Scott Lahteine
8 years ago
7 changed files with 3716 additions and 0 deletions
File diff suppressed because it is too large
@ -0,0 +1,331 @@ |
|||
/**
|
|||
* Marlin 3D Printer Firmware |
|||
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|||
* |
|||
* Based on Sprinter and grbl. |
|||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
|||
* |
|||
* This program is free software: you can redistribute it and/or modify |
|||
* it under the terms of the GNU General Public License as published by |
|||
* the Free Software Foundation, either version 3 of the License, or |
|||
* (at your option) any later version. |
|||
* |
|||
* This program is distributed in the hope that it will be useful, |
|||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
* GNU General Public License for more details. |
|||
* |
|||
* You should have received a copy of the GNU General Public License |
|||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
* |
|||
*/ |
|||
|
|||
#include "Marlin.h" |
|||
#include "math.h" |
|||
|
|||
#ifndef UNIFIED_BED_LEVELING_H |
|||
#define UNIFIED_BED_LEVELING_H |
|||
|
|||
#if ENABLED(AUTO_BED_LEVELING_UBL) |
|||
|
|||
#define UBL_OK false |
|||
#define UBL_ERR true |
|||
|
|||
typedef struct { |
|||
int x_index, y_index; |
|||
float distance; // Not always used. But when populated, it is the distance
|
|||
// from the search location
|
|||
} mesh_index_pair; |
|||
|
|||
struct vector { double dx, dy, dz; }; |
|||
|
|||
enum Mesh_Point_Type { INVALID, REAL, SET_IN_BITMAP }; |
|||
|
|||
bool axis_unhomed_error(bool, bool, bool); |
|||
void dump(char *str, float f); |
|||
bool G29_lcd_clicked(); |
|||
void probe_entire_mesh(float, float, bool, bool); |
|||
void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t); |
|||
void manually_probe_remaining_mesh(float, float, float, float, bool); |
|||
struct vector tilt_mesh_based_on_3pts(float, float, float); |
|||
void new_set_bed_level_equation_3pts(float, float, float); |
|||
float measure_business_card_thickness(float); |
|||
mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type, float, float, bool, unsigned int[16]); |
|||
void Find_Mean_Mesh_Height(); |
|||
void Shift_Mesh_Height(); |
|||
bool G29_Parameter_Parsing(); |
|||
void G29_What_Command(); |
|||
void G29_EEPROM_Dump(); |
|||
void G29_Kompare_Current_Mesh_to_Stored_Mesh(); |
|||
void fine_tune_mesh(float, float, float, bool); |
|||
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y); |
|||
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y); |
|||
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y); |
|||
char *ftostr43sign(const float&, char); |
|||
|
|||
void gcode_G26(); |
|||
void gcode_G28(); |
|||
void gcode_G29(); |
|||
extern char conv[9]; |
|||
|
|||
void save_UBL_active_state_and_disable(); |
|||
void restore_UBL_active_state_and_leave(); |
|||
|
|||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|||
|
|||
#if ENABLED(ULTRA_LCD) |
|||
extern char lcd_status_message[]; |
|||
void lcd_quick_feedback(); |
|||
#endif |
|||
|
|||
enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 }; |
|||
|
|||
#define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0)) |
|||
#define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0)) |
|||
|
|||
extern bool G26_Debug_flag; |
|||
extern float last_specified_z; |
|||
extern float fade_scaling_factor_for_current_height; |
|||
extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS]; |
|||
extern float mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
|
|||
extern float mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
|||
|
|||
class bed_leveling { |
|||
public: |
|||
struct ubl_state { |
|||
bool active = false; |
|||
float z_offset = 0.0; |
|||
int EEPROM_storage_slot = -1, |
|||
n_x = UBL_MESH_NUM_X_POINTS, |
|||
n_y = UBL_MESH_NUM_Y_POINTS; |
|||
float mesh_x_min = UBL_MESH_MIN_X, |
|||
mesh_y_min = UBL_MESH_MIN_Y, |
|||
mesh_x_max = UBL_MESH_MAX_X, |
|||
mesh_y_max = UBL_MESH_MAX_Y, |
|||
mesh_x_dist = MESH_X_DIST, |
|||
mesh_y_dist = MESH_Y_DIST, |
|||
G29_Correction_Fade_Height = 10.0, |
|||
G29_Fade_Height_Multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
|
|||
// point divide. So, we keep this number in both forms. The first
|
|||
// is for the user. The second one is the one that is actually used
|
|||
// again and again and again during the correction calculations.
|
|||
|
|||
unsigned char padding[24]; // This is just to allow room to add state variables without
|
|||
// changing the location of data structures in the EEPROM.
|
|||
// This is for compatability with future versions to keep
|
|||
// people from having to regenerate thier mesh data.
|
|||
//
|
|||
// If you change the contents of this struct, please adjust
|
|||
// the padding[] to keep the size the same!
|
|||
} state, pre_initialized; |
|||
|
|||
bed_leveling(); |
|||
// ~bed_leveling(); // No destructor because this object never goes away!
