC(E5)
tmc_parse_drv_status(stepperE5, i);
tmc_parse_drv_status(stepperE5, n);
#endif
#if AXIS_IS_TMC(E6)
tmc_parse_drv_status(stepperE6, i);
tmc_parse_drv_status(stepperE6, n);
#endif
#if AXIS_IS_TMC(E7)
tmc_parse_drv_status(stepperE7, i);
tmc_parse_drv_status(stepperE7, n);
#endif
}
@ -889,9 +924,10 @@
* M122 report functions
*/
void tmc_report_all(const bool print_x/*=true*/, const bool print_y/*=true*/, const bool print_z/*=true*/, const bool print_e/*=true*/) {
#define TMC_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_debug_loop(ITEM, print_x, print_y, print_z, print_e); }while(0)
#define DRV_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); drv_status_loop(ITEM, print_x, print_y, print_z, print_e); }while(0)
void tmc_report_all(LOGICAL_AXIS_ARGS(const bool)) {
#define TMC_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_debug_loop(ITEM, LOGICAL_AXIS_ARGS()); }while(0)
#define DRV_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); drv_status_loop(ITEM, LOGICAL_AXIS_ARGS()); }while(0)
TMC_REPORT("\t", TMC_CODES);
#if HAS_DRIVER(TMC2209)
TMC_REPORT("Address\t", TMC_UART_ADDR);
@ -1015,72 +1051,82 @@
}
#endif
static void tmc_get_registers(TMC_get_registers_enum i, const bool print_x, const bool print_y, const bool print_z, const bool print_e) {
if (print_x) {
static void tmc_get_registers(TMC_get_registers_enum n, LOGICAL_AXIS_ARGS(const bool)) {
if (x) {
#if AXIS_IS_TMC(X)
tmc_get_registers(stepperX, i);
tmc_get_registers(stepperX, n);
#endif
#if AXIS_IS_TMC(X2)
tmc_get_registers(stepperX2, i);
tmc_get_registers(stepperX2, n);
#endif
}
if (print_y) {
if (TERN0(HAS_Y_AXIS, y)) {
#if AXIS_IS_TMC(Y)
tmc_get_registers(stepperY, i);
tmc_get_registers(stepperY, n);
#endif
#if AXIS_IS_TMC(Y2)
tmc_get_registers(stepperY2, i);
tmc_get_registers(stepperY2, n);
#endif
}
if (print_z) {
if (TERN0(HAS_Z_AXIS, z)) {
#if AXIS_IS_TMC(Z)
tmc_get_registers(stepperZ, i);
tmc_get_registers(stepperZ, n);
#endif
#if AXIS_IS_TMC(Z2)
tmc_get_registers(stepperZ2, i);
tmc_get_registers(stepperZ2, n);
#endif
#if AXIS_IS_TMC(Z3)
tmc_get_registers(stepperZ3, i);
tmc_get_registers(stepperZ3, n);
#endif
#if AXIS_IS_TMC(Z4)
tmc_get_registers(stepperZ4, i);
tmc_get_registers(stepperZ4, n);
#endif
}
if (print_e) {
#if AXIS_IS_TMC(I)
if (i) tmc_get_registers(stepperI, n);
#endif
#if AXIS_IS_TMC(J)
if (j) tmc_get_registers(stepperJ, n);
#endif
#if AXIS_IS_TMC(K)
if (k) tmc_get_registers(stepperK, n);
#endif
if (TERN0(HAS_EXTRUDERS, e)) {
#if AXIS_IS_TMC(E0)
tmc_get_registers(stepperE0, i);
tmc_get_registers(stepperE0, n);
#endif
#if AXIS_IS_TMC(E1)
tmc_get_registers(stepperE1, i);
tmc_get_registers(stepperE1, n);
#endif
#if AXIS_IS_TMC(E2)
tmc_get_registers(stepperE2, i);
tmc_get_registers(stepperE2, n);
#endif
#if AXIS_IS_TMC(E3)
tmc_get_registers(stepperE3, i);
tmc_get_registers(stepperE3, n);
#endif
#if AXIS_IS_TMC(E4)
tmc_get_registers(stepperE4, i);
tmc_get_registers(stepperE4, n);
#endif
#if AXIS_IS_TMC(E5)
tmc_get_registers(stepperE5, i);
tmc_get_registers(stepperE5, n);
#endif
#if AXIS_IS_TMC(E6)
tmc_get_registers(stepperE6, i);
tmc_get_registers(stepperE6, n);
#endif
#if AXIS_IS_TMC(E7)
tmc_get_registers(stepperE7, i);
tmc_get_registers(stepperE7, n);
#endif
}
SERIAL_EOL();
}
void tmc_get_registers(bool print_x, bool print_y, bool print_z, bool print_e) {
#define _TMC_GET_REG(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_get_registers(ITEM, print_x, print_y, print_z, print_e); }while(0)
void tmc_get_registers(LOGICAL_AXIS_ARGS(bool)) {
#define _TMC_GET_REG(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_get_registers(ITEM, LOGICAL_AXIS_ARGS()); }while(0)
#define TMC_GET_REG(NAME, TABS) _TMC_GET_REG(STRINGIFY(NAME) TABS, TMC_GET_##NAME)
_TMC_GET_REG("\t", TMC_AXIS_CODES);
TMC_GET_REG(GCONF, "\t\t");
@ -1165,6 +1211,15 @@
#if AXIS_HAS_SPI(Z4)
SET_CS_PIN(Z4);
#endif
#if AXIS_HAS_SPI(I)
SET_CS_PIN(I);
#endif
#if AXIS_HAS_SPI(J)
SET_CS_PIN(J);
#endif
#if AXIS_HAS_SPI(K)
SET_CS_PIN(K);
#endif
#if AXIS_HAS_SPI(E0)
SET_CS_PIN(E0);
#endif
@ -1214,10 +1269,10 @@ static bool test_connection(TMC &st) {
return test_result;
}
void test_tmc_connection(const bool test_x/*=true*/, const bool test_y/*=true*/, const bool test_z/*=true*/, const bool test_e/*=true*/) {
void test_tmc_connection(LOGICAL_AXIS_ARGS(const bool)) {
uint8_t axis_connection = 0;
if (test_x) {
if (x) {
#if AXIS_IS_TMC(X)
axis_connection += test_connection(stepperX);
#endif
@ -1226,7 +1281,7 @@ void test_tmc_connection(const bool test_x/*=true*/, const bool test_y/*=true*/,
#endif
}
if (test_y) {
if (TERN0(HAS_Y_AXIS, y)) {
#if AXIS_IS_TMC(Y)
axis_connection += test_connection(stepperY);
#endif
@ -1235,7 +1290,7 @@ void test_tmc_connection(const bool test_x/*=true*/, const bool test_y/*=true*/,
#endif
}
if (test_z) {
if (TERN0(HAS_Z_AXIS, z)) {
#if AXIS_IS_TMC(Z)
axis_connection += test_connection(stepperZ);
#endif
@ -1250,7 +1305,17 @@ void test_tmc_connection(const bool test_x/*=true*/, const bool test_y/*=true*/,
#endif
}
if (test_e) {
#if AXIS_IS_TMC(I)
if (i) axis_connection += test_connection(stepperI);
#endif
#if AXIS_IS_TMC(J)
if (j) axis_connection += test_connection(stepperJ);
#endif
#if AXIS_IS_TMC(K)
if (k) axis_connection += test_connection(stepperK);
#endif
if (TERN0(HAS_EXTRUDERS, e)) {
#if AXIS_IS_TMC(E0)
axis_connection += test_connection(stepperE0);
#endif

12
Marlin/src/feature/tmc_util.h

@ -335,14 +335,14 @@ void tmc_print_current(TMC &st) {
#endif
void monitor_tmc_drivers();
void test_tmc_connection(const bool test_x=true, const bool test_y=true, const bool test_z=true, const bool test_e=true);
void test_tmc_connection(LOGICAL_AXIS_DECL(const bool, true));
#if ENABLED(TMC_DEBUG)
#if ENABLED(MONITOR_DRIVER_STATUS)
void tmc_set_report_interval(const uint16_t update_interval);
#endif
void tmc_report_all(const bool print_x=true, const bool print_y=true, const bool print_z=true, const bool print_e=true);
void tmc_get_registers(const bool print_x, const bool print_y, const bool print_z, const bool print_e);
void tmc_report_all(LOGICAL_AXIS_DECL(const bool, true));
void tmc_get_registers(LOGICAL_AXIS_ARGS(const bool));
#endif
/**
@ -355,16 +355,16 @@ void test_tmc_connection(const bool test_x=true, const bool test_y=true, const b
#if USE_SENSORLESS
// Track enabled status of stealthChop and only re-enable where applicable
struct sensorless_t { bool x, y, z, x2, y2, z2, z3, z4; };
struct sensorless_t { bool LINEAR_AXIS_ARGS(), x2, y2, z2, z3, z4; };
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
extern millis_t sg_guard_period;
constexpr uint16_t default_sg_guard_duration = 400;
struct slow_homing_t {
struct motion_state_t {
xy_ulong_t acceleration;
#if ENABLED(HAS_CLASSIC_JERK)
xy_float_t jerk_xy;
xy_float_t jerk_state;
#endif
};
#endif

2
Marlin/src/gcode/bedlevel/G26.cpp

@ -291,7 +291,7 @@ typedef struct {
if (p2.x < 0 || p2.x >= (GRID_MAX_POINTS_X)) return;
if (p2.y < 0 || p2.y >= (GRID_MAX_POINTS_Y)) return;
if(circle_flags.marked(p1.x, p1.y) && circle_flags.marked(p2.x, p2.y)) {
if (circle_flags.marked(p1.x, p1.y) && circle_flags.marked(p2.x, p2.y)) {
xyz_pos_t s, e;
s.x = _GET_MESH_X(p1.x) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dx;
e.x = _GET_MESH_X(p2.x) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dx;

4
Marlin/src/gcode/bedlevel/G35.cpp

@ -91,8 +91,8 @@ void GcodeSuite::G35() {
// Disable duplication mode on homing
TERN_(HAS_DUPLICATION_MODE, set_duplication_enabled(false));
// Home all before this procedure
home_all_axes();
// Home only Z axis when X and Y is trusted, otherwise all axes, if needed before this procedure
if (!all_axes_trusted()) process_subcommands_now_P(PSTR("G28Z"));
bool err_break = false;

6
Marlin/src/gcode/bedlevel/abl/G29.cpp

@ -246,7 +246,7 @@ G29_TYPE GcodeSuite::G29() {
// Send 'N' to force homing before G29 (internal only)
if (parser.seen_test('N'))
process_subcommands_now_P(TERN(G28_L0_ENSURES_LEVELING_OFF, PSTR("G28L0"), G28_STR));
process_subcommands_now_P(TERN(CAN_SET_LEVELING_AFTER_G28, PSTR("G28L0"), G28_STR));
// Don't allow auto-leveling without homing first
if (homing_needed_error()) G29_RETURN(false);
@ -689,7 +689,7 @@ G29_TYPE GcodeSuite::G29() {
TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_MESH), int(i + 1)));
// Retain the last probe position
abl.probePos = points[i];
abl.probePos = xy_pos_t(points[i]);
abl.measured_z = faux ? 0.001 * random(-100, 101) : probe.probe_at_point(abl.probePos, raise_after, abl.verbose_level);
if (isnan(abl.measured_z)) {
set_bed_leveling_enabled(abl.reenable);
@ -795,7 +795,7 @@ G29_TYPE GcodeSuite::G29() {
const int ind = abl.indexIntoAB[xx][yy];
xyz_float_t tmp = { abl.eqnAMatrix[ind + 0 * abl.abl_points],
abl.eqnAMatrix[ind + 1 * abl.abl_points], 0 };
planner.bed_level_matrix.apply_rotation_xyz(tmp);
planner.bed_level_matrix.apply_rotation_xyz(tmp.x, tmp.y, tmp.z);
if (get_min) NOMORE(min_diff, abl.eqnBVector[ind] - tmp.z);
const float subval = get_min ? abl.mean : tmp.z + min_diff,
diff = abl.eqnBVector[ind] - subval;

6
Marlin/src/gcode/bedlevel/mbl/G29.cpp

@ -70,7 +70,7 @@ void GcodeSuite::G29() {
return;
}
int8_t ix, iy;
int8_t ix, iy = 0;
switch (state) {
case MeshReport:
@ -87,7 +87,8 @@ void GcodeSuite::G29() {
mbl.reset();
mbl_probe_index = 0;
if (!ui.wait_for_move) {
queue.inject_P(parser.seen_test('N') ? PSTR("G28" TERN(G28_L0_ENSURES_LEVELING_OFF, "L0", "") "\nG29S2") : PSTR("G29S2"));
queue.inject_P(parser.seen_test('N') ? PSTR("G28" TERN(CAN_SET_LEVELING_AFTER_G28, "L0", "") "\nG29S2") : PSTR("G29S2"));
TERN_(EXTENSIBLE_UI, ExtUI::onMeshLevelingStart());
return;
}
state = MeshNext;
@ -109,6 +110,7 @@ void GcodeSuite::G29() {
else {
// Save Z for the previous mesh position
mbl.set_zigzag_z(mbl_probe_index - 1, current_position.z);
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(ix, iy, current_position.z));
SET_SOFT_ENDSTOP_LOOSE(false);
}
// If there's another point to sample, move there with optional lift.

