|
|
@ -31,7 +31,14 @@ |
|
|
|
|
|
|
|
extern float destination[XYZE]; |
|
|
|
extern void set_current_to_destination(); |
|
|
|
extern float destination[]; |
|
|
|
|
|
|
|
static void debug_echo_axis(const AxisEnum axis) { |
|
|
|
if (current_position[axis] == destination[axis]) |
|
|
|
SERIAL_ECHOPGM("-------------"); |
|
|
|
else |
|
|
|
SERIAL_ECHO_F(destination[X_AXIS], 6); |
|
|
|
} |
|
|
|
|
|
|
|
void debug_current_and_destination(char *title) { |
|
|
|
|
|
|
|
// if the title message starts with a '!' it is so important, we are going to
|
|
|
@ -67,32 +74,13 @@ |
|
|
|
SERIAL_ECHOPGM(", "); |
|
|
|
SERIAL_ECHO_F(current_position[E_AXIS], 6); |
|
|
|
SERIAL_ECHOPGM(" ) destination=( "); |
|
|
|
if (current_position[X_AXIS] == destination[X_AXIS]) |
|
|
|
SERIAL_ECHOPGM("-------------"); |
|
|
|
else |
|
|
|
SERIAL_ECHO_F(destination[X_AXIS], 6); |
|
|
|
|
|
|
|
debug_echo_axis(X_AXIS); |
|
|
|
SERIAL_ECHOPGM(", "); |
|
|
|
|
|
|
|
if (current_position[Y_AXIS] == destination[Y_AXIS]) |
|
|
|
SERIAL_ECHOPGM("-------------"); |
|
|
|
else |
|
|
|
SERIAL_ECHO_F(destination[Y_AXIS], 6); |
|
|
|
|
|
|
|
debug_echo_axis(Y_AXIS); |
|
|
|
SERIAL_ECHOPGM(", "); |
|
|
|
|
|
|
|
if (current_position[Z_AXIS] == destination[Z_AXIS]) |
|
|
|
SERIAL_ECHOPGM("-------------"); |
|
|
|
else |
|
|
|
SERIAL_ECHO_F(destination[Z_AXIS], 6); |
|
|
|
|
|
|
|
debug_echo_axis(Z_AXIS); |
|
|
|
SERIAL_ECHOPGM(", "); |
|
|
|
|
|
|
|
if (current_position[E_AXIS] == destination[E_AXIS]) |
|
|
|
SERIAL_ECHOPGM("-------------"); |
|
|
|
else |
|
|
|
SERIAL_ECHO_F(destination[E_AXIS], 6); |
|
|
|
|
|
|
|
debug_echo_axis(E_AXIS); |
|
|
|
SERIAL_ECHOPGM(" ) "); |
|
|
|
SERIAL_ECHO(title); |
|
|
|
SERIAL_EOL; |
|
|
@ -105,32 +93,37 @@ |
|
|
|
//}
|
|
|
|
} |
|
|
|
|
|
|
|
void ubl_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) { |
|
|
|
void ubl_line_to_destination(const float &feed_rate, uint8_t extruder) { |
|
|
|
/**
|
|
|
|
* Much of the nozzle movement will be within the same cell. So we will do as little computation |
|
|
|
* as possible to determine if this is the case. If this move is within the same cell, we will |
|
|
|
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave |
|
|
|
*/ |
|
|
|
const float x_start = current_position[X_AXIS], |
|
|
|
y_start = current_position[Y_AXIS], |
|
|
|
z_start = current_position[Z_AXIS], |
|
|
|
e_start = current_position[E_AXIS]; |
|
|
|
|
|
|
|
const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_start)), |
|
|
|
cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_start)), |
|
|
|
cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_end)), |
|
|
|
cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_end)); |
|
|
|
const float start[XYZE] = { |
|
|
|
current_position[X_AXIS], |
|
|
|
current_position[Y_AXIS], |
|
|
|
current_position[Z_AXIS], |
|
|
|
current_position[E_AXIS] |
|
|
|
}, |
|
|
|
end[XYZE] = { |
|
|
|
destination[X_AXIS], |
|
|
|
destination[Y_AXIS], |
|
|
|
destination[Z_AXIS], |
|
|
|
destination[E_AXIS] |
|
|
|
}; |
|
|
|
|
|
|
|
const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])), |
|
|
|
cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])), |
|
|
|
cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])), |
|
|
|
cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS])); |
|
|
|
|
|
|
|
if (ubl.g26_debug_flag) { |
|
|
|
SERIAL_ECHOPGM(" ubl_line_to_destination(xe="); |
|
|
|
SERIAL_ECHO(x_end); |
|
|
|
SERIAL_ECHOPGM(", ye="); |
|
|
|
SERIAL_ECHO(y_end); |
|
|
|
SERIAL_ECHOPGM(", ze="); |
|
|
|
SERIAL_ECHO(z_end); |
|
|
|
SERIAL_ECHOPGM(", ee="); |
|
|
|
SERIAL_ECHO(e_end); |
|
|
|
SERIAL_ECHOLNPGM(")"); |
|
|
|
SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(", ee=", end[E_AXIS]); |
|
|
|
SERIAL_CHAR(')'); |
|
|
|
SERIAL_EOL; |
|
|
|
debug_current_and_destination((char*)"Start of ubl_line_to_destination()"); |
|
|
|
} |
|
|
|
|
|
|
@ -142,12 +135,12 @@ |
|
|
|
* But we detect it and isolate it. For now, we just pass along the request. |
|
|
|
*/ |
|
|
|
|
|
|
|
if (cell_dest_xi < 0 || cell_dest_yi < 0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) { |
|
|
|
if (!WITHIN(cell_dest_xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cell_dest_yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) { |
|
|
|
|
|
|
|
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
|
|
|
// a reasonable correction would be.