|
|||
|
|||
void display_map(int); |
|||
|
|||
void reset(); |
|||
void invalidate(); |
|||
|
|||
void store_state(); |
|||
void load_state(); |
|||
void store_mesh(int); |
|||
void load_mesh(int); |
|||
|
|||
bool sanity_check(); |
|||
|
|||
FORCE_INLINE float map_x_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); }; |
|||
FORCE_INLINE float map_y_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); }; |
|||
|
|||
void set_z(const int8_t px, const int8_t py, const float z) { z_values[px][py] = z; } |
|||
|
|||
int8_t get_cell_index_x(float x) { |
|||
int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)); |
|||
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
|||
} // position. But with this defined this way, it is possible
|
|||
// to extrapolate off of this point even further out. Probably
|
|||
// that is OK because something else should be keeping that from
|
|||
// happening and should not be worried about at this level.
|
|||
int8_t get_cell_index_y(float y) { |
|||
int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST)); |
|||
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
|||
} // position. But with this defined this way, it is possible
|
|||
// to extrapolate off of this point even further out. Probably
|
|||
// that is OK because something else should be keeping that from
|
|||
// happening and should not be worried about at this level.
|
|||
|
|||
int8_t find_closest_x_index(float x) { |
|||
int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); |
|||
return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1; |
|||
} |
|||
|
|||
int8_t find_closest_y_index(float y) { |
|||
int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); |
|||
return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1; |
|||
} |
|||
|
|||
/**
|
|||
* z2 --| |
|||
* z0 | | |
|||
* | | + (z2-z1) |
|||
* z1 | | | |
|||
* ---+-------------+--------+-- --| |
|||
* a1 a0 a2 |
|||
* |<---delta_a---------->| |
|||
* |
|||
* calc_z0 is the basis for all the Mesh Based correction. It is used to |
|||
* find the expected Z Height at a position between two known Z-Height locations |
|||
* |
|||
* It is farly expensive with its 4 floating point additions and 2 floating point |
|||
* multiplications. |
|||
*/ |
|||
inline float calc_z0(float a0, float a1, float z1, float a2, float z2) { |
|||
float delta_z = (z2 - z1); |
|||
float delta_a = (a0 - a1) / (a2 - a1); |
|||
return z1 + delta_a * delta_z; |
|||
} |
|||
|
|||
/**
|
|||
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes |
|||
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory |
|||
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling |
|||
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have |
|||
* the X index of the x0 intersection available and we don't want to perform any extra floating |
|||
* point operations. |
|||
*/ |
|||
inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(float x0, int x1_i, int yi) { |
|||
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) { |
|||
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0); |
|||
SERIAL_ECHOPAIR(",x1_i=", x1_i); |
|||
SERIAL_ECHOPAIR(",yi=", yi); |
|||
SERIAL_CHAR(')'); |
|||
SERIAL_EOL; |
|||
return NAN; |
|||
} |
|||
|
|||
const float a0ma1diva2ma1 = (x0 - mesh_index_to_X_location[x1_i]) * (1.0 / (MESH_X_DIST)), |
|||
z1 = z_values[x1_i][yi], |
|||
z2 = z_values[x1_i + 1][yi], |
|||
dz = (z2 - z1); |
|||
|
|||
return z1 + a0ma1diva2ma1 * dz; |
|||
} |
|||
|
|||
//
|
|||
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
|
|||
//
|
|||
inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(float y0, int xi, int y1_i) { |
|||
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) { |
|||
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0); |
|||
SERIAL_ECHOPAIR(", x1_i=", xi); |
|||
SERIAL_ECHOPAIR(", yi=", y1_i); |
|||
SERIAL_CHAR(')'); |
|||
SERIAL_EOL; |
|||
return NAN; |
|||
} |
|||
|
|||
const float a0ma1diva2ma1 = (y0 - mesh_index_to_Y_location[y1_i]) * (1.0 / (MESH_Y_DIST)), |
|||
z1 = z_values[xi][y1_i], |
|||
z2 = z_values[xi][y1_i + 1], |
|||
dz = (z2 - z1); |
|||
|
|||
return z1 + a0ma1diva2ma1 * dz; |
|||
} |
|||
|
|||
/**
|
|||
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first |
|||
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the |
|||
* Z-Height at both ends. Then it does a linear interpolation of these heights based |
|||
* on the Y position within the cell. |
|||
*/ |
|||
float get_z_correction(float x0, float y0) { |
|||
int8_t cx = get_cell_index_x(x0), |
|||
cy = get_cell_index_y(y0); |
|||
|
|||
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) { |
|||
|
|||
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0); |
|||
SERIAL_ECHOPAIR(", y0=", y0); |
|||
SERIAL_CHAR(')'); |
|||
SERIAL_EOL; |
|||
|
|||
#if ENABLED(ULTRA_LCD) |
|||
strcpy(lcd_status_message, "get_z_correction() indexes out of range."); |
|||
lcd_quick_feedback(); |
|||
#endif |
|||
return 0.0; // this used to return state.z_offset
|
|||
} |
|||
|
|||
float z1 = calc_z0(x0, |
|||
map_x_index_to_bed_location(cx), z_values[cx][cy], |
|||
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]); |
|||
float z2 = calc_z0(x0, |
|||
map_x_index_to_bed_location(cx), z_values[cx][cy + 1], |
|||
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]); |
|||
float z0 = calc_z0(y0, |
|||
map_y_index_to_bed_location(cy), z1, |
|||
map_y_index_to_bed_location(cy + 1), z2); |
|||
|
|||
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|||
if (DEBUGGING(MESH_ADJUST)) { |
|||
SERIAL_ECHOPAIR(" raw get_z_correction(", x0); |
|||
SERIAL_ECHOPAIR(",", y0); |
|||
SERIAL_ECHOPGM(")="); |
|||
SERIAL_PROTOCOL_F(z0, 6); |
|||
} |
|||
#endif |
|||
|
|||
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|||
if (DEBUGGING(MESH_ADJUST)) { |
|||
SERIAL_ECHOPGM(" >>>---> "); |
|||
SERIAL_PROTOCOL_F(z0, 6); |
|||
SERIAL_EOL; |
|||
} |
|||
#endif |
|||
|
|||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
|||
z0 = 0.0; // in blm.z_values[][] and propagate through the
|
|||
// calculations. If our correction is NAN, we throw it out
|
|||
// because part of the Mesh is undefined and we don't have the
|
|||
// information we need to complete the height correction.