137
Marlin/src/gcode/calibrate/G28.cpp

@ -164,24 +164,24 @@
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
slow_homing_t begin_slow_homing() {
slow_homing_t slow_homing{0};
slow_homing.acceleration.set(planner.settings.max_acceleration_mm_per_s2[X_AXIS],
motion_state_t begin_slow_homing() {
motion_state_t motion_state{0};
motion_state.acceleration.set(planner.settings.max_acceleration_mm_per_s2[X_AXIS],
planner.settings.max_acceleration_mm_per_s2[Y_AXIS]);
planner.settings.max_acceleration_mm_per_s2[X_AXIS] = 100;
planner.settings.max_acceleration_mm_per_s2[Y_AXIS] = 100;
#if HAS_CLASSIC_JERK
slow_homing.jerk_xy = planner.max_jerk;
motion_state.jerk_state = planner.max_jerk;
planner.max_jerk.set(0, 0);
#endif
planner.reset_acceleration_rates();
return slow_homing;
return motion_state;
}
void end_slow_homing(const slow_homing_t &slow_homing) {
planner.settings.max_acceleration_mm_per_s2[X_AXIS] = slow_homing.acceleration.x;
planner.settings.max_acceleration_mm_per_s2[Y_AXIS] = slow_homing.acceleration.y;
TERN_(HAS_CLASSIC_JERK, planner.max_jerk = slow_homing.jerk_xy);
void end_slow_homing(const motion_state_t &motion_state) {
planner.settings.max_acceleration_mm_per_s2[X_AXIS] = motion_state.acceleration.x;
planner.settings.max_acceleration_mm_per_s2[Y_AXIS] = motion_state.acceleration.y;
TERN_(HAS_CLASSIC_JERK, planner.max_jerk = motion_state.jerk_state);
planner.reset_acceleration_rates();
}
@ -195,9 +195,9 @@
* None Home to all axes with no parameters.
* With QUICK_HOME enabled XY will home together, then Z.
*
* O Home only if position is unknown
*
* Rn Raise by n mm/inches before homing
* L<bool> Force leveling state ON (if possible) or OFF after homing (Requires RESTORE_LEVELING_AFTER_G28 or ENABLE_LEVELING_AFTER_G28)
* O Home only if the position is not known and trusted
* R<linear> Raise by n mm/inches before homing
*
* Cartesian/SCARA parameters
*
@ -229,7 +229,7 @@ void GcodeSuite::G28() {
#endif
// Home (O)nly if position is unknown
if (!axes_should_home() && parser.boolval('O')) {
if (!axes_should_home() && parser.seen_test('O')) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> homing not needed, skip");
return;
}
@ -242,12 +242,16 @@ void GcodeSuite::G28() {
SET_SOFT_ENDSTOP_LOOSE(false); // Reset a leftover 'loose' motion state
// Disable the leveling matrix before homing
#if HAS_LEVELING
const bool leveling_restore_state = parser.boolval('L', TERN(RESTORE_LEVELING_AFTER_G28, planner.leveling_active, ENABLED(ENABLE_LEVELING_AFTER_G28)));
IF_ENABLED(PROBE_MANUALLY, g29_in_progress = false); // Cancel the active G29 session
set_bed_leveling_enabled(false);
#if CAN_SET_LEVELING_AFTER_G28
const bool leveling_restore_state = parser.boolval('L', TERN1(RESTORE_LEVELING_AFTER_G28, planner.leveling_active));
#endif
// Cancel any prior G29 session
TERN_(PROBE_MANUALLY, g29_in_progress = false);
// Disable leveling before homing
TERN_(HAS_LEVELING, set_bed_leveling_enabled(false));
// Reset to the XY plane
TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY);
@ -285,7 +289,9 @@ void GcodeSuite::G28() {
#endif
#endif
TERN_(IMPROVE_HOMING_RELIABILITY, slow_homing_t slow_homing = begin_slow_homing());
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
motion_state_t saved_motion_state = begin_slow_homing();
#endif
// Always home with tool 0 active
#if HAS_MULTI_HOTEND
@ -311,7 +317,7 @@ void GcodeSuite::G28() {
home_delta();
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(slow_homing));
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(saved_motion_state));
#elif ENABLED(AXEL_TPARA)
@ -321,33 +327,47 @@ void GcodeSuite::G28() {
#else
const bool homeZ = parser.seen_test('Z'),
needX = homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(X_AXIS))),
needY = homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(Y_AXIS))),
homeX = needX || parser.seen_test('X'), homeY = needY || parser.seen_test('Y'),
home_all = homeX == homeY && homeX == homeZ, // All or None
doX = home_all || homeX, doY = home_all || homeY, doZ = home_all || homeZ;
#if ENABLED(HOME_Z_FIRST)
if (doZ) homeaxis(Z_AXIS);
#define _UNSAFE(A) (homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(A##_AXIS))))
const bool homeZ = TERN0(HAS_Z_AXIS, parser.seen_test('Z')),
LINEAR_AXIS_LIST( // Other axes should be homed before Z safe-homing
needX = _UNSAFE(X), needY = _UNSAFE(Y), needZ = false, // UNUSED
needI = _UNSAFE(I), needJ = _UNSAFE(J), needK = _UNSAFE(K)
),
LINEAR_AXIS_LIST( // Home each axis if needed or flagged
homeX = needX || parser.seen_test('X'),
homeY = needY || parser.seen_test('Y'),
homeZZ = homeZ,
homeI = needI || parser.seen_test(AXIS4_NAME), homeJ = needJ || parser.seen_test(AXIS5_NAME), homeK = needK || parser.seen_test(AXIS6_NAME),
),
home_all = LINEAR_AXIS_GANG( // Home-all if all or none are flagged
homeX == homeX, && homeY == homeX, && homeZ == homeX,
&& homeI == homeX, && homeJ == homeX, && homeK == homeX
),
LINEAR_AXIS_LIST(
doX = home_all || homeX, doY = home_all || homeY, doZ = home_all || homeZ,
doI = home_all || homeI, doJ = home_all || homeJ, doK = home_all || homeK
);
#if HAS_Z_AXIS
UNUSED(needZ); UNUSED(homeZZ);
#else
constexpr bool doZ = false;
#endif
TERN_(HOME_Z_FIRST, if (doZ) homeaxis(Z_AXIS));
const float z_homing_height = parser.seenval('R') ? parser.value_linear_units() : Z_HOMING_HEIGHT;
if (z_homing_height && (doX || doY || TERN0(Z_SAFE_HOMING, doZ))) {
if (z_homing_height && (LINEAR_AXIS_GANG(doX, || doY, || TERN0(Z_SAFE_HOMING, doZ), || doI, || doJ, || doK))) {
// Raise Z before homing any other axes and z is not already high enough (never lower z)
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Raise Z (before homing) by ", z_homing_height);
do_z_clearance(z_homing_height);
TERN_(BLTOUCH, bltouch.init());
}
#if ENABLED(QUICK_HOME)
if (doX && doY) quick_home_xy();
#endif
// Diagonal move first if both are homing
TERN_(QUICK_HOME, if (doX && doY) quick_home_xy());
// Home Y (before X)
if (ENABLED(HOME_Y_BEFORE_X) && (doY || TERN0(CODEPENDENT_XY_HOMING, doX)))
@ -383,10 +403,10 @@ void GcodeSuite::G28() {
if (DISABLED(HOME_Y_BEFORE_X) && doY)
homeaxis(Y_AXIS);
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(slow_homing));
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(saved_motion_state));
// Home Z last if homing towards the bed
#if DISABLED(HOME_Z_FIRST)
#if HAS_Z_AXIS && DISABLED(HOME_Z_FIRST)
if (doZ) {
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
stepper.set_all_z_lock(false);
@ -398,6 +418,16 @@ void GcodeSuite::G28() {
}
#endif
#if LINEAR_AXES >= 4
if (doI) homeaxis(I_AXIS);
#endif
#if LINEAR_AXES >= 5
if (doJ) homeaxis(J_AXIS);
#endif
#if LINEAR_AXES >= 6
if (doK) homeaxis(K_AXIS);
#endif
sync_plan_position();
#endif
@ -412,7 +442,7 @@ void GcodeSuite::G28() {
if (idex_is_duplicating()) {
TERN_(IMPROVE_HOMING_RELIABILITY, slow_homing = begin_slow_homing());
TERN_(IMPROVE_HOMING_RELIABILITY, saved_motion_state = begin_slow_homing());
// Always home the 2nd (right) extruder first
active_extruder = 1;
@ -431,7 +461,7 @@ void GcodeSuite::G28() {
dual_x_carriage_mode = IDEX_saved_mode;
set_duplication_enabled(IDEX_saved_duplication_state);
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(slow_homing));
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(saved_motion_state));
}
#endif // DUAL_X_CARRIAGE
@ -441,12 +471,10 @@ void GcodeSuite::G28() {
// Clear endstop state for polled stallGuard endstops
TERN_(SPI_ENDSTOPS, endstops.clear_endstop_state());
#if BOTH(DELTA, DELTA_HOME_TO_SAFE_ZONE)
// move to a height where we can use the full xy-area
do_blocking_move_to_z(delta_clip_start_height);
#endif
// Move to a height where we can use the full xy-area
TERN_(DELTA_HOME_TO_SAFE_ZONE, do_blocking_move_to_z(delta_clip_start_height));
TERN_(HAS_LEVELING, set_bed_leveling_enabled(leveling_restore_state));
TERN_(CAN_SET_LEVELING_AFTER_G28, if (leveling_restore_state) set_bed_leveling_enabled());
restore_feedrate_and_scaling();
@ -469,7 +497,16 @@ void GcodeSuite::G28() {
#if HAS_CURRENT_HOME(Y2)
stepperY2.rms_current(tmc_save_current_Y2);
#endif
#endif
#if HAS_CURRENT_HOME(I)
stepperI.rms_current(tmc_save_current_I);
#endif
#if HAS_CURRENT_HOME(J)
stepperJ.rms_current(tmc_save_current_J);
#endif
#if HAS_CURRENT_HOME(K)
stepperK.rms_current(tmc_save_current_K);
#endif
#endif // HAS_HOMING_CURRENT
ui.refresh();
@ -487,11 +524,13 @@ void GcodeSuite::G28() {
// Set L6470 absolute position registers to counts
// constexpr *might* move this to PROGMEM.
// If not, this will need a PROGMEM directive and an accessor.
#define _EN_ITEM(N) , E_AXIS
static constexpr AxisEnum L64XX_axis_xref[MAX_L64XX] = {
X_AXIS, Y_AXIS, Z_AXIS,
X_AXIS, Y_AXIS, Z_AXIS, Z_AXIS,
E_AXIS, E_AXIS, E_AXIS, E_AXIS, E_AXIS, E_AXIS
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS),
X_AXIS, Y_AXIS, Z_AXIS, Z_AXIS, Z_AXIS
REPEAT(E_STEPPERS, _EN_ITEM)
};
#undef _EN_ITEM
for (uint8_t j = 1; j <= L64XX::chain[0]; j++) {
const uint8_t cv = L64XX::chain[j];
L64xxManager.set_param((L64XX_axis_t)cv, L6470_ABS_POS, stepper.position(L64XX_axis_xref[cv]));

2
Marlin/src/gcode/calibrate/G34.cpp

@ -39,7 +39,7 @@
void GcodeSuite::G34() {
// Home before the alignment procedure
if (!all_axes_trusted()) home_all_axes();
home_if_needed();
TERN_(HAS_LEVELING, TEMPORARY_BED_LEVELING_STATE(false));

91
Marlin/src/gcode/calibrate/G34_M422.cpp

@ -48,6 +48,13 @@
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../core/debug_out.h"
#if NUM_Z_STEPPER_DRIVERS >= 3
#define TRIPLE_Z 1
#if NUM_Z_STEPPER_DRIVERS >= 4
#define QUAD_Z 1
#endif
#endif
/**
* G34: Z-Stepper automatic alignment
*
@ -82,9 +89,9 @@ void GcodeSuite::G34() {
switch (parser.intval('Z')) {
case 1: stepper.set_z1_lock(state); break;
case 2: stepper.set_z2_lock(state); break;
#if NUM_Z_STEPPER_DRIVERS >= 3
#if TRIPLE_Z
case 3: stepper.set_z3_lock(state); break;
#if NUM_Z_STEPPER_DRIVERS >= 4
#if QUAD_Z
case 4: stepper.set_z4_lock(state); break;
#endif
#endif
@ -99,13 +106,6 @@ void GcodeSuite::G34() {
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
do { // break out on error
#if NUM_Z_STEPPER_DRIVERS == 4
SERIAL_ECHOLNPGM("Alignment for 4 steppers is Experimental!");
#elif NUM_Z_STEPPER_DRIVERS > 4
SERIAL_ECHOLNPGM("Alignment not supported for over 4 steppers");
break;
#endif
const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS);
if (!WITHIN(z_auto_align_iterations, 1, 30)) {
SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30).");
@ -157,19 +157,17 @@ void GcodeSuite::G34() {
const xy_pos_t diff = z_stepper_align.xy[i] - z_stepper_align.xy[j];
return HYPOT2(diff.x, diff.y);
};
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(
#if NUM_Z_STEPPER_DRIVERS == 3
_MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 0))
#elif NUM_Z_STEPPER_DRIVERS == 4
_MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 3),
magnitude2(3, 0), magnitude2(0, 2), magnitude2(1, 3))
#else
magnitude2(0, 1)
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(_MAX(0, magnitude2(0, 1)
#if TRIPLE_Z
, magnitude2(2, 1), magnitude2(2, 0)
#if QUAD_Z
, magnitude2(3, 2), magnitude2(3, 1), magnitude2(3, 0)
#endif
#endif
);
));
// Home before the alignment procedure
if (!all_axes_trusted()) home_all_axes();
home_if_needed();
// Move the Z coordinate realm towards the positive - dirty trick
current_position.z += z_probe * 0.5f;
@ -178,7 +176,7 @@ void GcodeSuite::G34() {
// This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration.
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f, 10000.0f);
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N_1(NUM_Z_STEPPER_DRIVERS, 10000.0f);
#else
float last_z_align_level_indicator = 10000.0f;
#endif
@ -280,39 +278,52 @@ void GcodeSuite::G34() {
z_measured_min = _MIN(z_measured_min, z_measured[i]);
}
SERIAL_ECHOLNPAIR("CALCULATED STEPPER POSITIONS: Z1=", z_measured[0], " Z2=", z_measured[1], " Z3=", z_measured[2]);
SERIAL_ECHOLNPAIR(
LIST_N(DOUBLE(NUM_Z_STEPPER_DRIVERS),
"Calculated Z1=", z_measured[0],
" Z2=", z_measured[1],
" Z3=", z_measured[2],
" Z4=", z_measured[3]
)
);
#endif
SERIAL_ECHOLNPAIR("\n"
"DIFFERENCE Z1-Z2=", ABS(z_measured[0] - z_measured[1])
#if NUM_Z_STEPPER_DRIVERS == 3
, " Z2-Z3=", ABS(z_measured[1] - z_measured[2])
"Z2-Z1=", ABS(z_measured[1] - z_measured[0])
#if TRIPLE_Z
, " Z3-Z2=", ABS(z_measured[2] - z_measured[1])
, " Z3-Z1=", ABS(z_measured[2] - z_measured[0])
#if QUAD_Z
, " Z4-Z3=", ABS(z_measured[3] - z_measured[2])
, " Z4-Z2=", ABS(z_measured[3] - z_measured[1])
, " Z4-Z1=", ABS(z_measured[3] - z_measured[0])
#endif
#endif
);
#if HAS_STATUS_MESSAGE
char fstr1[10];
#if NUM_Z_STEPPER_DRIVERS == 2
char msg[6 + (6 + 5) * 1 + 1];
#else
char msg[6 + (6 + 5) * 3 + 1], fstr2[10], fstr3[10];
#endif
sprintf_P(msg,
PSTR("Diffs Z1-Z2=%s"
#if NUM_Z_STEPPER_DRIVERS == 3
" Z2-Z3=%s"
" Z3-Z1=%s"
char msg[6 + (6 + 5) * NUM_Z_STEPPER_DRIVERS + 1]
#if TRIPLE_Z
, fstr2[10], fstr3[10]
#if QUAD_Z
, fstr4[10], fstr5[10], fstr6[10]
#endif
), dtostrf(ABS(z_measured[0] - z_measured[1]), 1, 3, fstr1)
#if NUM_Z_STEPPER_DRIVERS == 3
, dtostrf(ABS(z_measured[1] - z_measured[2]), 1, 3, fstr2)
, dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3)
#endif
;
sprintf_P(msg,
PSTR("1:2=%s" TERN_(TRIPLE_Z, " 3-2=%s 3-1=%s") TERN_(QUAD_Z, " 4-3=%s 4-2=%s 4-1=%s")),
dtostrf(ABS(z_measured[1] - z_measured[0]), 1, 3, fstr1)
OPTARG(TRIPLE_Z, dtostrf(ABS(z_measured[2] - z_measured[1]), 1, 3, fstr2))
OPTARG(TRIPLE_Z, dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3))
OPTARG(QUAD_Z, dtostrf(ABS(z_measured[3] - z_measured[2]), 1, 3, fstr4))
OPTARG(QUAD_Z, dtostrf(ABS(z_measured[3] - z_measured[1]), 1, 3, fstr5))
OPTARG(QUAD_Z, dtostrf(ABS(z_measured[3] - z_measured[0]), 1, 3, fstr6))
);
ui.set_status(msg);
#endif
auto decreasing_accuracy = [](const_float_t v1, const_float_t v2){
auto decreasing_accuracy = [](const_float_t v1, const_float_t v2) {
if (v1 < v2 * 0.7f) {
SERIAL_ECHOLNPGM("Decreasing Accuracy Detected.");
LCD_MESSAGEPGM(MSG_DECREASING_ACCURACY);
@ -437,7 +448,7 @@ void GcodeSuite::G34() {
#endif
}while(0);
#endif
#endif // Z_STEPPER_AUTO_ALIGN
}
#endif // Z_MULTI_ENDSTOPS || Z_STEPPER_AUTO_ALIGN