|
|
|
|
|
|
|
|
planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder); |
|
|
|
planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); |
|
|
|
set_current_to_destination(); |
|
|
|
|
|
|
|
if (ubl.g26_debug_flag) |
|
|
@ -167,7 +160,7 @@ |
|
|
|
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. |
|
|
|
*/ |
|
|
|
|
|
|
|
const float xratio = (RAW_X_POSITION(x_end) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), |
|
|
|
const float xratio = (RAW_X_POSITION(end[X_AXIS]) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), |
|
|
|
z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio * |
|
|
|
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]), |
|
|
|
z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * |
|
|
@ -176,7 +169,7 @@ |
|
|
|
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
|
|
|
|
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
|
|
|
|
|
|
|
|
const float yratio = (RAW_Y_POSITION(y_end) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); |
|
|
|
const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); |
|
|
|
|
|
|
|
float z0 = z1 + (z2 - z1) * yratio; |
|
|
|
|
|
|
@ -186,20 +179,20 @@ |
|
|
|
*/ |
|
|
|
/*
|
|
|
|
z_optimized = z0; |
|
|
|
z0 = ubl.get_z_correction(x_end, y_end); |
|
|
|
z0 = ubl.get_z_correction(end[X_AXIS], end[Y_AXIS]); |
|
|
|
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) { |
|
|
|
debug_current_and_destination((char*)"FINAL_MOVE: z_correction()"); |
|
|
|
if (isnan(z0)) SERIAL_ECHO(" z0==NAN "); |
|
|
|
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); |
|
|
|
SERIAL_ECHOPAIR(" x_end=", x_end); |
|
|
|
SERIAL_ECHOPAIR(" y_end=", y_end); |
|
|
|
SERIAL_ECHOPAIR(" end[X_AXIS]=", end[X_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(" end[Y_AXIS]=", end[Y_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(" z0=", z0); |
|
|
|
SERIAL_ECHOPAIR(" z_optimized=", z_optimized); |
|
|
|
SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0)); |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
//*/
|
|
|
|
z0 *= ubl.fade_scaling_factor_for_z(z_end); |
|
|
|
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); |
|
|
|
|
|
|
|
/**
|
|
|
|
* If part of the Mesh is undefined, it will show up as NAN |
|
|
@ -210,7 +203,7 @@ |
|
|
|
*/ |
|
|
|
if (isnan(z0)) z0 = 0.0; |
|
|
|
|
|
|
|
planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder); |
|
|
|
planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); |
|
|
|
|
|
|
|
if (ubl.g26_debug_flag) |
|
|
|
debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()"); |
|
|
@ -227,8 +220,8 @@ |
|
|
|
* blocks of code: |
|
|
|
*/ |
|
|
|
|
|
|
|
const float dx = x_end - x_start, |
|
|
|
dy = y_end - y_start; |
|
|
|
const float dx = end[X_AXIS] - start[X_AXIS], |
|
|
|
dy = end[Y_AXIS] - start[Y_AXIS]; |
|
|
|
|
|
|
|
const int left_flag = dx < 0.0 ? 1 : 0, |
|
|
|
down_flag = dy < 0.0 ? 1 : 0; |
|
|
@ -251,8 +244,8 @@ |
|
|
|
const bool use_x_dist = adx > ady; |
|
|
|
|
|
|
|
float on_axis_distance = use_x_dist ? dx : dy, |
|
|
|
e_position = e_end - e_start, |
|
|
|
z_position = z_end - z_start; |
|
|
|
e_position = end[E_AXIS] - start[E_AXIS], |
|
|
|
z_position = end[Z_AXIS] - start[Z_AXIS]; |
|
|
|
|
|
|
|
const float e_normalized_dist = e_position / on_axis_distance, |
|
|
|
z_normalized_dist = z_position / on_axis_distance; |
|
|
@ -260,7 +253,7 @@ |
|
|
|
int current_xi = cell_start_xi, current_yi = cell_start_yi; |
|
|
|
|
|
|
|
const float m = dy / dx, |
|
|
|
c = y_start - m * x_start; |
|
|
|
c = start[Y_AXIS] - m * start[X_AXIS]; |
|
|
|
|
|
|
|
const bool inf_normalized_flag = NEAR_ZERO(on_axis_distance), |
|
|
|
inf_m_flag = NEAR_ZERO(dx); |
|
|
@ -281,9 +274,9 @@ |
|
|
|
* else, we know the next X is the same so we can recover and continue! |
|
|
|
* Calculate X at the next Y mesh line |
|
|
|
*/ |
|
|
|
const float x = inf_m_flag ? x_start : (next_mesh_line_y - c) / m; |
|
|
|
const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m; |
|
|
|
|
|
|
|
float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi); |
|
|
|
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi); |
|
|
|
|