|
|||
|
|||
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|||
if (DEBUGGING(MESH_ADJUST)) { |
|||
SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( "); |
|||
SERIAL_ECHO(x0); |
|||
SERIAL_ECHOPGM(", "); |
|||
SERIAL_ECHO(y0); |
|||
SERIAL_ECHOLNPGM(" )"); |
|||
} |
|||
#endif |
|||
} |
|||
return z0; // there used to be a +state.z_offset on this line
|
|||
} |
|||
|
|||
/**
|
|||
* This routine is used to scale the Z correction depending upon the current nozzle height. It is |
|||
* optimized for speed. It avoids floating point operations by checking if the requested scaling |
|||
* factor is going to be the same as the last time the function calculated a value. If so, it just |
|||
* returns it. |
|||
* |
|||
* If it must do a calcuation, it will return a scaling factor of 0.0 if the UBL System is not active |
|||
* or if the current Z Height is past the specified 'Fade Height' |
|||
*/ |
|||
FORCE_INLINE float fade_scaling_factor_for_Z(float current_z) { |
|||
if (last_specified_z == current_z) |
|||
return fade_scaling_factor_for_current_height; |
|||
|
|||
last_specified_z = current_z; |
|||
fade_scaling_factor_for_current_height = |
|||
state.active && current_z < state.G29_Correction_Fade_Height |
|||
? 1.0 - (current_z * state.G29_Fade_Height_Multiplier) |
|||
: 0.0; |
|||
return fade_scaling_factor_for_current_height; |
|||
} |
|||
}; |
|||
|
|||
extern bed_leveling blm; |
|||
extern int Unified_Bed_Leveling_EEPROM_start; |
|||
|
|||
#endif // AUTO_BED_LEVELING_UBL
|
|||
#endif // UNIFIED_BED_LEVELING_H
|
@ -0,0 +1,296 @@ |
|||
/**
|
|||
* Marlin 3D Printer Firmware |
|||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|||
* |
|||
* Based on Sprinter and grbl. |
|||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
|||
* |
|||
* This program is free software: you can redistribute it and/or modify |
|||
* it under the terms of the GNU General Public License as published by |
|||
* the Free Software Foundation, either version 3 of the License, or |
|||
* (at your option) any later version. |
|||
* |
|||
* This program is distributed in the hope that it will be useful, |
|||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
* GNU General Public License for more details. |
|||
* |
|||
* You should have received a copy of the GNU General Public License |
|||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
* |
|||
*/ |
|||
|
|||
#include "Marlin.h" |
|||
#include "math.h" |
|||
|
|||
#if ENABLED(AUTO_BED_LEVELING_UBL) |
|||
#include "UBL.h" |
|||
#include "hex_print_routines.h" |
|||
|
|||
/**
|
|||
* These variables used to be declared inside the bed_leveling class. We are going to still declare |
|||
* them within the .cpp file for bed leveling. But there is only one instance of the bed leveling |
|||
* object and we can get rid of a level of inderection by not making them 'member data'. So, in the |
|||
* interest of speed, we do it this way. When we move to a 32-Bit processor, they can be moved |
|||
* back inside the bed leveling class. |
|||
*/ |
|||
float last_specified_z, |
|||
fade_scaling_factor_for_current_height, |
|||
z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS], |
|||
mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
|
|||
mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
|||
|
|||
bed_leveling::bed_leveling() { |
|||
for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety
|
|||
mesh_index_to_X_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i); |
|||
|
|||
for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety
|
|||
mesh_index_to_Y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i); |
|||
|
|||
reset(); |
|||
} |
|||
|
|||
void bed_leveling::store_state() { |
|||
int k = E2END - sizeof(blm.state); |
|||
eeprom_write_block((void *)&blm.state, (void *)k, sizeof(blm.state)); |
|||
} |
|||
|
|||
void bed_leveling::load_state() { |
|||
int k = E2END - sizeof(blm.state); |
|||
eeprom_read_block((void *)&blm.state, (void *)k, sizeof(blm.state)); |
|||
|
|||
if (sanity_check()) |
|||
SERIAL_PROTOCOLLNPGM("?In load_state() sanity_check() failed.\n"); |
|||
|
|||
// These lines can go away in a few weeks. They are just
|
|||
// to make sure people updating thier firmware won't be using
|
|||
if (blm.state.G29_Fade_Height_Multiplier != 1.0 / blm.state.G29_Correction_Fade_Height) { // an incomplete Bed_Leveling.state structure. For speed
|
|||
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height; // we now multiply by the inverse of the Fade Height instead of
|
|||
store_state(); // dividing by it. Soon... all of the old structures will be
|
|||
} // updated, but until then, we try to ease the transition
|
|||
// for our Beta testers.