229
Marlin/src/gcode/calibrate/G425.cpp

@ -73,11 +73,23 @@
#if BOTH(CALIBRATION_MEASURE_LEFT, CALIBRATION_MEASURE_RIGHT)
#define HAS_X_CENTER 1
#endif
#if BOTH(CALIBRATION_MEASURE_FRONT, CALIBRATION_MEASURE_BACK)
#if HAS_Y_AXIS && BOTH(CALIBRATION_MEASURE_FRONT, CALIBRATION_MEASURE_BACK)
#define HAS_Y_CENTER 1
#endif
#if LINEAR_AXES >= 4 && BOTH(CALIBRATION_MEASURE_IMIN, CALIBRATION_MEASURE_IMAX)
#define HAS_I_CENTER 1
#endif
#if LINEAR_AXES >= 5 && BOTH(CALIBRATION_MEASURE_JMIN, CALIBRATION_MEASURE_JMAX)
#define HAS_J_CENTER 1
#endif
#if LINEAR_AXES >= 6 && BOTH(CALIBRATION_MEASURE_KMIN, CALIBRATION_MEASURE_KMAX)
#define HAS_K_CENTER 1
#endif
enum side_t : uint8_t { TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES };
enum side_t : uint8_t {
TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES,
LIST_N(DOUBLE(SUB3(LINEAR_AXES)), IMINIMUM, IMAXIMUM, JMINIMUM, JMAXIMUM, KMINIMUM, KMAXIMUM)
};
static constexpr xyz_pos_t true_center CALIBRATION_OBJECT_CENTER;
static constexpr xyz_float_t dimensions CALIBRATION_OBJECT_DIMENSIONS;
@ -105,7 +117,7 @@ struct measurements_t {
#endif
inline void calibration_move() {
do_blocking_move_to(current_position, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
do_blocking_move_to((xyz_pos_t)current_position, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
}
/**
@ -174,7 +186,7 @@ float measuring_movement(const AxisEnum axis, const int dir, const bool stop_sta
destination = current_position;
for (float travel = 0; travel < limit; travel += step) {
destination[axis] += dir * step;
do_blocking_move_to(destination, mms);
do_blocking_move_to((xyz_pos_t)destination, mms);
planner.synchronize();
if (read_calibration_pin() == stop_state) break;
}
@ -209,7 +221,7 @@ inline float measure(const AxisEnum axis, const int dir, const bool stop_state,
// Move back to the starting position
destination = current_position;
destination[axis] = start_pos;
do_blocking_move_to(destination, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
do_blocking_move_to((xyz_pos_t)destination, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
return measured_pos;
}
@ -230,7 +242,15 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
park_above_object(m, uncertainty);
switch (side) {
#if AXIS_CAN_CALIBRATE(Z)
#if AXIS_CAN_CALIBRATE(X)
case RIGHT: dir = -1;
case LEFT: axis = X_AXIS; break;
#endif
#if LINEAR_AXES >= 2 && AXIS_CAN_CALIBRATE(Y)
case BACK: dir = -1;
case FRONT: axis = Y_AXIS; break;
#endif
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
case TOP: {
const float measurement = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
m.obj_center.z = measurement - dimensions.z / 2;
@ -238,13 +258,17 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
return;
}
#endif
#if AXIS_CAN_CALIBRATE(X)
case RIGHT: dir = -1;
case LEFT: axis = X_AXIS; break;
#if LINEAR_AXES >= 4 && AXIS_CAN_CALIBRATE(I)
case IMINIMUM: dir = -1;
case IMAXIMUM: axis = I_AXIS; break;
#endif
#if AXIS_CAN_CALIBRATE(Y)
case BACK: dir = -1;
case FRONT: axis = Y_AXIS; break;
#if LINEAR_AXES >= 5 && AXIS_CAN_CALIBRATE(J)
case JMINIMUM: dir = -1;
case JMAXIMUM: axis = J_AXIS; break;
#endif
#if LINEAR_AXES >= 6 && AXIS_CAN_CALIBRATE(K)
case KMINIMUM: dir = -1;
case KMAXIMUM: axis = K_AXIS; break;
#endif
default: return;
}
@ -289,14 +313,23 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
probe_side(m, uncertainty, TOP);
#endif
TERN_(CALIBRATION_MEASURE_RIGHT, probe_side(m, uncertainty, RIGHT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_FRONT, probe_side(m, uncertainty, FRONT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_LEFT, probe_side(m, uncertainty, LEFT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_BACK, probe_side(m, uncertainty, BACK, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_RIGHT, probe_side(m, uncertainty, RIGHT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_FRONT, probe_side(m, uncertainty, FRONT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_LEFT, probe_side(m, uncertainty, LEFT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_BACK, probe_side(m, uncertainty, BACK, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_IMIN, probe_side(m, uncertainty, IMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_IMAX, probe_side(m, uncertainty, IMAXIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_JMIN, probe_side(m, uncertainty, JMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_JMAX, probe_side(m, uncertainty, JMAXIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_KMIN, probe_side(m, uncertainty, KMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_KMAX, probe_side(m, uncertainty, KMAXIMUM, probe_top_at_edge));
// Compute the measured center of the calibration object.
TERN_(HAS_X_CENTER, m.obj_center.x = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2);
TERN_(HAS_Y_CENTER, m.obj_center.y = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2);
TERN_(HAS_X_CENTER, m.obj_center.x = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2);
TERN_(HAS_Y_CENTER, m.obj_center.y = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2);
TERN_(HAS_I_CENTER, m.obj_center.i = (m.obj_side[IMINIMUM] + m.obj_side[IMAXIMUM]) / 2);
TERN_(HAS_J_CENTER, m.obj_center.j = (m.obj_side[JMINIMUM] + m.obj_side[JMAXIMUM]) / 2);
TERN_(HAS_K_CENTER, m.obj_center.k = (m.obj_side[KMINIMUM] + m.obj_side[KMAXIMUM]) / 2);
// Compute the outside diameter of the nozzle at the height
// at which it makes contact with the calibration object
@ -307,15 +340,20 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
// The difference between the known and the measured location
// of the calibration object is the positional error
m.pos_error.x = TERN0(HAS_X_CENTER, true_center.x - m.obj_center.x);
m.pos_error.y = TERN0(HAS_Y_CENTER, true_center.y - m.obj_center.y);
m.pos_error.z = true_center.z - m.obj_center.z;
LINEAR_AXIS_CODE(
m.pos_error.x = TERN0(HAS_X_CENTER, true_center.x - m.obj_center.x),
m.pos_error.y = TERN0(HAS_Y_CENTER, true_center.y - m.obj_center.y),
m.pos_error.z = true_center.z - m.obj_center.z,
m.pos_error.i = TERN0(HAS_I_CENTER, true_center.i - m.obj_center.i),
m.pos_error.j = TERN0(HAS_J_CENTER, true_center.j - m.obj_center.j),
m.pos_error.k = TERN0(HAS_K_CENTER, true_center.k - m.obj_center.k)
);
}
#if ENABLED(CALIBRATION_REPORTING)
inline void report_measured_faces(const measurements_t &m) {
SERIAL_ECHOLNPGM("Sides:");
#if AXIS_CAN_CALIBRATE(Z)
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
SERIAL_ECHOLNPAIR(" Top: ", m.obj_side[TOP]);
#endif
#if ENABLED(CALIBRATION_MEASURE_LEFT)
@ -324,11 +362,37 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
#if ENABLED(CALIBRATION_MEASURE_RIGHT)
SERIAL_ECHOLNPAIR(" Right: ", m.obj_side[RIGHT]);
#endif
#if ENABLED(CALIBRATION_MEASURE_FRONT)
SERIAL_ECHOLNPAIR(" Front: ", m.obj_side[FRONT]);
#if HAS_Y_AXIS
#if ENABLED(CALIBRATION_MEASURE_FRONT)
SERIAL_ECHOLNPAIR(" Front: ", m.obj_side[FRONT]);
#endif
#if ENABLED(CALIBRATION_MEASURE_BACK)
SERIAL_ECHOLNPAIR(" Back: ", m.obj_side[BACK]);
#endif
#endif
#if LINEAR_AXES >= 4
#if ENABLED(CALIBRATION_MEASURE_IMIN)
SERIAL_ECHOLNPAIR(" " STR_I_MIN ": ", m.obj_side[IMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_IMAX)
SERIAL_ECHOLNPAIR(" " STR_I_MAX ": ", m.obj_side[IMAXIMUM]);
#endif
#endif
#if LINEAR_AXES >= 5
#if ENABLED(CALIBRATION_MEASURE_JMIN)
SERIAL_ECHOLNPAIR(" " STR_J_MIN ": ", m.obj_side[JMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_JMAX)
SERIAL_ECHOLNPAIR(" " STR_J_MAX ": ", m.obj_side[JMAXIMUM]);
#endif
#endif
#if ENABLED(CALIBRATION_MEASURE_BACK)
SERIAL_ECHOLNPAIR(" Back: ", m.obj_side[BACK]);
#if LINEAR_AXES >= 6
#if ENABLED(CALIBRATION_MEASURE_KMIN)
SERIAL_ECHOLNPAIR(" " STR_K_MIN ": ", m.obj_side[KMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_KMAX)
SERIAL_ECHOLNPAIR(" " STR_K_MAX ": ", m.obj_side[KMAXIMUM]);
#endif
#endif
SERIAL_EOL();
}
@ -342,6 +406,15 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.obj_center.y);
#endif
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.obj_center.z);
#if HAS_I_CENTER
SERIAL_ECHOLNPAIR_P(SP_I_STR, m.obj_center.i);
#endif
#if HAS_J_CENTER
SERIAL_ECHOLNPAIR_P(SP_J_STR, m.obj_center.j);
#endif
#if HAS_K_CENTER
SERIAL_ECHOLNPAIR_P(SP_K_STR, m.obj_center.k);
#endif
SERIAL_EOL();
}
@ -355,7 +428,7 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
SERIAL_ECHOLNPAIR(" Right: ", m.backlash[RIGHT]);
#endif
#endif
#if AXIS_CAN_CALIBRATE(Y)
#if HAS_Y_AXIS && AXIS_CAN_CALIBRATE(Y)
#if ENABLED(CALIBRATION_MEASURE_FRONT)
SERIAL_ECHOLNPAIR(" Front: ", m.backlash[FRONT]);
#endif
@ -363,9 +436,33 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
SERIAL_ECHOLNPAIR(" Back: ", m.backlash[BACK]);
#endif
#endif
#if AXIS_CAN_CALIBRATE(Z)
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
SERIAL_ECHOLNPAIR(" Top: ", m.backlash[TOP]);
#endif
#if LINEAR_AXES >= 4 && AXIS_CAN_CALIBRATE(I)
#if ENABLED(CALIBRATION_MEASURE_IMIN)
SERIAL_ECHOLNPAIR(" " STR_I_MIN ": ", m.backlash[IMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_IMAX)
SERIAL_ECHOLNPAIR(" " STR_I_MAX ": ", m.backlash[IMAXIMUM]);
#endif
#endif
#if LINEAR_AXES >= 5 && AXIS_CAN_CALIBRATE(J)
#if ENABLED(CALIBRATION_MEASURE_JMIN)
SERIAL_ECHOLNPAIR(" " STR_J_MIN ": ", m.backlash[JMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_JMAX)
SERIAL_ECHOLNPAIR(" " STR_J_MAX ": ", m.backlash[JMAXIMUM]);
#endif
#endif
#if LINEAR_AXES >= 6 && AXIS_CAN_CALIBRATE(K)
#if ENABLED(CALIBRATION_MEASURE_KMIN)
SERIAL_ECHOLNPAIR(" " STR_K_MIN ": ", m.backlash[KMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_KMAX)
SERIAL_ECHOLNPAIR(" " STR_K_MAX ": ", m.backlash[KMAXIMUM]);
#endif
#endif
SERIAL_EOL();
}
@ -373,29 +470,37 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
SERIAL_CHAR('T');
SERIAL_ECHO(active_extruder);
SERIAL_ECHOLNPGM(" Positional Error:");
#if HAS_X_CENTER
#if HAS_X_CENTER && AXIS_CAN_CALIBRATE(X)
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.pos_error.x);
#endif
#if HAS_Y_CENTER
#if HAS_Y_CENTER && AXIS_CAN_CALIBRATE(Y)
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.pos_error.y);
#endif
if (AXIS_CAN_CALIBRATE(Z)) SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
#endif
#if HAS_I_CENTER && AXIS_CAN_CALIBRATE(I)
SERIAL_ECHOLNPAIR_P(SP_I_STR, m.pos_error.i);
#endif
#if HAS_J_CENTER && AXIS_CAN_CALIBRATE(J)
SERIAL_ECHOLNPAIR_P(SP_J_STR, m.pos_error.j);
#endif
#if HAS_K_CENTER && AXIS_CAN_CALIBRATE(K)
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
#endif
SERIAL_EOL();
}
inline void report_measured_nozzle_dimensions(const measurements_t &m) {
SERIAL_ECHOLNPGM("Nozzle Tip Outer Dimensions:");
#if HAS_X_CENTER || HAS_Y_CENTER
#if HAS_X_CENTER
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.nozzle_outer_dimension.x);
#endif
#if HAS_Y_CENTER
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.nozzle_outer_dimension.y);
#endif
#else
UNUSED(m);
#if HAS_X_CENTER
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.nozzle_outer_dimension.x);
#endif
#if HAS_Y_CENTER
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.nozzle_outer_dimension.y);
#endif
SERIAL_EOL();
UNUSED(m);
}
#if HAS_HOTEND_OFFSET
@ -444,8 +549,33 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
backlash.distance_mm.y = m.backlash[BACK];
#endif
if (AXIS_CAN_CALIBRATE(Z)) backlash.distance_mm.z = m.backlash[TOP];
#endif
TERN_(HAS_Z_AXIS, if (AXIS_CAN_CALIBRATE(Z)) backlash.distance_mm.z = m.backlash[TOP]);
#if HAS_I_CENTER
backlash.distance_mm.i = (m.backlash[IMINIMUM] + m.backlash[IMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_IMIN)
backlash.distance_mm.i = m.backlash[IMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_IMAX)
backlash.distance_mm.i = m.backlash[IMAXIMUM];
#endif
#if HAS_J_CENTER
backlash.distance_mm.j = (m.backlash[JMINIMUM] + m.backlash[JMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_JMIN)
backlash.distance_mm.j = m.backlash[JMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_JMAX)
backlash.distance_mm.j = m.backlash[JMAXIMUM];
#endif
#if HAS_K_CENTER
backlash.distance_mm.k = (m.backlash[KMINIMUM] + m.backlash[KMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_KMIN)
backlash.distance_mm.k = m.backlash[KMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_KMAX)
backlash.distance_mm.k = m.backlash[KMAXIMUM];
#endif
#endif // BACKLASH_GCODE
}
#if ENABLED(BACKLASH_GCODE)
@ -455,7 +585,10 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
// New scope for TEMPORARY_BACKLASH_CORRECTION
TEMPORARY_BACKLASH_CORRECTION(all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
const xyz_float_t move = { AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3 };
const xyz_float_t move = LINEAR_AXIS_ARRAY(
AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3,
AXIS_CAN_CALIBRATE(I) * 3, AXIS_CAN_CALIBRATE(J) * 3, AXIS_CAN_CALIBRATE(K) * 3
);
current_position += move; calibration_move();
current_position -= move; calibration_move();
}
@ -483,11 +616,7 @@ inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const
TEMPORARY_BACKLASH_CORRECTION(all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
#if HAS_MULTI_HOTEND
set_nozzle(m, extruder);
#else
UNUSED(extruder);
#endif
TERN(HAS_MULTI_HOTEND, set_nozzle(m, extruder), UNUSED(extruder));
probe_sides(m, uncertainty);
@ -506,6 +635,10 @@ inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const
if (ENABLED(HAS_Y_CENTER) && AXIS_CAN_CALIBRATE(Y)) update_measurements(m, Y_AXIS);
if (AXIS_CAN_CALIBRATE(Z)) update_measurements(m, Z_AXIS);
TERN_(HAS_I_CENTER, update_measurements(m, I_AXIS));
TERN_(HAS_J_CENTER, update_measurements(m, J_AXIS));
TERN_(HAS_K_CENTER, update_measurements(m, K_AXIS));
sync_plan_position();
}

13
Marlin/src/gcode/calibrate/M425.cpp

@ -48,10 +48,15 @@ void GcodeSuite::M425() {
auto axis_can_calibrate = [](const uint8_t a) {
switch (a) {
default:
case X_AXIS: return AXIS_CAN_CALIBRATE(X);
case Y_AXIS: return AXIS_CAN_CALIBRATE(Y);
case Z_AXIS: return AXIS_CAN_CALIBRATE(Z);
default: return false;
LINEAR_AXIS_CODE(
case X_AXIS: return AXIS_CAN_CALIBRATE(X),
case Y_AXIS: return AXIS_CAN_CALIBRATE(Y),
case Z_AXIS: return AXIS_CAN_CALIBRATE(Z),
case I_AXIS: return AXIS_CAN_CALIBRATE(I),
case J_AXIS: return AXIS_CAN_CALIBRATE(J),
case K_AXIS: return AXIS_CAN_CALIBRATE(K),
);
}
};