|
|
|
/**
|
|
|
|
* Debug code to use non-optimized get_z_correction() and to do a sanity check |
|
|
@ -305,7 +298,7 @@ |
|
|
|
} |
|
|
|
//*/
|
|
|
|
|
|
|
|
z0 *= ubl.fade_scaling_factor_for_z(z_end); |
|
|
|
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); |
|
|
|
|
|
|
|
/**
|
|
|
|
* If part of the Mesh is undefined, it will show up as NAN |
|
|
@ -324,15 +317,15 @@ |
|
|
|
* happens, it might be best to remove the check and always 'schedule' the move because |
|
|
|
* the planner.buffer_line() routine will filter it if that happens. |
|
|
|
*/ |
|
|
|
if (y != y_start) { |
|
|
|
if (y != start[Y_AXIS]) { |
|
|
|
if (!inf_normalized_flag) { |
|
|
|
on_axis_distance = y - y_start; // we don't need to check if the extruder position
|
|
|
|
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
|
|
|
|
z_position = z_start + on_axis_distance * z_normalized_dist; |
|
|
|
on_axis_distance = y - start[Y_AXIS]; // we don't need to check if the extruder position
|
|
|
|
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
|
|
|
|
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; |
|
|
|
} |
|
|
|
else { |
|
|
|
e_position = e_start; |
|
|
|
z_position = z_start; |
|
|
|
e_position = start[E_AXIS]; |
|
|
|
z_position = start[Z_AXIS]; |
|
|
|
} |
|
|
|
|
|
|
|
planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); |
|
|
@ -345,7 +338,7 @@ |
|
|
|
//
|
|
|
|
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
|
|
|
|
//
|
|
|
|
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) |
|
|
|
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) |
|
|
|
goto FINAL_MOVE; |
|
|
|
|
|
|
|
set_current_to_destination(); |
|
|
@ -368,7 +361,7 @@ |
|
|
|
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]), |
|
|
|
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
|
|
|
|
|
|
|
|
float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi); |
|
|
|
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi); |
|
|
|
|
|
|
|
/**
|
|
|
|
* Debug code to use non-optimized get_z_correction() and to do a sanity check |
|
|
@ -390,7 +383,7 @@ |
|
|
|
} |
|
|
|
//*/
|
|
|
|
|
|
|
|
z0 = z0 * ubl.fade_scaling_factor_for_z(z_end); |
|
|
|
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); |
|
|
|
|
|
|
|
/**
|
|
|
|
* If part of the Mesh is undefined, it will show up as NAN |
|
|
@ -409,15 +402,15 @@ |
|
|
|
* that happens, it might be best to remove the check and always 'schedule' the move because |
|
|
|
* the planner.buffer_line() routine will filter it if that happens. |
|
|
|
*/ |
|
|
|
if (x != x_start) { |
|
|
|
if (x != start[X_AXIS]) { |
|
|
|
if (!inf_normalized_flag) { |
|
|
|
on_axis_distance = x - x_start; // we don't need to check if the extruder position
|
|
|
|
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
|
|
|
z_position = z_start + on_axis_distance * z_normalized_dist; |
|
|
|
on_axis_distance = x - start[X_AXIS]; // we don't need to check if the extruder position
|
|
|
|
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
|
|
|
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; |
|
|
|
} |
|
|
|
else { |
|
|
|
e_position = e_start; |
|
|
|
z_position = z_start; |
|
|
|
e_position = start[E_AXIS]; |
|
|
|
z_position = start[Z_AXIS]; |
|
|
|
} |
|
|
|
|
|
|
|
planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); |
|
|
@ -427,7 +420,7 @@ |
|
|
|
if (ubl.g26_debug_flag) |
|
|
|
debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()"); |
|
|
|
|
|
|
|
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) |
|
|
|
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) |
|
|
|
goto FINAL_MOVE; |
|
|
|
|
|
|
|
set_current_to_destination(); |
|
|
@ -454,16 +447,16 @@ |
|
|
|
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]), |
|
|
|
next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]), |
|
|
|
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
|
|
|
|
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry
|
|
|
|
// about m being equal to 0.0 If this was the case, we would have
|
|
|
|
// detected this as a vertical line move up above and we wouldn't
|
|
|
|
// be down here doing a generic type of move.