|
|||
} |
|||
|
|||
void bed_leveling::load_mesh(int m) { |
|||
int k = E2END - sizeof(blm.state), |
|||
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values); |
|||
|
|||
if (m == -1) { |
|||
SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n"); |
|||
reset(); |
|||
return; |
|||
} |
|||
|
|||
if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) { |
|||
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); |
|||
return; |
|||
} |
|||
|
|||
j = k - (m + 1) * sizeof(z_values); |
|||
eeprom_read_block((void *)&z_values , (void *)j, sizeof(z_values)); |
|||
|
|||
SERIAL_PROTOCOLPGM("Mesh loaded from slot "); |
|||
SERIAL_PROTOCOL(m); |
|||
SERIAL_PROTOCOLPGM(" at offset 0x"); |
|||
prt_hex_word(j); |
|||
SERIAL_EOL; |
|||
} |
|||
|
|||
void bed_leveling:: store_mesh(int m) { |
|||
int k = E2END - sizeof(state), |
|||
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values); |
|||
|
|||
if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) { |
|||
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); |
|||
SERIAL_PROTOCOL(m); |
|||
SERIAL_PROTOCOLLNPGM(" mesh slots available.\n"); |
|||
SERIAL_PROTOCOLLNPAIR("E2END : ", E2END); |
|||
SERIAL_PROTOCOLLNPAIR("k : ", k); |
|||
SERIAL_PROTOCOLLNPAIR("j : ", j); |
|||
SERIAL_PROTOCOLLNPAIR("m : ", m); |
|||
SERIAL_EOL; |
|||
return; |
|||
} |
|||
|
|||
j = k - (m + 1) * sizeof(z_values); |
|||
eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values)); |
|||
|
|||
SERIAL_PROTOCOLPGM("Mesh saved in slot "); |
|||
SERIAL_PROTOCOL(m); |
|||
SERIAL_PROTOCOLPGM(" at offset 0x"); |
|||
prt_hex_word(j); |
|||
SERIAL_EOL; |
|||
} |
|||
|
|||
void bed_leveling::reset() { |
|||
state.active = false; |
|||
state.z_offset = 0; |
|||
state.EEPROM_storage_slot = -1; |
|||
|
|||
ZERO(z_values); |
|||
|
|||
last_specified_z = -999.9; // We can't pre-initialize these values in the declaration
|
|||
fade_scaling_factor_for_current_height = 0.0; // due to C++11 constraints
|
|||
} |
|||
|
|||
void bed_leveling::invalidate() { |
|||
prt_hex_word((unsigned int)this); |
|||
SERIAL_EOL; |
|||
|
|||
state.active = false; |
|||
state.z_offset = 0; |
|||
for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++) |
|||
for (int y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) |
|||
z_values[x][y] = NAN; |
|||
} |
|||
|
|||
void bed_leveling::display_map(int map_type) { |
|||
float f, current_xi, current_yi; |
|||
int8_t i, j; |
|||
UNUSED(map_type); |
|||
|
|||
SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n"); |
|||
|
|||
SERIAL_ECHOPAIR("(", 0); |
|||
SERIAL_ECHOPAIR(", ", UBL_MESH_NUM_Y_POINTS - 1); |
|||
SERIAL_ECHOPGM(") "); |
|||
|
|||
current_xi = blm.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0); |
|||
current_yi = blm.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0); |
|||
|
|||
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) |
|||
SERIAL_ECHOPGM(" "); |
|||
|
|||
SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS - 1); |
|||
SERIAL_ECHOPAIR(",", UBL_MESH_NUM_Y_POINTS - 1); |
|||
SERIAL_ECHOLNPGM(")"); |
|||
|
|||
// if (map_type || 1) {
|
|||
SERIAL_ECHOPAIR("(", UBL_MESH_MIN_X); |
|||
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y); |
|||
SERIAL_CHAR(')'); |
|||
|
|||
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) |
|||
SERIAL_ECHOPGM(" "); |
|||
|
|||
SERIAL_ECHOPAIR("(", UBL_MESH_MAX_X); |
|||
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y); |
|||
SERIAL_ECHOLNPGM(")"); |
|||
// }
|
|||
|
|||
for (j = UBL_MESH_NUM_Y_POINTS - 1; j >= 0; j--) { |
|||
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { |
|||
f = z_values[i][j]; |
|||
|
|||
// is the nozzle here? if so, mark the number
|
|||
SERIAL_CHAR(i == current_xi && j == current_yi ? '[' : ' '); |
|||
|
|||
if (isnan(f)) |
|||
SERIAL_PROTOCOLPGM(" . "); |
|||
else { |
|||
// if we don't do this, the columns won't line up nicely
|
|||
if (f >= 0.0) SERIAL_CHAR(' '); |
|||
SERIAL_PROTOCOL_F(f, 5); |
|||
idle(); |
|||
} |
|||
if (i == current_xi && j == current_yi) // is the nozzle here? if so, finish marking the number
|
|||
SERIAL_CHAR(']'); |
|||
else |
|||
SERIAL_PROTOCOL(" "); |
|||
|
|||
SERIAL_CHAR(' '); |
|||
} |
|||
SERIAL_EOL; |
|||
if (j) { // we want the (0,0) up tight against the block of numbers
|
|||
SERIAL_CHAR(' '); |
|||
SERIAL_EOL; |
|||