22
Marlin/src/gcode/calibrate/M666.cpp

@ -71,29 +71,27 @@
#endif
#if ENABLED(Z_MULTI_ENDSTOPS)
if (parser.seenval('Z')) {
#if NUM_Z_STEPPER_DRIVERS >= 3
const float z_adj = parser.value_linear_units();
const int ind = parser.intval('S');
if (!ind || ind == 2) endstops.z2_endstop_adj = z_adj;
if (!ind || ind == 3) endstops.z3_endstop_adj = z_adj;
#if NUM_Z_STEPPER_DRIVERS >= 4
if (!ind || ind == 4) endstops.z4_endstop_adj = z_adj;
#endif
const float z_adj = parser.value_linear_units();
#if NUM_Z_STEPPER_DRIVERS == 2
endstops.z2_endstop_adj = z_adj;
#else
endstops.z2_endstop_adj = parser.value_linear_units();
const int ind = parser.intval('S');
#define _SET_ZADJ(N) if (!ind || ind == N) endstops.z##N##_endstop_adj = z_adj;
REPEAT_S(2, INCREMENT(NUM_Z_STEPPER_DRIVERS), _SET_ZADJ)
#endif
}
#endif
if (!parser.seen("XYZ")) {
auto echo_adj = [](PGM_P const label, const_float_t value) { SERIAL_ECHOPAIR_P(label, value); };
SERIAL_ECHOPGM("Dual Endstop Adjustment (mm): ");
#if ENABLED(X_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR(" X2:", endstops.x2_endstop_adj);
echo_adj(PSTR(" X2:"), endstops.x2_endstop_adj);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR(" Y2:", endstops.y2_endstop_adj);
echo_adj(PSTR(" Y2:"), endstops.y2_endstop_adj);
#endif
#if ENABLED(Z_MULTI_ENDSTOPS)
#define _ECHO_ZADJ(N) SERIAL_ECHOPAIR(" Z" STRINGIFY(N) ":", endstops.z##N##_endstop_adj);
#define _ECHO_ZADJ(N) echo_adj(PSTR(" Z" STRINGIFY(N) ":"), endstops.z##N##_endstop_adj);
REPEAT_S(2, INCREMENT(NUM_Z_STEPPER_DRIVERS), _ECHO_ZADJ)
#endif
SERIAL_EOL();

33
Marlin/src/gcode/config/M200-M205.cpp

@ -88,7 +88,7 @@ void GcodeSuite::M201() {
LOOP_LOGICAL_AXES(i) {
if (parser.seenval(axis_codes[i])) {
const uint8_t a = (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i);
const uint8_t a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i), i);
planner.set_max_acceleration(a, parser.value_axis_units((AxisEnum)a));
}
}
@ -106,7 +106,7 @@ void GcodeSuite::M203() {
LOOP_LOGICAL_AXES(i)
if (parser.seenval(axis_codes[i])) {
const uint8_t a = (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i);
const uint8_t a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i), i);
planner.set_max_feedrate(a, parser.value_axis_units((AxisEnum)a));
}
}
@ -154,6 +154,9 @@ void GcodeSuite::M205() {
if (parser.seenval('S')) planner.settings.min_feedrate_mm_s = parser.value_linear_units();
if (parser.seenval('T')) planner.settings.min_travel_feedrate_mm_s = parser.value_linear_units();
#if HAS_JUNCTION_DEVIATION
#if HAS_CLASSIC_JERK && (AXIS4_NAME == 'J' || AXIS5_NAME == 'J' || AXIS6_NAME == 'J')
#error "Can't set_max_jerk for 'J' axis because 'J' is used for Junction Deviation."
#endif
if (parser.seenval('J')) {
const float junc_dev = parser.value_linear_units();
if (WITHIN(junc_dev, 0.01f, 0.3f)) {
@ -165,17 +168,19 @@ void GcodeSuite::M205() {
}
#endif
#if HAS_CLASSIC_JERK
if (parser.seenval('X')) planner.set_max_jerk(X_AXIS, parser.value_linear_units());
if (parser.seenval('Y')) planner.set_max_jerk(Y_AXIS, parser.value_linear_units());
if (parser.seenval('Z')) {
planner.set_max_jerk(Z_AXIS, parser.value_linear_units());
#if HAS_MESH && DISABLED(LIMITED_JERK_EDITING)
if (planner.max_jerk.z <= 0.1f)
SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses.");
#endif
}
#if HAS_CLASSIC_E_JERK
if (parser.seenval('E')) planner.set_max_jerk(E_AXIS, parser.value_linear_units());
bool seenZ = false;
LOGICAL_AXIS_CODE(
if (parser.seenval('E')) planner.set_max_jerk(E_AXIS, parser.value_linear_units()),
if (parser.seenval('X')) planner.set_max_jerk(X_AXIS, parser.value_linear_units()),
if (parser.seenval('Y')) planner.set_max_jerk(Y_AXIS, parser.value_linear_units()),
if ((seenZ = parser.seenval('Z'))) planner.set_max_jerk(Z_AXIS, parser.value_linear_units()),
if (parser.seenval(AXIS4_NAME)) planner.set_max_jerk(I_AXIS, parser.value_linear_units()),
if (parser.seenval(AXIS5_NAME)) planner.set_max_jerk(J_AXIS, parser.value_linear_units()),
if (parser.seenval(AXIS6_NAME)) planner.set_max_jerk(K_AXIS, parser.value_linear_units())
);
#if HAS_MESH && DISABLED(LIMITED_JERK_EDITING)
if (seenZ && planner.max_jerk.z <= 0.1f)
SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses.");
#endif
#endif
#endif // HAS_CLASSIC_JERK
}

46
Marlin/src/gcode/config/M92.cpp

@ -25,10 +25,15 @@
void report_M92(const bool echo=true, const int8_t e=-1) {
if (echo) SERIAL_ECHO_START(); else SERIAL_CHAR(' ');
SERIAL_ECHOPAIR_P(PSTR(" M92 X"), LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]),
SP_Y_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]),
SP_Z_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]));
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR_P(LIST_N(DOUBLE(LINEAR_AXES),
PSTR(" M92 X"), LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]),
SP_Y_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]),
SP_Z_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]),
SP_I_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[I_AXIS]),
SP_J_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[J_AXIS]),
SP_K_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[K_AXIS]))
);
#if HAS_EXTRUDERS && DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR_P(SP_E_STR, VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS]));
#endif
SERIAL_EOL();
@ -64,25 +69,28 @@ void GcodeSuite::M92() {
if (target_extruder < 0) return;
// No arguments? Show M92 report.
if (!parser.seen("XYZE" TERN_(MAGIC_NUMBERS_GCODE, "HL")))
return report_M92(true, target_extruder);
if (!parser.seen(
LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR)
TERN_(MAGIC_NUMBERS_GCODE, "HL")
)) return report_M92(true, target_extruder);
LOOP_LOGICAL_AXES(i) {
if (parser.seenval(axis_codes[i])) {
if (i == E_AXIS) {
const float value = parser.value_per_axis_units((AxisEnum)(E_AXIS_N(target_extruder)));
if (value < 20) {
float factor = planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] / value; // increase e constants if M92 E14 is given for netfab.
#if HAS_CLASSIC_JERK && HAS_CLASSIC_E_JERK
planner.max_jerk.e *= factor;
#endif
planner.settings.max_feedrate_mm_s[E_AXIS_N(target_extruder)] *= factor;
planner.max_acceleration_steps_per_s2[E_AXIS_N(target_extruder)] *= factor;
}
planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] = value;
}
else {
if (TERN1(HAS_EXTRUDERS, i != E_AXIS))
planner.settings.axis_steps_per_mm[i] = parser.value_per_axis_units((AxisEnum)i);
else {
#if HAS_EXTRUDERS
const float value = parser.value_per_axis_units((AxisEnum)(E_AXIS_N(target_extruder)));
if (value < 20) {
float factor = planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] / value; // increase e constants if M92 E14 is given for netfab.
#if HAS_CLASSIC_JERK && HAS_CLASSIC_E_JERK
planner.max_jerk.e *= factor;
#endif
planner.settings.max_feedrate_mm_s[E_AXIS_N(target_extruder)] *= factor;
planner.max_acceleration_steps_per_s2[E_AXIS_N(target_extruder)] *= factor;
}
planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] = value;
#endif
}
}
}

30
Marlin/src/gcode/control/M17_M18_M84.cpp

@ -33,11 +33,16 @@
* M17: Enable stepper motors
*/
void GcodeSuite::M17() {
if (parser.seen("XYZE")) {
if (parser.seen_test('X')) ENABLE_AXIS_X();
if (parser.seen_test('Y')) ENABLE_AXIS_Y();
if (parser.seen_test('Z')) ENABLE_AXIS_Z();
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen_test('E'))) enable_e_steppers();
if (parser.seen(LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))) {
LOGICAL_AXIS_CODE(
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen_test('E'))) enable_e_steppers(),
if (parser.seen_test('X')) ENABLE_AXIS_X(),
if (parser.seen_test('Y')) ENABLE_AXIS_Y(),
if (parser.seen_test('Z')) ENABLE_AXIS_Z(),
if (parser.seen_test(AXIS4_NAME)) ENABLE_AXIS_I(),
if (parser.seen_test(AXIS5_NAME)) ENABLE_AXIS_J(),
if (parser.seen_test(AXIS6_NAME)) ENABLE_AXIS_K()
);
}
else {
LCD_MESSAGEPGM(MSG_NO_MOVE);
@ -54,12 +59,17 @@ void GcodeSuite::M18_M84() {
stepper_inactive_time = parser.value_millis_from_seconds();
}
else {
if (parser.seen("XYZE")) {
if (parser.seen(LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))) {
planner.synchronize();
if (parser.seen_test('X')) DISABLE_AXIS_X();
if (parser.seen_test('Y')) DISABLE_AXIS_Y();
if (parser.seen_test('Z')) DISABLE_AXIS_Z();
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen_test('E'))) disable_e_steppers();
LOGICAL_AXIS_CODE(
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen_test('E'))) disable_e_steppers(),
if (parser.seen_test('X')) DISABLE_AXIS_X(),
if (parser.seen_test('Y')) DISABLE_AXIS_Y(),
if (parser.seen_test('Z')) DISABLE_AXIS_Z(),
if (parser.seen_test(AXIS4_NAME)) DISABLE_AXIS_I(),
if (parser.seen_test(AXIS5_NAME)) DISABLE_AXIS_J(),
if (parser.seen_test(AXIS6_NAME)) DISABLE_AXIS_K()
);
}
else
planner.finish_and_disable();

37
Marlin/src/gcode/control/M605.cpp

@ -70,26 +70,12 @@
dual_x_carriage_mode = (DualXMode)parser.value_byte();
idex_set_mirrored_mode(false);
if (dual_x_carriage_mode == DXC_MIRRORED_MODE) {
if (previous_mode != DXC_DUPLICATION_MODE) {
SERIAL_ECHOLNPGM("Printer must be in DXC_DUPLICATION_MODE prior to ");
SERIAL_ECHOLNPGM("specifying DXC_MIRRORED_MODE.");
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
return;
}
idex_set_mirrored_mode(true);
float x_jog = current_position.x - .1;
for (uint8_t i = 2; --i;) {
planner.buffer_line(x_jog, current_position.y, current_position.z, current_position.e, feedrate_mm_s, 0);
x_jog += .1;
}
return;
}
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE:
case DXC_AUTO_PARK_MODE:
break;
case DXC_DUPLICATION_MODE:
// Set the X offset, but no less than the safety gap
if (parser.seen('X')) duplicate_extruder_x_offset = _MAX(parser.value_linear_units(), (X2_MIN_POS) - (X1_MIN_POS));
@ -97,10 +83,29 @@
// Always switch back to tool 0
if (active_extruder != 0) tool_change(0);
break;
case DXC_MIRRORED_MODE: {
if (previous_mode != DXC_DUPLICATION_MODE) {
SERIAL_ECHOLNPGM("Printer must be in DXC_DUPLICATION_MODE prior to ");
SERIAL_ECHOLNPGM("specifying DXC_MIRRORED_MODE.");
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
return;
}
idex_set_mirrored_mode(true);
// Do a small 'jog' motion in the X axis
xyze_pos_t dest = current_position; dest.x -= 0.1f;
for (uint8_t i = 2; --i;) {
planner.buffer_line(dest, feedrate_mm_s, 0);
dest.x += 0.1f;
}
} return;
default:
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
break;
}
idex_set_parked(false);
set_duplication_enabled(false);

60
Marlin/src/gcode/control/M7-M9.cpp

@ -20,9 +20,9 @@
*
*/
#include "../../inc/MarlinConfig.h"
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(COOLANT_CONTROL)
#if ANY(COOLANT_MIST, COOLANT_FLOOD, AIR_ASSIST)
#include "../gcode.h"
#include "../../module/planner.h"
@ -37,51 +37,41 @@
}
#endif
#if ENABLED(COOLANT_FLOOD)
#if EITHER(COOLANT_FLOOD, AIR_ASSIST)
#if ENABLED(AIR_ASSIST)
#include "../../feature/spindle_laser.h"
#endif
/**
* M8: Flood Coolant On
* M8: Flood Coolant / Air Assist ON
*/
void GcodeSuite::M8() {
planner.synchronize(); // Wait for move to arrive
WRITE(COOLANT_FLOOD_PIN, !(COOLANT_FLOOD_INVERT)); // Turn on Flood coolant
planner.synchronize(); // Wait for move to arrive
#if ENABLED(COOLANT_FLOOD)
WRITE(COOLANT_FLOOD_PIN, !(COOLANT_FLOOD_INVERT)); // Turn on Flood coolant
#endif
#if ENABLED(AIR_ASSIST)
cutter.air_assist_enable(); // Turn on Air Assist
#endif
}
#endif
/**
* M9: Coolant OFF
* M9: Coolant / Air Assist OFF
*/
void GcodeSuite::M9() {
planner.synchronize(); // Wait for move to arrive
planner.synchronize(); // Wait for move to arrive
#if ENABLED(COOLANT_MIST)
WRITE(COOLANT_MIST_PIN, COOLANT_MIST_INVERT); // Turn off Mist coolant
WRITE(COOLANT_MIST_PIN, COOLANT_MIST_INVERT); // Turn off Mist coolant
#endif
#if ENABLED(COOLANT_FLOOD)
WRITE(COOLANT_FLOOD_PIN, COOLANT_FLOOD_INVERT); // Turn off Flood coolant
WRITE(COOLANT_FLOOD_PIN, COOLANT_FLOOD_INVERT); // Turn off Flood coolant
#endif
#if ENABLED(AIR_ASSIST)
cutter.air_assist_disable(); // Turn off Air Assist
#endif
}
#endif // COOLANT_CONTROL
#if ENABLED(AIR_ASSIST)
#include "../gcode.h"
#include "../../module/planner.h"
#include "../../feature/spindle_laser.h"
/**
* M8: Air Assist On
*/
void GcodeSuite::M8() {
planner.synchronize();
cutter.air_assist_enable(); // Turn on Air Assist pin
}
/**
* M9: Air Assist Off
*/
void GcodeSuite::M9() {
planner.synchronize();
cutter.air_assist_disable(); // Turn off Air Assist pin
}
#endif // AIR_ASSIST
#endif // COOLANT_MIST | COOLANT_FLOOD | AIR_ASSIST