|
|
|
|
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
|
|
|
|
// (No need to worry about m being zero.
|
|
|
|
// If that was the case, it was already detected
|
|
|
|
// as a vertical line move above.)
|
|
|
|
|
|
|
|
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
|
|
|
|
//
|
|
|
|
// Yes! Crossing a Y Mesh Line next
|
|
|
|
//
|
|
|
|
float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi - left_flag, current_yi + dyi); |
|
|
|
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi); |
|
|
|
|
|
|
|
/**
|
|
|
|
* Debug code to use non-optimized get_z_correction() and to do a sanity check |
|
|
@ -486,7 +479,7 @@ |
|
|
|
} |
|
|
|
//*/
|
|
|
|
|
|
|
|
z0 *= ubl.fade_scaling_factor_for_z(z_end); |
|
|
|
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); |
|
|
|
|
|
|
|
/**
|
|
|
|
* If part of the Mesh is undefined, it will show up as NAN |
|
|
@ -498,13 +491,13 @@ |
|
|
|
if (isnan(z0)) z0 = 0.0; |
|
|
|
|
|
|
|
if (!inf_normalized_flag) { |
|
|
|
on_axis_distance = use_x_dist ? x - x_start : next_mesh_line_y - y_start; |
|
|
|
e_position = e_start + on_axis_distance * e_normalized_dist; |
|
|
|
z_position = z_start + on_axis_distance * z_normalized_dist; |
|
|
|
on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS]; |
|
|
|
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; |
|
|
|
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; |
|
|
|
} |
|
|
|
else { |
|
|
|
e_position = e_start; |
|
|
|
z_position = z_start; |
|
|
|
e_position = start[E_AXIS]; |
|
|
|
z_position = start[Z_AXIS]; |
|
|
|
} |
|
|
|
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); |
|
|
|
current_yi += dyi; |
|
|
@ -514,7 +507,7 @@ |
|
|
|
//
|
|
|
|
// Yes! Crossing a X Mesh Line next
|
|
|
|
//
|
|
|
|
float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi + dxi, current_yi - down_flag); |
|
|
|
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag); |
|
|
|
|
|
|
|
/**
|
|
|
|
* Debug code to use non-optimized get_z_correction() and to do a sanity check |
|
|
@ -536,7 +529,7 @@ |
|
|
|
} |
|
|
|
//*/
|
|
|
|
|
|
|
|
z0 *= ubl.fade_scaling_factor_for_z(z_end); |
|
|
|
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); |
|
|
|
|
|
|
|
/**
|
|
|
|
* If part of the Mesh is undefined, it will show up as NAN |
|
|
@ -548,13 +541,13 @@ |
|
|
|
if (isnan(z0)) z0 = 0.0; |
|
|
|
|
|
|
|
if (!inf_normalized_flag) { |
|
|
|
on_axis_distance = use_x_dist ? next_mesh_line_x - x_start : y - y_start; |
|
|
|
e_position = e_start + on_axis_distance * e_normalized_dist; |
|
|
|
z_position = z_start + on_axis_distance * z_normalized_dist; |
|
|
|
on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS]; |
|
|
|
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; |
|
|
|
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; |
|
|
|
} |
|
|
|
else { |
|
|
|
e_position = e_start; |
|
|
|
z_position = z_start; |
|
|
|
e_position = start[E_AXIS]; |
|
|
|
z_position = start[Z_AXIS]; |
|
|
|
} |
|
|
|
|
|
|
|
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); |
|
|
@ -566,7 +559,7 @@ |
|
|
|
if (ubl.g26_debug_flag) |
|
|
|
debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()"); |
|
|
|
|
|
|
|
if (current_position[0] != x_end || current_position[1] != y_end) |
|
|
|
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) |
|
|
|
goto FINAL_MOVE; |
|
|
|
|
|
|
|
set_current_to_destination(); |
|
|
|