} |
|||
} |
|||
|
|||
// if (map_type) {
|
|||
SERIAL_ECHOPAIR("(", int(UBL_MESH_MIN_X)); |
|||
SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y)); |
|||
SERIAL_ECHOPGM(") "); |
|||
|
|||
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) |
|||
SERIAL_ECHOPGM(" "); |
|||
|
|||
SERIAL_ECHOPAIR("(", int(UBL_MESH_MAX_X)); |
|||
SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y)); |
|||
SERIAL_CHAR(')'); |
|||
// }
|
|||
|
|||
SERIAL_ECHOPAIR("(", 0); |
|||
SERIAL_ECHOPAIR(",", 0); |
|||
SERIAL_ECHOPGM(") "); |
|||
|
|||
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) |
|||
SERIAL_ECHOPGM(" "); |
|||
|
|||
SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS-1); |
|||
SERIAL_ECHOPAIR(",", 0); |
|||
SERIAL_CHAR(')'); |
|||
|
|||
SERIAL_CHAR(' '); |
|||
SERIAL_EOL; |
|||
} |
|||
|
|||
bool bed_leveling::sanity_check() { |
|||
uint8_t error_flag = 0; |
|||
|
|||
if (state.n_x != UBL_MESH_NUM_X_POINTS) { |
|||
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_X_POINTS set wrong\n"); |
|||
error_flag++; |
|||
} |
|||
|
|||
if (state.n_y != UBL_MESH_NUM_Y_POINTS) { |
|||
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_Y_POINTS set wrong\n"); |
|||
error_flag++; |
|||
} |
|||
|
|||
if (state.mesh_x_min != UBL_MESH_MIN_X) { |
|||
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n"); |
|||
error_flag++; |
|||
} |
|||
|
|||
if (state.mesh_y_min != UBL_MESH_MIN_Y) { |
|||
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n"); |
|||
error_flag++; |
|||
} |
|||
|
|||
if (state.mesh_x_max != UBL_MESH_MAX_X) { |
|||
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n"); |
|||
error_flag++; |
|||
} |
|||
|
|||
if (state.mesh_y_max != UBL_MESH_MAX_Y) { |
|||
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n"); |
|||
error_flag++; |
|||
} |
|||
|
|||
if (state.mesh_x_dist != MESH_X_DIST) { |
|||
SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n"); |
|||
error_flag++; |
|||
} |
|||
|
|||
if (state.mesh_y_dist != MESH_Y_DIST) { |
|||
SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n"); |
|||
error_flag++; |
|||
} |
|||
|
|||
int k = E2END - sizeof(blm.state), |
|||
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values); |
|||
|
|||
if (j < 1) { |
|||
SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n"); |
|||
error_flag++; |
|||
} |
|||
|
|||
// SERIAL_PROTOCOLPGM("?sanity_check() return value: ");
|
|||
// SERIAL_PROTOCOL(error_flag);
|
|||
// SERIAL_EOL;
|
|||
|
|||
return !!error_flag; |
|||
} |
|||
|
|||
#endif // AUTO_BED_LEVELING_UBL
|
File diff suppressed because it is too large
@ -0,0 +1,553 @@ |
|||
/**
|
|||
* Marlin 3D Printer Firmware |
|||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|||
* |
|||
* Based on Sprinter and grbl. |
|||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
|||
* |
|||
* This program is free software: you can redistribute it and/or modify |
|||
* it under the terms of the GNU General Public License as published by |
|||
* the Free Software Foundation, either version 3 of the License, or |
|||
* (at your option) any later version. |
|||
* |
|||
* This program is distributed in the hope that it will be useful, |
|||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
* GNU General Public License for more details. |
|||
* |
|||
* You should have received a copy of the GNU General Public License |
|||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
* |
|||
*/ |
|||
#include "Marlin.h" |
|||
|
|||
#if ENABLED(AUTO_BED_LEVELING_UBL) |
|||
|
|||
#include "UBL.h" |
|||
#include "planner.h" |
|||
#include <avr/io.h> |
|||
#include <math.h> |
|||
|
|||
extern void set_current_to_destination(); |
|||
extern bool G26_Debug_flag; |
|||
void debug_current_and_destination(char *title); |
|||
|
|||
void wait_for_button_press(); |
|||
|
|||
void UBL_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) { |
|||
|
|||
int cell_start_xi, cell_start_yi, cell_dest_xi, cell_dest_yi; |
|||
int left_flag, down_flag; |
|||
int current_xi, current_yi; |
|||
int dxi, dyi, xi_cnt, yi_cnt; |
|||
bool use_X_dist, inf_normalized_flag, inf_m_flag; |
|||
float x_start, y_start; |
|||
float x, y, z1, z2, z0 /*, z_optimized */; |
|||
float next_mesh_line_x, next_mesh_line_y, a0ma1diva2ma1; |
|||
float on_axis_distance, e_normalized_dist, e_position, e_start, z_normalized_dist, z_position, z_start; |