148
Marlin/src/gcode/feature/L6470/M906.cpp

@ -32,31 +32,6 @@
#define DEBUG_OUT ENABLED(L6470_CHITCHAT)
#include "../../../core/debug_out.h"
/**
* M906: report or set KVAL_HOLD which sets the maximum effective voltage provided by the
* PWMs to the steppers
*
* On L6474 this sets the TVAL register (same address).
*
* I - select which driver(s) to change on multi-driver axis
* 0 - (default) all drivers on the axis or E0
* 1 - monitor only X, Y, Z or E1
* 2 - monitor only X2, Y2, Z2 or E2
* 3 - monitor only Z3 or E3
* 4 - monitor only Z4 or E4
* 5 - monitor only E5
* Xxxx, Yxxx, Zxxx, Exxx - axis to change (optional)
* L6474 - current in mA (4A max)
* All others - 0-255
*/
/**
* Sets KVAL_HOLD wich affects the current being driven through the stepper.
*
* L6470 is used in the STEP-CLOCK mode. KVAL_HOLD is the only KVAL_xxx
* that affects the effective voltage seen by the stepper.
*/
/**
* MACRO to fetch information on the items associated with current limiting
* and maximum voltage output.
@ -220,6 +195,28 @@ void L64XX_report_current(L64XX &motor, const L64XX_axis_t axis) {
}
}
/**
* M906: report or set KVAL_HOLD which sets the maximum effective voltage provided by the
* PWMs to the steppers
*
* On L6474 this sets the TVAL register (same address).
*
* I - select which driver(s) to change on multi-driver axis
* 0 - (default) all drivers on the axis or E0
* 1 - monitor only X, Y, Z or E1
* 2 - monitor only X2, Y2, Z2 or E2
* 3 - monitor only Z3 or E3
* 4 - monitor only Z4 or E4
* 5 - monitor only E5
* Xxxx, Yxxx, Zxxx, Exxx - axis to change (optional)
* L6474 - current in mA (4A max)
* All others - 0-255
*
* Sets KVAL_HOLD wich affects the current being driven through the stepper.
*
* L6470 is used in the STEP-CLOCK mode. KVAL_HOLD is the only KVAL_xxx
* that affects the effective voltage seen by the stepper.
*/
void GcodeSuite::M906() {
L64xxManager.pause_monitor(true); // Keep monitor_driver() from stealing status
@ -252,58 +249,67 @@ void GcodeSuite::M906() {
if (index == 1) L6470_SET_KVAL_HOLD(X2);
#endif
break;
case Y_AXIS:
#if AXIS_IS_L64XX(Y)
if (index == 0) L6470_SET_KVAL_HOLD(Y);
#endif
#if AXIS_IS_L64XX(Y2)
if (index == 1) L6470_SET_KVAL_HOLD(Y2);
#endif
break;
case Z_AXIS:
#if AXIS_IS_L64XX(Z)
if (index == 0) L6470_SET_KVAL_HOLD(Z);
#endif
#if AXIS_IS_L64XX(Z2)
if (index == 1) L6470_SET_KVAL_HOLD(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
if (index == 2) L6470_SET_KVAL_HOLD(Z3);
#endif
#if AXIS_DRIVER_TYPE_Z4(L6470)
if (index == 3) L6470_SET_KVAL_HOLD(Z4);
#endif
break;
case E_AXIS: {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
switch (target_extruder) {
#if AXIS_IS_L64XX(E0)
case 0: L6470_SET_KVAL_HOLD(E0); break;
#endif
#if AXIS_IS_L64XX(E1)
case 1: L6470_SET_KVAL_HOLD(E1); break;
#endif
#if AXIS_IS_L64XX(E2)
case 2: L6470_SET_KVAL_HOLD(E2); break;
#if HAS_Y_AXIS
case Y_AXIS:
#if AXIS_IS_L64XX(Y)
if (index == 0) L6470_SET_KVAL_HOLD(Y);
#endif
#if AXIS_IS_L64XX(E3)
case 3: L6470_SET_KVAL_HOLD(E3); break;
#if AXIS_IS_L64XX(Y2)
if (index == 1) L6470_SET_KVAL_HOLD(Y2);
#endif
#if AXIS_IS_L64XX(E4)
case 4: L6470_SET_KVAL_HOLD(E4); break;
break;
#endif
#if HAS_Z_AXIS
case Z_AXIS:
#if AXIS_IS_L64XX(Z)
if (index == 0) L6470_SET_KVAL_HOLD(Z);
#endif
#if AXIS_IS_L64XX(E5)
case 5: L6470_SET_KVAL_HOLD(E5); break;
#if AXIS_IS_L64XX(Z2)
if (index == 1) L6470_SET_KVAL_HOLD(Z2);
#endif
#if AXIS_IS_L64XX(E6)
case 6: L6470_SET_KVAL_HOLD(E6); break;
#if AXIS_IS_L64XX(Z3)
if (index == 2) L6470_SET_KVAL_HOLD(Z3);
#endif
#if AXIS_IS_L64XX(E7)
case 7: L6470_SET_KVAL_HOLD(E7); break;
#if AXIS_DRIVER_TYPE_Z4(L6470)
if (index == 3) L6470_SET_KVAL_HOLD(Z4);
#endif
}
} break;
break;
#endif
#if E_STEPPERS
case E_AXIS: {
const int8_t target_e_stepper = get_target_e_stepper_from_command();
if (target_e_stepper < 0) return;
switch (target_e_stepper) {
#if AXIS_IS_L64XX(E0)
case 0: L6470_SET_KVAL_HOLD(E0); break;
#endif
#if AXIS_IS_L64XX(E1)
case 1: L6470_SET_KVAL_HOLD(E1); break;
#endif
#if AXIS_IS_L64XX(E2)
case 2: L6470_SET_KVAL_HOLD(E2); break;
#endif
#if AXIS_IS_L64XX(E3)
case 3: L6470_SET_KVAL_HOLD(E3); break;
#endif
#if AXIS_IS_L64XX(E4)
case 4: L6470_SET_KVAL_HOLD(E4); break;
#endif
#if AXIS_IS_L64XX(E5)
case 5: L6470_SET_KVAL_HOLD(E5); break;
#endif
#if AXIS_IS_L64XX(E6)
case 6: L6470_SET_KVAL_HOLD(E6); break;
#endif
#if AXIS_IS_L64XX(E7)
case 7: L6470_SET_KVAL_HOLD(E7); break;
#endif
}
} break;
#endif
}
}

1
Marlin/src/gcode/feature/clean/G12.cpp

@ -42,6 +42,7 @@
* P0 S<strokes> : Stroke cleaning with S strokes
* P1 Sn T<objects> : Zigzag cleaning with S repeats and T zigzags
* P2 Sn R<radius> : Circle cleaning with S repeats and R radius
* X, Y, Z : Specify axes to move during cleaning. Default: ALL.
*/
void GcodeSuite::G12() {
// Don't allow nozzle cleaning without homing first

6
Marlin/src/gcode/feature/digipot/M907-M910.cpp

@ -67,8 +67,10 @@ void GcodeSuite::M907() {
LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) digipot_i2c.set_current(i, parser.value_float());
// Additional extruders use B,C,D for channels 4,5,6.
// TODO: Change these parameters because 'E' is used. B<index>?
for (uint8_t i = E_AXIS + 1; i < DIGIPOT_I2C_NUM_CHANNELS; i++)
if (parser.seenval('B' + i - (E_AXIS + 1))) digipot_i2c.set_current(i, parser.value_float());
#if HAS_EXTRUDERS
for (uint8_t i = E_AXIS + 1; i < DIGIPOT_I2C_NUM_CHANNELS; i++)
if (parser.seenval('B' + i - (E_AXIS + 1))) digipot_i2c.set_current(i, parser.value_float());
#endif
#endif
#if ENABLED(HAS_MOTOR_CURRENT_DAC)

19
Marlin/src/gcode/feature/leds/M150.cpp

@ -52,14 +52,16 @@
* M150 I1 R ; Set NEOPIXEL index 1 to red
* M150 S1 I1 R ; Set SEPARATE index 1 to red
*/
void GcodeSuite::M150() {
#if ENABLED(NEOPIXEL_LED)
const uint8_t index = parser.intval('I', -1);
const int8_t index = parser.intval('I', -1);
#if ENABLED(NEOPIXEL2_SEPARATE)
const uint8_t unit = parser.intval('S'),
brightness = unit ? neo2.brightness() : neo.brightness();
*(unit ? &neo2.neoindex : &neo.neoindex) = index;
int8_t brightness, unit = parser.intval('S', -1);
switch (unit) {
case -1: neo2.neoindex = index; // fall-thru
case 0: neo.neoindex = index; brightness = neo.brightness(); break;
case 1: neo2.neoindex = index; brightness = neo2.brightness(); break;
}
#else
const uint8_t brightness = neo.brightness();
neo.neoindex = index;
@ -75,10 +77,15 @@ void GcodeSuite::M150() {
);
#if ENABLED(NEOPIXEL2_SEPARATE)
if (unit == 1) { leds2.set_color(color); return; }
switch (unit) {
case 0: leds.set_color(color); return;
case 1: leds2.set_color(color); return;
}
#endif
// If 'S' is not specified use both
leds.set_color(color);
TERN_(NEOPIXEL2_SEPARATE, leds2.set_color(color));
}
#endif // HAS_COLOR_LEDS

11
Marlin/src/gcode/feature/pause/G60.cpp

@ -47,12 +47,13 @@ void GcodeSuite::G60() {
SBI(saved_slots[slot >> 3], slot & 0x07);
#if ENABLED(SAVED_POSITIONS_DEBUG)
const xyze_pos_t &pos = stored_position[slot];
DEBUG_ECHOPAIR(STR_SAVED_POS " S", slot);
DEBUG_ECHOPAIR_F(" : X", pos.x);
DEBUG_ECHOPAIR_F_P(SP_Y_STR, pos.y);
DEBUG_ECHOPAIR_F_P(SP_Z_STR, pos.z);
DEBUG_ECHOLNPAIR_F_P(SP_E_STR, pos.e);
const xyze_pos_t &pos = stored_position[slot];
DEBUG_ECHOLNPAIR_F_P(
LIST_N(DOUBLE(LOGICAL_AXES), SP_E_STR, pos.e,
PSTR(" : X"), pos.x, SP_Y_STR, pos.y, SP_Z_STR, pos.z,
SP_I_STR, pos.i, SP_J_STR, pos.j, SP_K_STR, pos.k)
);
#endif
}

17
Marlin/src/gcode/feature/pause/G61.cpp

@ -37,8 +37,7 @@
*
* F<rate> - Feedrate (optional) for the move back.
* S<slot> - Slot # (0-based) to restore from (default 0).
* X Y Z - Axes to restore. At least one is required.
* E - Restore extruder position
* X Y Z E - Axes to restore. At least one is required.
*
* If XYZE are not given, default restore uses the smart blocking move.
*/
@ -46,7 +45,7 @@ void GcodeSuite::G61(void) {
const uint8_t slot = parser.byteval('S');
#define SYNC_E(POINT) planner.set_e_position_mm((destination.e = current_position.e = (POINT)))
#define SYNC_E(POINT) TERN_(HAS_EXTRUDERS, planner.set_e_position_mm((destination.e = current_position.e = (POINT))))
#if SAVED_POSITIONS < 256
if (slot >= SAVED_POSITIONS) {
@ -69,7 +68,7 @@ void GcodeSuite::G61(void) {
SYNC_E(stored_position[slot].e);
}
else {
if (parser.seen("XYZ")) {
if (parser.seen(LINEAR_AXIS_GANG("X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))) {
DEBUG_ECHOPAIR(STR_RESTORING_POS " S", slot);
LOOP_LINEAR_AXES(i) {
destination[i] = parser.seen(AXIS_CHAR(i))
@ -82,10 +81,12 @@ void GcodeSuite::G61(void) {
// Move to the saved position
prepare_line_to_destination();
}
if (parser.seen_test('E')) {
DEBUG_ECHOLNPAIR(STR_RESTORING_POS " S", slot, " E", current_position.e, "=>", stored_position[slot].e);
SYNC_E(stored_position[slot].e);
}
#if HAS_EXTRUDERS
if (parser.seen_test('E')) {
DEBUG_ECHOLNPAIR(STR_RESTORING_POS " S", slot, " E", current_position.e, "=>", stored_position[slot].e);
SYNC_E(stored_position[slot].e);
}
#endif
}
feedrate_mm_s = saved_feedrate;

2
Marlin/src/gcode/feature/pause/M125.cpp

@ -56,7 +56,7 @@
*/
void GcodeSuite::M125() {
// Initial retract before move to filament change position
const float retract = -ABS(parser.axisunitsval('L', E_AXIS, PAUSE_PARK_RETRACT_LENGTH));
const float retract = TERN0(HAS_EXTRUDERS, -ABS(parser.axisunitsval('L', E_AXIS, PAUSE_PARK_RETRACT_LENGTH)));
xyz_pos_t park_point = NOZZLE_PARK_POINT;

2
Marlin/src/gcode/feature/pause/M600.cpp

@ -99,7 +99,7 @@ void GcodeSuite::M600() {
#if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
// If needed, home before parking for filament change
if (!all_axes_trusted()) home_all_axes(true);
home_if_needed(true);
#endif
#if HAS_MULTI_EXTRUDER

9
Marlin/src/gcode/feature/runout/M412.cpp

@ -54,10 +54,15 @@ void GcodeSuite::M412() {
else {
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Filament runout ");
serialprintln_onoff(runout.enabled);
serialprint_onoff(runout.enabled);
#if HAS_FILAMENT_RUNOUT_DISTANCE
SERIAL_ECHOLNPAIR("Filament runout distance (mm): ", runout.runout_distance());
SERIAL_ECHOPAIR(" ; Distance ", runout.runout_distance(), "mm");
#endif
#if ENABLED(HOST_ACTION_COMMANDS)
SERIAL_ECHOPGM(" ; Host handling ");
serialprint_onoff(runout.host_handling);
#endif
SERIAL_EOL();
}
}

8
Marlin/src/gcode/feature/trinamic/M122.cpp

@ -35,7 +35,7 @@ void GcodeSuite::M122() {
xyze_bool_t print_axis = ARRAY_N_1(LOGICAL_AXES, false);
bool print_all = true;
LOOP_LOGICAL_AXES(i) if (parser.seen(axis_codes[i])) { print_axis[i] = true; print_all = false; }
LOOP_LOGICAL_AXES(i) if (parser.seen_test(axis_codes[i])) { print_axis[i] = true; print_all = false; }
if (print_all) LOOP_LOGICAL_AXES(i) print_axis[i] = true;
@ -50,12 +50,12 @@ void GcodeSuite::M122() {
#endif
if (parser.seen_test('V'))
tmc_get_registers(print_axis.x, print_axis.y, print_axis.z, print_axis.e);
tmc_get_registers(LOGICAL_AXIS_ELEM(print_axis));
else
tmc_report_all(print_axis.x, print_axis.y, print_axis.z, print_axis.e);
tmc_report_all(LOGICAL_AXIS_ELEM(print_axis));
#endif
test_tmc_connection(print_axis.x, print_axis.y, print_axis.z, print_axis.e);
test_tmc_connection(LOGICAL_AXIS_ELEM(print_axis));
}
#endif // HAS_TRINAMIC_CONFIG