|||
float dx, dy, adx, ady, m, c; |
|||
|
|||
//
|
|||
// Much of the nozzle movement will be within the same cell. So we will do as little computation
|
|||
// as possible to determine if this is the case. If this move is within the same cell, we will
|
|||
// just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
|
|||
//
|
|||
|
|||
x_start = current_position[X_AXIS]; |
|||
y_start = current_position[Y_AXIS]; |
|||
z_start = current_position[Z_AXIS]; |
|||
e_start = current_position[E_AXIS]; |
|||
|
|||
cell_start_xi = blm.get_cell_index_x(x_start); |
|||
cell_start_yi = blm.get_cell_index_y(y_start); |
|||
cell_dest_xi = blm.get_cell_index_x(x_end); |
|||
cell_dest_yi = blm.get_cell_index_y(y_end); |
|||
|
|||
if (G26_Debug_flag!=0) { |
|||
SERIAL_ECHOPGM(" UBL_line_to_destination(xe="); |
|||
SERIAL_ECHO(x_end); |
|||
SERIAL_ECHOPGM(",ye="); |
|||
SERIAL_ECHO(y_end); |
|||
SERIAL_ECHOPGM(",ze="); |
|||
SERIAL_ECHO(z_end); |
|||
SERIAL_ECHOPGM(",ee="); |
|||
SERIAL_ECHO(e_end); |
|||
SERIAL_ECHOPGM(")\n"); |
|||
debug_current_and_destination( (char *) "Start of UBL_line_to_destination()"); |
|||
} |
|||
|
|||
if ((cell_start_xi == cell_dest_xi) && (cell_start_yi == cell_dest_yi)) { // if the whole move is within the same cell,
|
|||
// we don't need to break up the move
|
|||
//
|
|||
// If we are moving off the print bed, we are going to allow the move at this level.
|
|||
// But we detect it and isolate it. For now, we just pass along the request.
|
|||
//
|
|||
|
|||
if (cell_dest_xi<0 || cell_dest_yi<0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) { |
|||
|
|||
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
|||
// a reasonable correction would be.
|
|||
|
|||
planner.buffer_line(x_end, y_end, z_end + blm.state.z_offset, e_end, feed_rate, extruder); |
|||
set_current_to_destination(); |
|||
if (G26_Debug_flag!=0) { |
|||
debug_current_and_destination( (char *) "out of bounds in UBL_line_to_destination()"); |
|||
} |
|||
return; |
|||
} |
|||
|
|||
// we can optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
|
|||
// generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
|
|||
// We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
|
|||
// We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
|
|||
// instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
|
|||
// to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
|
|||
|
|||
FINAL_MOVE: |
|||
a0ma1diva2ma1 = (x_end - mesh_index_to_X_location[cell_dest_xi]) * (float) (1.0 / MESH_X_DIST); |
|||
|
|||
z1 = z_values[cell_dest_xi][cell_dest_yi] + |
|||
(z_values[cell_dest_xi + 1][cell_dest_yi] - z_values[cell_dest_xi][cell_dest_yi]) * a0ma1diva2ma1; |
|||
|
|||
z2 = z_values[cell_dest_xi][cell_dest_yi+1] + |
|||
(z_values[cell_dest_xi+1][cell_dest_yi+1] - z_values[cell_dest_xi][cell_dest_yi+1]) * a0ma1diva2ma1; |
|||
|
|||
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
|
|||
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
|
|||
|
|||
a0ma1diva2ma1 = (y_end - mesh_index_to_Y_location[cell_dest_yi]) * (float) (1.0 / MESH_Y_DIST); |
|||
|
|||
z0 = z1 + (z2 - z1) * a0ma1diva2ma1; |
|||
|
|||
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
|||
// that the correct value is being passed to planner.buffer_line()
|
|||
//
|
|||
/*
|
|||
z_optimized = z0; |
|||
z0 = blm.get_z_correction( x_end, y_end); |
|||
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { |
|||
debug_current_and_destination( (char *) "FINAL_MOVE: z_correction()"); |
|||
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); |
|||
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); |
|||
SERIAL_ECHOPAIR(" x_end=", x_end); |
|||
SERIAL_ECHOPAIR(" y_end=", y_end); |
|||
SERIAL_ECHOPAIR(" z0=", z0); |
|||
SERIAL_ECHOPAIR(" z_optimized=", z_optimized); |
|||
SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0)); |
|||
SERIAL_EOL; |
|||
} |
|||
*/ |
|||
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); |
|||
|
|||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
|||
z0 = 0.0; // in z_values[][] and propagate through the
|
|||
// calculations. If our correction is NAN, we throw it out
|
|||
// because part of the Mesh is undefined and we don't have the
|
|||
// information we need to complete the height correction.