180
Marlin/src/gcode/feature/trinamic/M569.cpp

@ -40,132 +40,88 @@ void tmc_set_stealthChop(TMC &st, const bool enable) {
st.refresh_stepping_mode();
}
static void set_stealth_status(const bool enable, const int8_t target_extruder) {
static void set_stealth_status(const bool enable, const int8_t target_e_stepper) {
#define TMC_SET_STEALTH(Q) tmc_set_stealthChop(stepper##Q, enable)
#if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(X2) \
|| AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Y2) \
|| AXIS_HAS_STEALTHCHOP(Z) || AXIS_HAS_STEALTHCHOP(Z2) \
|| AXIS_HAS_STEALTHCHOP(Z3) || AXIS_HAS_STEALTHCHOP(Z4)
#if X_HAS_STEALTHCHOP || Y_HAS_STEALTHCHOP || Z_HAS_STEALTHCHOP \
|| I_HAS_STEALTHCHOP || J_HAS_STEALTHCHOP || K_HAS_STEALTHCHOP \
|| X2_HAS_STEALTHCHOP || Y2_HAS_STEALTHCHOP || Z2_HAS_STEALTHCHOP || Z3_HAS_STEALTHCHOP || Z4_HAS_STEALTHCHOP
const uint8_t index = parser.byteval('I');
#endif
LOOP_LOGICAL_AXES(i) if (parser.seen(axis_codes[i])) {
switch (i) {
case X_AXIS:
#if AXIS_HAS_STEALTHCHOP(X)
if (index == 0) TMC_SET_STEALTH(X);
#endif
#if AXIS_HAS_STEALTHCHOP(X2)
if (index == 1) TMC_SET_STEALTH(X2);
#endif
TERN_(X_HAS_STEALTHCHOP, if (index == 0) TMC_SET_STEALTH(X));
TERN_(X2_HAS_STEALTHCHOP, if (index == 1) TMC_SET_STEALTH(X2));
break;
case Y_AXIS:
#if AXIS_HAS_STEALTHCHOP(Y)
if (index == 0) TMC_SET_STEALTH(Y);
#endif
#if AXIS_HAS_STEALTHCHOP(Y2)
if (index == 1) TMC_SET_STEALTH(Y2);
#endif
break;
case Z_AXIS:
#if AXIS_HAS_STEALTHCHOP(Z)
if (index == 0) TMC_SET_STEALTH(Z);
#endif
#if AXIS_HAS_STEALTHCHOP(Z2)
if (index == 1) TMC_SET_STEALTH(Z2);
#endif
#if AXIS_HAS_STEALTHCHOP(Z3)
if (index == 2) TMC_SET_STEALTH(Z3);
#endif
#if AXIS_HAS_STEALTHCHOP(Z4)
if (index == 3) TMC_SET_STEALTH(Z4);
#endif
break;
case E_AXIS: {
if (target_extruder < 0) return;
switch (target_extruder) {
#if AXIS_HAS_STEALTHCHOP(E0)
case 0: TMC_SET_STEALTH(E0); break;
#endif
#if AXIS_HAS_STEALTHCHOP(E1)
case 1: TMC_SET_STEALTH(E1); break;
#endif
#if AXIS_HAS_STEALTHCHOP(E2)
case 2: TMC_SET_STEALTH(E2); break;
#endif
#if AXIS_HAS_STEALTHCHOP(E3)
case 3: TMC_SET_STEALTH(E3); break;
#endif
#if AXIS_HAS_STEALTHCHOP(E4)
case 4: TMC_SET_STEALTH(E4); break;
#endif
#if AXIS_HAS_STEALTHCHOP(E5)
case 5: TMC_SET_STEALTH(E5); break;
#endif
#if AXIS_HAS_STEALTHCHOP(E6)
case 6: TMC_SET_STEALTH(E6); break;
#endif
#if AXIS_HAS_STEALTHCHOP(E7)
case 7: TMC_SET_STEALTH(E7); break;
#endif
}
} break;
#if HAS_Y_AXIS
case Y_AXIS:
TERN_(Y_HAS_STEALTHCHOP, if (index == 0) TMC_SET_STEALTH(Y));
TERN_(Y2_HAS_STEALTHCHOP, if (index == 1) TMC_SET_STEALTH(Y2));
break;
#endif
#if HAS_Z_AXIS
case Z_AXIS:
TERN_(Z_HAS_STEALTHCHOP, if (index == 0) TMC_SET_STEALTH(Z));
TERN_(Z2_HAS_STEALTHCHOP, if (index == 1) TMC_SET_STEALTH(Z2));
TERN_(Z3_HAS_STEALTHCHOP, if (index == 2) TMC_SET_STEALTH(Z3));
TERN_(Z4_HAS_STEALTHCHOP, if (index == 3) TMC_SET_STEALTH(Z4));
break;
#endif
#if I_HAS_STEALTHCHOP
case I_AXIS: TMC_SET_STEALTH(I); break;
#endif
#if J_HAS_STEALTHCHOP
case J_AXIS: TMC_SET_STEALTH(J); break;
#endif
#if K_HAS_STEALTHCHOP
case K_AXIS: TMC_SET_STEALTH(K); break;
#endif
#if E_STEPPERS
case E_AXIS: {
if (target_e_stepper < 0) return;
switch (target_e_stepper) {
TERN_(E0_HAS_STEALTHCHOP, case 0: TMC_SET_STEALTH(E0); break;)
TERN_(E1_HAS_STEALTHCHOP, case 1: TMC_SET_STEALTH(E1); break;)
TERN_(E2_HAS_STEALTHCHOP, case 2: TMC_SET_STEALTH(E2); break;)
TERN_(E3_HAS_STEALTHCHOP, case 3: TMC_SET_STEALTH(E3); break;)
TERN_(E4_HAS_STEALTHCHOP, case 4: TMC_SET_STEALTH(E4); break;)
TERN_(E5_HAS_STEALTHCHOP, case 5: TMC_SET_STEALTH(E5); break;)
TERN_(E6_HAS_STEALTHCHOP, case 6: TMC_SET_STEALTH(E6); break;)
TERN_(E7_HAS_STEALTHCHOP, case 7: TMC_SET_STEALTH(E7); break;)
}
} break;
#endif
}
}
}
static void say_stealth_status() {
#define TMC_SAY_STEALTH_STATUS(Q) tmc_say_stealth_status(stepper##Q)
#if AXIS_HAS_STEALTHCHOP(X)
TMC_SAY_STEALTH_STATUS(X);
#endif
#if AXIS_HAS_STEALTHCHOP(X2)
TMC_SAY_STEALTH_STATUS(X2);
#endif
#if AXIS_HAS_STEALTHCHOP(Y)
TMC_SAY_STEALTH_STATUS(Y);
#endif
#if AXIS_HAS_STEALTHCHOP(Y2)
TMC_SAY_STEALTH_STATUS(Y2);
#endif
#if AXIS_HAS_STEALTHCHOP(Z)
TMC_SAY_STEALTH_STATUS(Z);
#endif
#if AXIS_HAS_STEALTHCHOP(Z2)
TMC_SAY_STEALTH_STATUS(Z2);
#endif
#if AXIS_HAS_STEALTHCHOP(Z3)
TMC_SAY_STEALTH_STATUS(Z3);
#endif
#if AXIS_HAS_STEALTHCHOP(Z4)
TMC_SAY_STEALTH_STATUS(Z4);
#endif
#if AXIS_HAS_STEALTHCHOP(E0)
TMC_SAY_STEALTH_STATUS(E0);
#endif
#if AXIS_HAS_STEALTHCHOP(E1)
TMC_SAY_STEALTH_STATUS(E1);
#endif
#if AXIS_HAS_STEALTHCHOP(E2)
TMC_SAY_STEALTH_STATUS(E2);
#endif
#if AXIS_HAS_STEALTHCHOP(E3)
TMC_SAY_STEALTH_STATUS(E3);
#endif
#if AXIS_HAS_STEALTHCHOP(E4)
TMC_SAY_STEALTH_STATUS(E4);
#endif
#if AXIS_HAS_STEALTHCHOP(E5)
TMC_SAY_STEALTH_STATUS(E5);
#endif
#if AXIS_HAS_STEALTHCHOP(E6)
TMC_SAY_STEALTH_STATUS(E6);
#endif
#if AXIS_HAS_STEALTHCHOP(E7)
TMC_SAY_STEALTH_STATUS(E7);
#endif
OPTCODE( X_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(X))
OPTCODE(X2_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(X2))
OPTCODE( Y_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Y))
OPTCODE(Y2_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Y2))
OPTCODE( Z_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Z))
OPTCODE(Z2_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Z2))
OPTCODE(Z3_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Z3))
OPTCODE(Z4_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Z4))
OPTCODE( I_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(I))
OPTCODE( J_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(J))
OPTCODE( K_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(K))
OPTCODE(E0_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E0))
OPTCODE(E1_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E1))
OPTCODE(E2_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E2))
OPTCODE(E3_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E3))
OPTCODE(E4_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E4))
OPTCODE(E5_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E5))
OPTCODE(E6_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E6))
OPTCODE(E7_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E7))
}
/**
@ -177,7 +133,7 @@ static void say_stealth_status() {
*/
void GcodeSuite::M569() {
if (parser.seen('S'))
set_stealth_status(parser.value_bool(), get_target_extruder_from_command());
set_stealth_status(parser.value_bool(), get_target_e_stepper_from_command());
else
say_stealth_status();
}

122
Marlin/src/gcode/feature/trinamic/M906.cpp

@ -48,7 +48,7 @@ void GcodeSuite::M906() {
bool report = true;
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z) || AXIS_IS_TMC(Z2) || AXIS_IS_TMC(Z3) || AXIS_IS_TMC(Z4)
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z) || AXIS_IS_TMC(Z2) || AXIS_IS_TMC(Z3) || AXIS_IS_TMC(Z4) || AXIS_IS_TMC(I) || AXIS_IS_TMC(J) || AXIS_IS_TMC(K)
const uint8_t index = parser.byteval('I');
#endif
@ -63,58 +63,77 @@ void GcodeSuite::M906() {
if (index == 1) TMC_SET_CURRENT(X2);
#endif
break;
case Y_AXIS:
#if AXIS_IS_TMC(Y)
if (index == 0) TMC_SET_CURRENT(Y);
#endif
#if AXIS_IS_TMC(Y2)
if (index == 1) TMC_SET_CURRENT(Y2);
#endif
break;
case Z_AXIS:
#if AXIS_IS_TMC(Z)
if (index == 0) TMC_SET_CURRENT(Z);
#endif
#if AXIS_IS_TMC(Z2)
if (index == 1) TMC_SET_CURRENT(Z2);
#endif
#if AXIS_IS_TMC(Z3)
if (index == 2) TMC_SET_CURRENT(Z3);
#endif
#if AXIS_IS_TMC(Z4)
if (index == 3) TMC_SET_CURRENT(Z4);
#endif
break;
case E_AXIS: {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
switch (target_extruder) {
#if AXIS_IS_TMC(E0)
case 0: TMC_SET_CURRENT(E0); break;
#endif
#if AXIS_IS_TMC(E1)
case 1: TMC_SET_CURRENT(E1); break;
#endif
#if AXIS_IS_TMC(E2)
case 2: TMC_SET_CURRENT(E2); break;
#if HAS_Y_AXIS
case Y_AXIS:
#if AXIS_IS_TMC(Y)
if (index == 0) TMC_SET_CURRENT(Y);
#endif
#if AXIS_IS_TMC(E3)
case 3: TMC_SET_CURRENT(E3); break;
#if AXIS_IS_TMC(Y2)
if (index == 1) TMC_SET_CURRENT(Y2);
#endif
#if AXIS_IS_TMC(E4)
case 4: TMC_SET_CURRENT(E4); break;
break;
#endif
#if HAS_Z_AXIS
case Z_AXIS:
#if AXIS_IS_TMC(Z)
if (index == 0) TMC_SET_CURRENT(Z);
#endif
#if AXIS_IS_TMC(E5)
case 5: TMC_SET_CURRENT(E5); break;
#if AXIS_IS_TMC(Z2)
if (index == 1) TMC_SET_CURRENT(Z2);
#endif
#if AXIS_IS_TMC(E6)
case 6: TMC_SET_CURRENT(E6); break;
#if AXIS_IS_TMC(Z3)
if (index == 2) TMC_SET_CURRENT(Z3);
#endif
#if AXIS_IS_TMC(E7)
case 7: TMC_SET_CURRENT(E7); break;
#if AXIS_IS_TMC(Z4)
if (index == 3) TMC_SET_CURRENT(Z4);
#endif
}
} break;
break;
#endif
#if AXIS_IS_TMC(I)
case I_AXIS: TMC_SET_CURRENT(I); break;
#endif
#if AXIS_IS_TMC(J)
case J_AXIS: TMC_SET_CURRENT(J); break;
#endif
#if AXIS_IS_TMC(K)
case K_AXIS: TMC_SET_CURRENT(K); break;
#endif
#if E_STEPPERS
case E_AXIS: {
const int8_t target_e_stepper = get_target_e_stepper_from_command();
if (target_e_stepper < 0) return;
switch (target_e_stepper) {
#if AXIS_IS_TMC(E0)
case 0: TMC_SET_CURRENT(E0); break;
#endif
#if AXIS_IS_TMC(E1)
case 1: TMC_SET_CURRENT(E1); break;
#endif
#if AXIS_IS_TMC(E2)
case 2: TMC_SET_CURRENT(E2); break;
#endif
#if AXIS_IS_TMC(E3)
case 3: TMC_SET_CURRENT(E3); break;
#endif
#if AXIS_IS_TMC(E4)
case 4: TMC_SET_CURRENT(E4); break;
#endif
#if AXIS_IS_TMC(E5)
case 5: TMC_SET_CURRENT(E5); break;
#endif
#if AXIS_IS_TMC(E6)
case 6: TMC_SET_CURRENT(E6); break;
#endif
#if AXIS_IS_TMC(E7)
case 7: TMC_SET_CURRENT(E7); break;
#endif
}
} break;
#endif
}
}
@ -143,6 +162,15 @@ void GcodeSuite::M906() {
#if AXIS_IS_TMC(Z4)
TMC_SAY_CURRENT(Z4);
#endif
#if AXIS_IS_TMC(I)
TMC_SAY_CURRENT(I);
#endif
#if AXIS_IS_TMC(J)
TMC_SAY_CURRENT(J);
#endif
#if AXIS_IS_TMC(K)
TMC_SAY_CURRENT(K);
#endif
#if AXIS_IS_TMC(E0)
TMC_SAY_CURRENT(E0);
#endif

214
Marlin/src/gcode/feature/trinamic/M911-M914.cpp

@ -38,18 +38,27 @@
#if M91x_USE(X) || M91x_USE(X2)
#define M91x_SOME_X 1
#endif
#if M91x_USE(Y) || M91x_USE(Y2)
#if LINEAR_AXES >= 2 && (M91x_USE(Y) || M91x_USE(Y2))
#define M91x_SOME_Y 1
#endif
#if M91x_USE(Z) || M91x_USE(Z2) || M91x_USE(Z3) || M91x_USE(Z4)
#if HAS_Z_AXIS && (M91x_USE(Z) || M91x_USE(Z2) || M91x_USE(Z3) || M91x_USE(Z4))
#define M91x_SOME_Z 1
#endif
#if LINEAR_AXES >= 4 && M91x_USE(I)
#define M91x_USE_I 1
#endif
#if LINEAR_AXES >= 5 && M91x_USE(J)
#define M91x_USE_J 1
#endif
#if LINEAR_AXES >= 6 && M91x_USE(K)
#define M91x_USE_K 1
#endif
#if M91x_USE_E(0) || M91x_USE_E(1) || M91x_USE_E(2) || M91x_USE_E(3) || M91x_USE_E(4) || M91x_USE_E(5) || M91x_USE_E(6) || M91x_USE_E(7)
#define M91x_SOME_E 1
#endif
#if !M91x_SOME_X && !M91x_SOME_Y && !M91x_SOME_Z && !M91x_SOME_E
#if !M91x_SOME_X && !M91x_SOME_Y && !M91x_SOME_Z && !M91x_USE_I && !M91x_USE_J && !M91x_USE_K && !M91x_SOME_E
#error "MONITOR_DRIVER_STATUS requires at least one TMC2130, 2160, 2208, 2209, 2660, 5130, or 5160."
#endif
@ -82,6 +91,9 @@
#if M91x_USE(Z4)
tmc_report_otpw(stepperZ4);
#endif
TERN_(M91x_USE_I, tmc_report_otpw(stepperI));
TERN_(M91x_USE_J, tmc_report_otpw(stepperJ));
TERN_(M91x_USE_K, tmc_report_otpw(stepperK));
#if M91x_USE_E(0)
tmc_report_otpw(stepperE0);
#endif
@ -124,9 +136,12 @@
const bool hasX = TERN0(M91x_SOME_X, parser.seen(axis_codes.x)),
hasY = TERN0(M91x_SOME_Y, parser.seen(axis_codes.y)),
hasZ = TERN0(M91x_SOME_Z, parser.seen(axis_codes.z)),
hasI = TERN0(M91x_USE_I, parser.seen(axis_codes.i)),
hasJ = TERN0(M91x_USE_J, parser.seen(axis_codes.j)),
hasK = TERN0(M91x_USE_K, parser.seen(axis_codes.k)),
hasE = TERN0(M91x_SOME_E, parser.seen(axis_codes.e));
const bool hasNone = !hasE && !hasX && !hasY && !hasZ;
const bool hasNone = !hasE && !hasX && !hasY && !hasZ && !hasI && !hasJ && !hasK;
#if M91x_SOME_X
const int8_t xval = int8_t(parser.byteval(axis_codes.x, 0xFF));
@ -164,6 +179,19 @@
#endif
#endif
#if M91x_USE_I
const int8_t ival = int8_t(parser.byteval(axis_codes.i, 0xFF));
if (hasNone || ival == 1 || (hasI && ival < 0)) tmc_clear_otpw(stepperI);
#endif
#if M91x_USE_J
const int8_t jval = int8_t(parser.byteval(axis_codes.j, 0xFF));
if (hasNone || jval == 1 || (hasJ && jval < 0)) tmc_clear_otpw(stepperJ);
#endif
#if M91x_USE_K
const int8_t kval = int8_t(parser.byteval(axis_codes.k, 0xFF));
if (hasNone || kval == 1 || (hasK && kval < 0)) tmc_clear_otpw(stepperK);
#endif
#if M91x_SOME_E
const int8_t eval = int8_t(parser.byteval(axis_codes.e, 0xFF));
#if M91x_USE_E(0)
@ -206,126 +234,78 @@
#define TMC_SET_PWMTHRS_E(E) stepperE##E.set_pwm_thrs(value)
bool report = true;
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z) || AXIS_IS_TMC(Z2) || AXIS_IS_TMC(Z3) || AXIS_IS_TMC(Z4)
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z) || AXIS_IS_TMC(Z2) || AXIS_IS_TMC(Z3) || AXIS_IS_TMC(Z4) || AXIS_IS_TMC(I) || AXIS_IS_TMC(J) || AXIS_IS_TMC(K)
const uint8_t index = parser.byteval('I');
#endif
LOOP_LOGICAL_AXES(i) if (int32_t value = parser.longval(axis_codes[i])) {
report = false;
switch (i) {
case X_AXIS:
#if AXIS_HAS_STEALTHCHOP(X)
if (index < 2) TMC_SET_PWMTHRS(X,X);
#endif
#if AXIS_HAS_STEALTHCHOP(X2)
if (!(index & 1)) TMC_SET_PWMTHRS(X,X2);
#endif
TERN_(X_HAS_STEALTHCHOP, if (index < 2) TMC_SET_PWMTHRS(X,X));
TERN_(X2_HAS_STEALTHCHOP, if (!(index & 1)) TMC_SET_PWMTHRS(X,X2));
break;
case Y_AXIS:
#if AXIS_HAS_STEALTHCHOP(Y)
if (index < 2) TMC_SET_PWMTHRS(Y,Y);
#endif
#if AXIS_HAS_STEALTHCHOP(Y2)
if (!(index & 1)) TMC_SET_PWMTHRS(Y,Y2);
#endif
TERN_(Y_HAS_STEALTHCHOP, if (index < 2) TMC_SET_PWMTHRS(Y,Y));
TERN_(Y2_HAS_STEALTHCHOP, if (!(index & 1)) TMC_SET_PWMTHRS(Y,Y2));
break;
#if I_HAS_STEALTHCHOP
case I_AXIS: TMC_SET_PWMTHRS(I,I); break;
#endif
#if J_HAS_STEALTHCHOP
case J_AXIS: TMC_SET_PWMTHRS(J,J); break;
#endif
#if K_HAS_STEALTHCHOP
case K_AXIS: TMC_SET_PWMTHRS(K,K); break;
#endif
case Z_AXIS:
#if AXIS_HAS_STEALTHCHOP(Z)
if (index < 2) TMC_SET_PWMTHRS(Z,Z);
#endif
#if AXIS_HAS_STEALTHCHOP(Z2)
if (index == 0 || index == 2) TMC_SET_PWMTHRS(Z,Z2);
#endif
#if AXIS_HAS_STEALTHCHOP(Z3)
if (index == 0 || index == 3) TMC_SET_PWMTHRS(Z,Z3);
#endif
#if AXIS_HAS_STEALTHCHOP(Z4)
if (index == 0 || index == 4) TMC_SET_PWMTHRS(Z,Z4);
#endif
TERN_(Z_HAS_STEALTCHOP, if (index < 2) TMC_SET_PWMTHRS(Z,Z));
TERN_(Z2_HAS_STEALTCHOP, if (index == 0 || index == 2) TMC_SET_PWMTHRS(Z,Z2));
TERN_(Z3_HAS_STEALTCHOP, if (index == 0 || index == 3) TMC_SET_PWMTHRS(Z,Z3));
TERN_(Z4_HAS_STEALTCHOP, if (index == 0 || index == 4) TMC_SET_PWMTHRS(Z,Z4));
break;
case E_AXIS: {
#if E_STEPPERS
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
switch (target_extruder) {
#if AXIS_HAS_STEALTHCHOP(E0)
case 0: TMC_SET_PWMTHRS_E(0); break;
#endif
#if E_STEPPERS > 1 && AXIS_HAS_STEALTHCHOP(E1)
case 1: TMC_SET_PWMTHRS_E(1); break;
#endif
#if E_STEPPERS > 2 && AXIS_HAS_STEALTHCHOP(E2)
case 2: TMC_SET_PWMTHRS_E(2); break;
#endif
#if E_STEPPERS > 3 && AXIS_HAS_STEALTHCHOP(E3)
case 3: TMC_SET_PWMTHRS_E(3); break;
#endif
#if E_STEPPERS > 4 && AXIS_HAS_STEALTHCHOP(E4)
case 4: TMC_SET_PWMTHRS_E(4); break;
#endif
#if E_STEPPERS > 5 && AXIS_HAS_STEALTHCHOP(E5)
case 5: TMC_SET_PWMTHRS_E(5); break;
#endif
#if E_STEPPERS > 6 && AXIS_HAS_STEALTHCHOP(E6)
case 6: TMC_SET_PWMTHRS_E(6); break;
#endif
#if E_STEPPERS > 7 && AXIS_HAS_STEALTHCHOP(E7)
case 7: TMC_SET_PWMTHRS_E(7); break;
#endif
#if E_STEPPERS
case E_AXIS: {
const int8_t target_e_stepper = get_target_e_stepper_from_command();
if (target_e_stepper < 0) return;
switch (target_e_stepper) {
TERN_(E0_HAS_STEALTHCHOP, case 0: TMC_SET_PWMTHRS_E(0); break;)
TERN_(E1_HAS_STEALTHCHOP, case 1: TMC_SET_PWMTHRS_E(1); break;)
TERN_(E2_HAS_STEALTHCHOP, case 2: TMC_SET_PWMTHRS_E(2); break;)
TERN_(E3_HAS_STEALTHCHOP, case 3: TMC_SET_PWMTHRS_E(3); break;)
TERN_(E4_HAS_STEALTHCHOP, case 4: TMC_SET_PWMTHRS_E(4); break;)
TERN_(E5_HAS_STEALTHCHOP, case 5: TMC_SET_PWMTHRS_E(5); break;)
TERN_(E6_HAS_STEALTHCHOP, case 6: TMC_SET_PWMTHRS_E(6); break;)
TERN_(E7_HAS_STEALTHCHOP, case 7: TMC_SET_PWMTHRS_E(7); break;)
}
#endif // E_STEPPERS
} break;
} break;
#endif // E_STEPPERS
}
}
if (report) {
#if AXIS_HAS_STEALTHCHOP(X)
TMC_SAY_PWMTHRS(X,X);
#endif
#if AXIS_HAS_STEALTHCHOP(X2)
TMC_SAY_PWMTHRS(X,X2);
#endif
#if AXIS_HAS_STEALTHCHOP(Y)
TMC_SAY_PWMTHRS(Y,Y);
#endif
#if AXIS_HAS_STEALTHCHOP(Y2)
TMC_SAY_PWMTHRS(Y,Y2);
#endif
#if AXIS_HAS_STEALTHCHOP(Z)
TMC_SAY_PWMTHRS(Z,Z);
#endif
#if AXIS_HAS_STEALTHCHOP(Z2)
TMC_SAY_PWMTHRS(Z,Z2);
#endif
#if AXIS_HAS_STEALTHCHOP(Z3)
TMC_SAY_PWMTHRS(Z,Z3);
#endif
#if AXIS_HAS_STEALTHCHOP(Z4)
TMC_SAY_PWMTHRS(Z,Z4);
#endif
#if E_STEPPERS && AXIS_HAS_STEALTHCHOP(E0)
TMC_SAY_PWMTHRS_E(0);
#endif
#if E_STEPPERS > 1 && AXIS_HAS_STEALTHCHOP(E1)
TMC_SAY_PWMTHRS_E(1);
#endif
#if E_STEPPERS > 2 && AXIS_HAS_STEALTHCHOP(E2)
TMC_SAY_PWMTHRS_E(2);
#endif
#if E_STEPPERS > 3 && AXIS_HAS_STEALTHCHOP(E3)
TMC_SAY_PWMTHRS_E(3);
#endif
#if E_STEPPERS > 4 && AXIS_HAS_STEALTHCHOP(E4)
TMC_SAY_PWMTHRS_E(4);
#endif
#if E_STEPPERS > 5 && AXIS_HAS_STEALTHCHOP(E5)
TMC_SAY_PWMTHRS_E(5);
#endif
#if E_STEPPERS > 6 && AXIS_HAS_STEALTHCHOP(E6)
TMC_SAY_PWMTHRS_E(6);
#endif
#if E_STEPPERS > 7 && AXIS_HAS_STEALTHCHOP(E7)
TMC_SAY_PWMTHRS_E(7);
#endif
TERN_( X_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(X,X));
TERN_(X2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(X,X2));
TERN_( Y_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Y,Y));
TERN_(Y2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Y,Y2));
TERN_( Z_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z));
TERN_(Z2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z2));
TERN_(Z3_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z3));
TERN_(Z4_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z4));
TERN_( I_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(I,I));
TERN_( J_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(J,J));
TERN_( K_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(K,K));
TERN_(E0_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(0));
TERN_(E1_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(1));
TERN_(E2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(2));
TERN_(E3_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(3));
TERN_(E4_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(4));
TERN_(E5_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(5));
TERN_(E6_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(6));
TERN_(E7_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(7));
}
}
#endif // HYBRID_THRESHOLD
@ -378,6 +358,15 @@
#endif
break;
#endif
#if I_SENSORLESS && AXIS_HAS_STALLGUARD(I)
case I_AXIS: stepperI.homing_threshold(value); break;
#endif
#if J_SENSORLESS && AXIS_HAS_STALLGUARD(J)
case J_AXIS: stepperJ.homing_threshold(value); break;
#endif
#if K_SENSORLESS && AXIS_HAS_STALLGUARD(K)
case K_AXIS: stepperK.homing_threshold(value); break;
#endif
}
}
@ -412,6 +401,15 @@
tmc_print_sgt(stepperZ4);
#endif
#endif
#if I_SENSORLESS && AXIS_HAS_STALLGUARD(I)
tmc_print_sgt(stepperI);
#endif
#if J_SENSORLESS && AXIS_HAS_STALLGUARD(J)
tmc_print_sgt(stepperJ);
#endif
#if K_SENSORLESS && AXIS_HAS_STALLGUARD(K)
tmc_print_sgt(stepperK);
#endif
}
}
#endif // USE_SENSORLESS

66
Marlin/src/gcode/gcode.cpp

@ -36,10 +36,6 @@ GcodeSuite gcode;
#include "queue.h"
#include "../module/motion.h"
#if ENABLED(MKS_WIFI)
#include "../module/mks_wifi/mks_wifi_gcodes.h"
#endif
#if ENABLED(PRINTCOUNTER)
#include "../module/printcounter.h"
#endif
@ -69,6 +65,10 @@ GcodeSuite gcode;
#include "../feature/password/password.h"
#endif
#if ENABLED(MKS_WIFI)
#include "../module/mks_wifi/mks_wifi_gcodes.h"
#endif
#include "../MarlinCore.h" // for idle, kill
// Inactivity shutdown
@ -78,11 +78,14 @@ millis_t GcodeSuite::previous_move_ms = 0,
// Relative motion mode for each logical axis
static constexpr xyze_bool_t ar_init = AXIS_RELATIVE_MODES;
uint8_t GcodeSuite::axis_relative = (
(ar_init.x ? _BV(REL_X) : 0)
| (ar_init.y ? _BV(REL_Y) : 0)
| (ar_init.z ? _BV(REL_Z) : 0)
| (ar_init.e ? _BV(REL_E) : 0)
uint8_t GcodeSuite::axis_relative = 0 LOGICAL_AXIS_GANG(
| (ar_init.e << REL_E),
| (ar_init.x << REL_X),
| (ar_init.y << REL_Y),
| (ar_init.z << REL_Z),
| (ar_init.i << REL_I),
| (ar_init.j << REL_J),
| (ar_init.k << REL_K)
);
#if EITHER(HAS_AUTO_REPORTING, HOST_KEEPALIVE_FEATURE)
@ -165,13 +168,15 @@ void GcodeSuite::get_destination_from_command() {
destination[i] = current_position[i];
}
// Get new E position, whether absolute or relative
if ( (seen.e = parser.seenval('E')) ) {
const float v = parser.value_axis_units(E_AXIS);
destination.e = axis_is_relative(E_AXIS) ? current_position.e + v : v;
}
else
destination.e = current_position.e;
#if HAS_EXTRUDERS
// Get new E position, whether absolute or relative
if ( (seen.e = parser.seenval('E')) ) {
const float v = parser.value_axis_units(E_AXIS);
destination.e = axis_is_relative(E_AXIS) ? current_position.e + v : v;
}
else
destination.e = current_position.e;
#endif
#if ENABLED(POWER_LOSS_RECOVERY) && !PIN_EXISTS(POWER_LOSS)
// Only update power loss recovery on moves with E
@ -445,20 +450,23 @@ void GcodeSuite::process_parsed_command(const bool no_ok/*=false*/) {
case 3: M3_M4(false); break; // M3: Turn ON Laser | Spindle (clockwise), set Power | Speed
case 4: M3_M4(true ); break; // M4: Turn ON Laser | Spindle (counter-clockwise), set Power | Speed
case 5: M5(); break; // M5: Turn OFF Laser | Spindle
#if ENABLED(AIR_EVACUATION)
case 10: M10(); break; // M10: Vacuum or Blower motor ON
case 11: M11(); break; // M11: Vacuum or Blower motor OFF
#endif
#endif
#if ENABLED(COOLANT_CONTROL)
#if ENABLED(COOLANT_MIST)
case 7: M7(); break; // M7: Mist coolant ON
#endif
#if ENABLED(COOLANT_FLOOD)
case 8: M8(); break; // M8: Flood coolant ON
#endif
case 9: M9(); break; // M9: Coolant OFF
#if ENABLED(COOLANT_MIST)
case 7: M7(); break; // M7: Coolant Mist ON
#endif
#if EITHER(AIR_ASSIST, COOLANT_FLOOD)
case 8: M8(); break; // M8: Air Assist / Coolant Flood ON
#endif
#if EITHER(AIR_ASSIST, COOLANT_CONTROL)
case 9: M9(); break; // M9: Air Assist / Coolant OFF
#endif
#if ENABLED(AIR_EVACUATION)
case 10: M10(); break; // M10: Vacuum or Blower motor ON
case 11: M11(); break; // M11: Vacuum or Blower motor OFF
#endif
#if ENABLED(EXTERNAL_CLOSED_LOOP_CONTROLLER)
@ -661,7 +669,7 @@ void GcodeSuite::process_parsed_command(const bool no_ok/*=false*/) {
M115();
#endif
break; // M115: Report capabilities
case 117: M117(); break; // M117: Set LCD message text, if possible
case 117: TERN_(HAS_STATUS_MESSAGE, M117()); break; // M117: Set LCD message text, if possible
case 118: M118(); break; // M118: Display a message in the host console
case 119: M119(); break; // M119: Report endstop states
case 120: M120(); break; // M120: Enable endstops