|
|||
} |
|||
|
|||
planner.buffer_line(x_end, y_end, z_end + z0 + blm.state.z_offset, e_end, feed_rate, extruder); |
|||
if (G26_Debug_flag!=0) { |
|||
debug_current_and_destination( (char *) "FINAL_MOVE in UBL_line_to_destination()"); |
|||
} |
|||
set_current_to_destination(); |
|||
return; |
|||
} |
|||
|
|||
//
|
|||
// If we get here, we are processing a move that crosses at least one Mesh Line. We will check
|
|||
// for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
|
|||
// of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
|
|||
// computation and in fact most lines are of this nature. We will check for that in the following
|
|||
// blocks of code:
|
|||
|
|||
left_flag = 0; |
|||
down_flag = 0; |
|||
inf_m_flag = false; |
|||
inf_normalized_flag = false; |
|||
|
|||
dx = x_end - x_start; |
|||
dy = y_end - y_start; |
|||
|
|||
if (dx<0.0) { // figure out which way we need to move to get to the next cell
|
|||
dxi = -1; |
|||
adx = -dx; // absolute value of dx. We already need to check if dx and dy are negative.
|
|||
} |
|||
else { // We may as well generate the appropriate values for adx and ady right now
|
|||
dxi = 1; // to save setting up the abs() function call and actually doing the call.
|
|||
adx = dx; |
|||
} |
|||
if (dy<0.0) { |
|||
dyi = -1; |
|||
ady = -dy; // absolute value of dy
|
|||
} |
|||
else { |
|||
dyi = 1; |
|||
ady = dy; |
|||
} |
|||
|
|||
if (dx<0.0) left_flag = 1; |
|||
if (dy<0.0) down_flag = 1; |
|||
if (cell_start_xi == cell_dest_xi) dxi = 0; |
|||
if (cell_start_yi == cell_dest_yi) dyi = 0; |
|||
|
|||
//
|
|||
// Compute the scaling factor for the extruder for each partial move.
|
|||
// We need to watch out for zero length moves because it will cause us to
|
|||
// have an infinate scaling factor. We are stuck doing a floating point
|
|||
// divide to get our scaling factor, but after that, we just multiply by this
|
|||
// number. We also pick our scaling factor based on whether the X or Y
|
|||
// component is larger. We use the biggest of the two to preserve precision.
|
|||
//
|
|||
if ( adx > ady ) { |
|||
use_X_dist = true; |
|||
on_axis_distance = x_end-x_start; |
|||
} |
|||
else { |
|||
use_X_dist = false; |
|||
on_axis_distance = y_end-y_start; |
|||
} |
|||
e_position = e_end - e_start; |
|||
e_normalized_dist = e_position / on_axis_distance; |
|||
|
|||
z_position = z_end - z_start; |
|||
z_normalized_dist = z_position / on_axis_distance; |
|||
|
|||
if (e_normalized_dist==INFINITY || e_normalized_dist==-INFINITY) { |
|||
inf_normalized_flag = true; |
|||
} |
|||
current_xi = cell_start_xi; |
|||
current_yi = cell_start_yi; |
|||
|
|||
m = dy / dx; |
|||
c = y_start - m*x_start; |
|||
if (m == INFINITY || m == -INFINITY) { |
|||
inf_m_flag = true; |
|||
} |
|||
//
|
|||
// This block handles vertical lines. These are lines that stay within the same
|
|||
// X Cell column. They do not need to be perfectly vertical. They just can
|
|||
// not cross into another X Cell column.
|
|||
//
|
|||
if (dxi == 0) { // Check for a vertical line
|
|||
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
|
|||
while (current_yi != cell_dest_yi + down_flag) { |
|||
current_yi += dyi; |
|||
next_mesh_line_y = mesh_index_to_Y_location[current_yi]; |
|||
if (inf_m_flag) { |
|||
x = x_start; // if the slope of the line is infinite, we won't do the calculations
|
|||
} |
|||
// we know the next X is the same so we can recover and continue!
|
|||
else { |
|||
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
|
|||
} |
|||
|
|||
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi); |
|||
|
|||
//
|
|||
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
|||
// that the correct value is being passed to planner.buffer_line()
|
|||
//
|
|||
/*
|
|||
z_optimized = z0; |
|||
z0 = blm.get_z_correction( x, next_mesh_line_y); |
|||
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { |
|||
debug_current_and_destination( (char *) "VERTICAL z_correction()"); |
|||
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); |
|||
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); |
|||
SERIAL_ECHOPAIR(" x=", x); |
|||
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y); |
|||
SERIAL_ECHOPAIR(" z0=", z0); |
|||
SERIAL_ECHOPAIR(" z_optimized=", z_optimized); |
|||
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); |
|||
SERIAL_ECHO("\n"); |
|||
} |
|||
*/ |
|||
|
|||
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); |
|||
|
|||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
|||
z0 = 0.0; // in z_values[][] and propagate through the
|
|||
// calculations. If our correction is NAN, we throw it out
|
|||
// because part of the Mesh is undefined and we don't have the
|
|||
// information we need to complete the height correction.