68
Marlin/src/gcode/gcode.h

@ -314,7 +314,12 @@
#define HAS_FAST_MOVES 1
#endif
enum AxisRelative : uint8_t { REL_X, REL_Y, REL_Z, REL_E, E_MODE_ABS, E_MODE_REL };
enum AxisRelative : uint8_t {
LOGICAL_AXIS_LIST(REL_E, REL_X, REL_Y, REL_Z, REL_I, REL_J, REL_K)
#if HAS_EXTRUDERS
, E_MODE_ABS, E_MODE_REL
#endif
};
extern const char G28_STR[];
@ -324,23 +329,31 @@ public:
static uint8_t axis_relative;
static inline bool axis_is_relative(const AxisEnum a) {
if (a == E_AXIS) {
if (TEST(axis_relative, E_MODE_REL)) return true;
if (TEST(axis_relative, E_MODE_ABS)) return false;
}
#if HAS_EXTRUDERS
if (a == E_AXIS) {
if (TEST(axis_relative, E_MODE_REL)) return true;
if (TEST(axis_relative, E_MODE_ABS)) return false;
}
#endif
return TEST(axis_relative, a);
}
static inline void set_relative_mode(const bool rel) {
axis_relative = rel ? _BV(REL_X) | _BV(REL_Y) | _BV(REL_Z) | _BV(REL_E) : 0;
}
static inline void set_e_relative() {
CBI(axis_relative, E_MODE_ABS);
SBI(axis_relative, E_MODE_REL);
}
static inline void set_e_absolute() {
CBI(axis_relative, E_MODE_REL);
SBI(axis_relative, E_MODE_ABS);
axis_relative = rel ? (0 LOGICAL_AXIS_GANG(
| _BV(REL_E),
| _BV(REL_X), | _BV(REL_Y), | _BV(REL_Z),
| _BV(REL_I), | _BV(REL_J), | _BV(REL_K)
)) : 0;
}
#if HAS_EXTRUDERS
static inline void set_e_relative() {
CBI(axis_relative, E_MODE_ABS);
SBI(axis_relative, E_MODE_REL);
}
static inline void set_e_absolute() {
CBI(axis_relative, E_MODE_REL);
SBI(axis_relative, E_MODE_ABS);
}
#endif
#if ENABLED(CNC_WORKSPACE_PLANES)
/**
@ -379,7 +392,7 @@ public:
static void process_subcommands_now(char * gcode);
static inline void home_all_axes(const bool keep_leveling=false) {
process_subcommands_now_P(keep_leveling ? G28_STR : TERN(G28_L0_ENSURES_LEVELING_OFF, PSTR("G28L0"), G28_STR));
process_subcommands_now_P(keep_leveling ? G28_STR : TERN(CAN_SET_LEVELING_AFTER_G28, PSTR("G28L0"), G28_STR));
}
#if EITHER(HAS_AUTO_REPORTING, HOST_KEEPALIVE_FEATURE)
@ -551,22 +564,25 @@ private:
#if HAS_CUTTER
static void M3_M4(const bool is_M4);
static void M5();
#if ENABLED(AIR_EVACUATION)
static void M10();
static void M11();
#endif
#endif
#if ENABLED(COOLANT_CONTROL)
#if ENABLED(COOLANT_MIST)
static void M7();
#endif
#if ENABLED(COOLANT_FLOOD)
static void M8();
#endif
#if ENABLED(COOLANT_MIST)
static void M7();
#endif
#if EITHER(AIR_ASSIST, COOLANT_FLOOD)
static void M8();
#endif
#if EITHER(AIR_ASSIST, COOLANT_CONTROL)
static void M9();
#endif
#if ENABLED(AIR_EVACUATION)
static void M10();
static void M11();
#endif
#if ENABLED(EXTERNAL_CLOSED_LOOP_CONTROLLER)
static void M12();
#endif

37
Marlin/src/gcode/geometry/G92.cpp

@ -48,7 +48,10 @@
*/
void GcodeSuite::G92() {
bool sync_E = false, sync_XYZE = false;
#if HAS_EXTRUDERS
bool sync_E = false;
#endif
bool sync_XYZE = false;
#if USE_GCODE_SUBCODES
const uint8_t subcode_G92 = parser.subcode;
@ -72,7 +75,11 @@ void GcodeSuite::G92() {
case 9: // G92.9 - Set Current Position directly (like Marlin 1.0)
LOOP_LOGICAL_AXES(i) {
if (parser.seenval(axis_codes[i])) {
if (i == E_AXIS) sync_E = true; else sync_XYZE = true;
if (TERN1(HAS_EXTRUDERS, i != E_AXIS))
sync_XYZE = true;
else {
TERN_(HAS_EXTRUDERS, sync_E = true);
}
current_position[i] = parser.value_axis_units((AxisEnum)i);
}
}
@ -83,20 +90,26 @@ void GcodeSuite::G92() {
LOOP_LOGICAL_AXES(i) {
if (parser.seenval(axis_codes[i])) {
const float l = parser.value_axis_units((AxisEnum)i), // Given axis coordinate value, converted to millimeters
v = i == E_AXIS ? l : LOGICAL_TO_NATIVE(l, i), // Axis position in NATIVE space (applying the existing offset)
v = TERN0(HAS_EXTRUDERS, i == E_AXIS) ? l : LOGICAL_TO_NATIVE(l, i), // Axis position in NATIVE space (applying the existing offset)
d = v - current_position[i]; // How much is the current axis position altered by?
if (!NEAR_ZERO(d)) {
#if HAS_POSITION_SHIFT && !IS_SCARA // When using workspaces...
if (i == E_AXIS) {
sync_E = true;
current_position.e = v; // ...E is still set directly
if (TERN1(HAS_EXTRUDERS, i != E_AXIS)) {
position_shift[i] += d; // ...most axes offset the workspace...
update_workspace_offset((AxisEnum)i);
}
else {
position_shift[i] += d; // ...but other axes offset the workspace.
update_workspace_offset((AxisEnum)i);
#if HAS_EXTRUDERS
sync_E = true;
current_position.e = v; // ...but E is set directly
#endif
}
#else // Without workspaces...
if (i == E_AXIS) sync_E = true; else sync_XYZE = true;
if (TERN1(HAS_EXTRUDERS, i != E_AXIS))
sync_XYZE = true;
else {
TERN_(HAS_EXTRUDERS, sync_E = true);
}
current_position[i] = v; // ...set Current Position directly (like Marlin 1.0)
#endif
}
@ -111,8 +124,10 @@ void GcodeSuite::G92() {
coordinate_system[active_coordinate_system] = position_shift;
#endif
if (sync_XYZE) sync_plan_position();
else if (sync_E) sync_plan_position_e();
if (sync_XYZE) sync_plan_position();
#if HAS_EXTRUDERS
else if (sync_E) sync_plan_position_e();
#endif
IF_DISABLED(DIRECT_STEPPING, report_current_position());
}

13
Marlin/src/gcode/geometry/M206_M428.cpp

@ -31,7 +31,16 @@
#include "../../MarlinCore.h"
void M206_report() {
SERIAL_ECHOLNPAIR_P(PSTR("M206 X"), home_offset.x, SP_Y_STR, home_offset.y, SP_Z_STR, home_offset.z);
SERIAL_ECHOLNPAIR_P(
LIST_N(DOUBLE(LINEAR_AXES),
PSTR("M206 X"), home_offset.x,
SP_Y_STR, home_offset.y,
SP_Z_STR, home_offset.z,
SP_I_STR, home_offset.i,
SP_J_STR, home_offset.j,
SP_K_STR, home_offset.k,
)
);
}
/**
@ -51,7 +60,7 @@ void GcodeSuite::M206() {
if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_float()); // Psi
#endif
if (!parser.seen("XYZ"))
if (!parser.seen(LINEAR_AXIS_GANG("X", "Y", "Z", "I", "J", "K")))
M206_report();
else
report_current_position();

27
Marlin/src/gcode/host/M114.cpp

@ -125,6 +125,15 @@
#if AXIS_IS_L64XX(Z4)
REPORT_ABSOLUTE_POS(Z4);
#endif
#if AXIS_IS_L64XX(I)
REPORT_ABSOLUTE_POS(I);
#endif
#if AXIS_IS_L64XX(J)
REPORT_ABSOLUTE_POS(J);
#endif
#if AXIS_IS_L64XX(K)
REPORT_ABSOLUTE_POS(K);
#endif
#if AXIS_IS_L64XX(E0)
REPORT_ABSOLUTE_POS(E0);
#endif
@ -170,7 +179,13 @@
SERIAL_ECHOPGM("FromStp:");
get_cartesian_from_steppers(); // writes 'cartes' (with forward kinematics)
xyze_pos_t from_steppers = { cartes.x, cartes.y, cartes.z, planner.get_axis_position_mm(E_AXIS) };
xyze_pos_t from_steppers = LOGICAL_AXIS_ARRAY(
planner.get_axis_position_mm(E_AXIS),
cartes.x, cartes.y, cartes.z,
planner.get_axis_position_mm(I_AXIS),
planner.get_axis_position_mm(J_AXIS),
planner.get_axis_position_mm(K_AXIS)
);
report_all_axis_pos(from_steppers);
const xyze_float_t diff = from_steppers - leveled;
@ -201,10 +216,12 @@ void GcodeSuite::M114() {
report_current_position_detail();
return;
}
if (parser.seen_test('E')) {
SERIAL_ECHOLNPAIR("Count E:", stepper.position(E_AXIS));
return;
}
#if HAS_EXTRUDERS
if (parser.seen_test('E')) {
SERIAL_ECHOLNPAIR("Count E:", stepper.position(E_AXIS));
return;
}
#endif
#endif
#if ENABLED(M114_REALTIME)

15
Marlin/src/gcode/motion/G0_G1.cpp

@ -49,9 +49,14 @@ void GcodeSuite::G0_G1(TERN_(HAS_FAST_MOVES, const bool fast_move/*=false*/)) {
if (IsRunning()
#if ENABLED(NO_MOTION_BEFORE_HOMING)
&& !homing_needed_error(
(parser.seen_test('X') ? _BV(X_AXIS) : 0)
| (parser.seen_test('Y') ? _BV(Y_AXIS) : 0)
| (parser.seen_test('Z') ? _BV(Z_AXIS) : 0) )
LINEAR_AXIS_GANG(
(parser.seen_test('X') ? _BV(X_AXIS) : 0),
| (parser.seen_test('Y') ? _BV(Y_AXIS) : 0),
| (parser.seen_test('Z') ? _BV(Z_AXIS) : 0),
| (parser.seen_test(AXIS4_NAME) ? _BV(I_AXIS) : 0),
| (parser.seen_test(AXIS5_NAME) ? _BV(J_AXIS) : 0),
| (parser.seen_test(AXIS6_NAME) ? _BV(K_AXIS) : 0))
)
#endif
) {
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_RUNNING));
@ -83,7 +88,9 @@ void GcodeSuite::G0_G1(TERN_(HAS_FAST_MOVES, const bool fast_move/*=false*/)) {
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
// When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
if (fwretract.autoretract_enabled && parser.seen('E') && !parser.seen("XYZ")) {
if (fwretract.autoretract_enabled && parser.seen_test('E')
&& !parser.seen(LINEAR_AXIS_GANG("X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))
) {
const float echange = destination.e - current_position.e;
// Is this a retract or recover move?
if (WITHIN(ABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && fwretract.retracted[active_extruder] == (echange > 0.0)) {

63
Marlin/src/gcode/motion/G2_G3.cpp

@ -63,7 +63,7 @@ void plan_arc(
case GcodeSuite::PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
}
#else
constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS OPTARG(HAS_Z_AXIS, l_axis = Z_AXIS);
#endif
// Radius vector from center to current location
@ -73,8 +73,8 @@ void plan_arc(
center_P = current_position[p_axis] - rvec.a,
center_Q = current_position[q_axis] - rvec.b,
rt_X = cart[p_axis] - center_P,
rt_Y = cart[q_axis] - center_Q,
start_L = current_position[l_axis];
rt_Y = cart[q_axis] - center_Q
OPTARG(HAS_Z_AXIS, start_L = current_position[l_axis]);
#ifdef MIN_ARC_SEGMENTS
uint16_t min_segments = MIN_ARC_SEGMENTS;
@ -109,27 +109,37 @@ void plan_arc(
#endif
}
float linear_travel = cart[l_axis] - start_L,
extruder_travel = cart.e - current_position.e;
#if HAS_Z_AXIS
float linear_travel = cart[l_axis] - start_L;
#endif
#if HAS_EXTRUDERS
float extruder_travel = cart.e - current_position.e;
#endif
// If circling around...
if (ENABLED(ARC_P_CIRCLES) && circles) {
const float total_angular = angular_travel + circles * RADIANS(360), // Total rotation with all circles and remainder
part_per_circle = RADIANS(360) / total_angular, // Each circle's part of the total
l_per_circle = linear_travel * part_per_circle, // L movement per circle
e_per_circle = extruder_travel * part_per_circle; // E movement per circle
part_per_circle = RADIANS(360) / total_angular; // Each circle's part of the total
#if HAS_Z_AXIS
const float l_per_circle = linear_travel * part_per_circle; // L movement per circle
#endif
#if HAS_EXTRUDERS
const float e_per_circle = extruder_travel * part_per_circle; // E movement per circle
#endif
xyze_pos_t temp_position = current_position; // for plan_arc to compare to current_position
for (uint16_t n = circles; n--;) {
temp_position.e += e_per_circle; // Destination E axis
temp_position[l_axis] += l_per_circle; // Destination L axis
TERN_(HAS_EXTRUDERS, temp_position.e += e_per_circle); // Destination E axis
TERN_(HAS_Z_AXIS, temp_position[l_axis] += l_per_circle); // Destination L axis
plan_arc(temp_position, offset, clockwise, 0); // Plan a single whole circle
}
linear_travel = cart[l_axis] - current_position[l_axis];
extruder_travel = cart.e - current_position.e;
TERN_(HAS_Z_AXIS, linear_travel = cart[l_axis] - current_position[l_axis]);
TERN_(HAS_EXTRUDERS, extruder_travel = cart.e - current_position.e);
}
const float flat_mm = radius * angular_travel,
mm_of_travel = linear_travel ? HYPOT(flat_mm, linear_travel) : ABS(flat_mm);
mm_of_travel = TERN_(HAS_Z_AXIS, linear_travel ? HYPOT(flat_mm, linear_travel) :) ABS(flat_mm);
if (mm_of_travel < 0.001f) return;
const feedRate_t scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
@ -178,17 +188,22 @@ void plan_arc(
// Vector rotation matrix values
xyze_pos_t raw;
const float theta_per_segment = angular_travel / segments,
linear_per_segment = linear_travel / segments,
extruder_per_segment = extruder_travel / segments,
sq_theta_per_segment = sq(theta_per_segment),
sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6,
cos_T = 1 - 0.5f * sq_theta_per_segment; // Small angle approximation
#if HAS_Z_AXIS && DISABLED(AUTO_BED_LEVELING_UBL)
const float linear_per_segment = linear_travel / segments;
#endif
#if HAS_EXTRUDERS
const float extruder_per_segment = extruder_travel / segments;
#endif
// Initialize the linear axis
raw[l_axis] = current_position[l_axis];
TERN_(HAS_Z_AXIS, raw[l_axis] = current_position[l_axis]);
// Initialize the extruder axis
raw.e = current_position.e;
TERN_(HAS_EXTRUDERS, raw.e = current_position.e);
#if ENABLED(SCARA_FEEDRATE_SCALING)
const float inv_duration = scaled_fr_mm_s / seg_length;
@ -234,13 +249,11 @@ void plan_arc(
// Update raw location
raw[p_axis] = center_P + rvec.a;
raw[q_axis] = center_Q + rvec.b;
#if ENABLED(AUTO_BED_LEVELING_UBL)
raw[l_axis] = start_L;
UNUSED(linear_per_segment);
#else
raw[l_axis] += linear_per_segment;
#if HAS_Z_AXIS
raw[l_axis] = TERN(AUTO_BED_LEVELING_UBL, start_L, raw[l_axis] + linear_per_segment);
#endif
raw.e += extruder_per_segment;
TERN_(HAS_EXTRUDERS, raw.e += extruder_per_segment);
apply_motion_limits(raw);
@ -255,7 +268,7 @@ void plan_arc(
// Ensure last segment arrives at target location.
raw = cart;
TERN_(AUTO_BED_LEVELING_UBL, raw[l_axis] = start_L);
TERN_(AUTO_BED_LEVELING_UBL, TERN_(HAS_Z_AXIS, raw[l_axis] = start_L));
apply_motion_limits(raw);
@ -267,7 +280,7 @@ void plan_arc(
OPTARG(SCARA_FEEDRATE_SCALING, inv_duration)
);
TERN_(AUTO_BED_LEVELING_UBL, raw[l_axis] = start_L);
TERN_(AUTO_BED_LEVELING_UBL, TERN_(HAS_Z_AXIS, raw[l_axis] = start_L));
current_position = raw;
} // plan_arc

Some files were not shown because too many files changed in this diff

Loading…
Cancel
Save