|
|||
} |
|||
y = mesh_index_to_Y_location[current_yi]; |
|||
|
|||
// Without this check, it is possible for the algorythm to generate a zero length move in the case
|
|||
// where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
|
|||
// happens, it might be best to remove the check and always 'schedule' the move because
|
|||
// the planner.buffer_line() routine will filter it if that happens.
|
|||
if ( y!=y_start) { |
|||
if ( inf_normalized_flag == false ) { |
|||
on_axis_distance = y - y_start; // we don't need to check if the extruder position
|
|||
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
|
|||
z_position = z_start + on_axis_distance * z_normalized_dist; |
|||
} |
|||
else { |
|||
e_position = e_start; |
|||
z_position = z_start; |
|||
} |
|||
|
|||
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder); |
|||
} //else printf("FIRST MOVE PRUNED ");
|
|||
} |
|||
//
|
|||
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
|
|||
//
|
|||
if (G26_Debug_flag!=0) { |
|||
debug_current_and_destination( (char *) "vertical move done in UBL_line_to_destination()"); |
|||
} |
|||
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) { |
|||
goto FINAL_MOVE; |
|||
} |
|||
set_current_to_destination(); |
|||
return; |
|||
} |
|||
|
|||
//
|
|||
// This block handles horizontal lines. These are lines that stay within the same
|
|||
// Y Cell row. They do not need to be perfectly horizontal. They just can
|
|||
// not cross into another Y Cell row.
|
|||
//
|
|||
|
|||
if (dyi == 0) { // Check for a horiziontal line
|
|||
current_xi += left_flag; // Line is heading left, we just want to go to the left
|
|||
// edge of this cell for the first move.
|
|||
while (current_xi != cell_dest_xi + left_flag) { |
|||
current_xi += dxi; |
|||
next_mesh_line_x = mesh_index_to_X_location[current_xi]; |
|||
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
|
|||
|
|||
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi); |
|||
|
|||
//
|
|||
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
|||
// that the correct value is being passed to planner.buffer_line()
|
|||
//
|
|||
/*
|
|||
z_optimized = z0; |
|||
z0 = blm.get_z_correction( next_mesh_line_x, y); |
|||
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { |
|||
debug_current_and_destination( (char *) "HORIZONTAL z_correction()"); |
|||
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); |
|||
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); |
|||
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x); |
|||
SERIAL_ECHOPAIR(" y=", y); |
|||
SERIAL_ECHOPAIR(" z0=", z0); |
|||
SERIAL_ECHOPAIR(" z_optimized=", z_optimized); |
|||
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); |
|||
SERIAL_ECHO("\n"); |
|||
} |
|||
*/ |
|||
|
|||
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); |
|||
|
|||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
|||
z0 = 0.0; // in z_values[][] and propagate through the
|
|||
// calculations. If our correction is NAN, we throw it out
|
|||
// because part of the Mesh is undefined and we don't have the
|
|||
// information we need to complete the height correction.
|
|||
} |
|||
x = mesh_index_to_X_location[current_xi]; |
|||
|
|||
// Without this check, it is possible for the algorythm to generate a zero length move in the case
|
|||
// where the line is heading left and it is starting right on a Mesh Line boundary. For how often
|
|||
// that happens, it might be best to remove the check and always 'schedule' the move because
|
|||
// the planner.buffer_line() routine will filter it if that happens.
|
|||
if ( x!=x_start) { |
|||
if ( inf_normalized_flag == false ) { |
|||
on_axis_distance = x - x_start; // we don't need to check if the extruder position
|
|||
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
|||
z_position = z_start + on_axis_distance * z_normalized_dist; |
|||
} |
|||
else { |
|||
e_position = e_start; |
|||
z_position = z_start; |
|||
} |
|||
|
|||
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder); |
|||
} //else printf("FIRST MOVE PRUNED ");
|
|||
} |
|||
if (G26_Debug_flag!=0) { |
|||
debug_current_and_destination( (char *) "horizontal move done in UBL_line_to_destination()"); |
|||
} |
|||
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) { |
|||
goto FINAL_MOVE; |
|||
} |
|||
set_current_to_destination(); |
|||
return; |
|||
} |
|||
|
|||
//
|
|||
//
|
|||
//
|
|||
//
|
|||
// This block handles the generic case of a line crossing both X and Y
|
|||
// Mesh lines.
|
|||
//
|
|||
//
|
|||
//
|
|||
//
|
|||
|
|||
xi_cnt = cell_start_xi - cell_dest_xi; |
|||
if ( xi_cnt < 0 ) { |
|||
xi_cnt = -xi_cnt; |
|||
} |
|||
|
|||
yi_cnt = cell_start_yi - cell_dest_yi; |
|||
if ( yi_cnt < 0 ) { |
|||
yi_cnt = -yi_cnt; |
|||
} |
|||
|
|||
current_xi += left_flag; |
|||
current_yi += down_flag; |
|||
|
|||
while ( xi_cnt>0 || yi_cnt>0 ) { |
|||
|
|||
next_mesh_line_x = mesh_index_to_X_location[current_xi + dxi]; |
|||
next_mesh_line_y = mesh_index_to_Y_location[current_yi + dyi]; |
|||
|
|||
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
|
|||
x = (next_mesh_line_y-c) / m; // Calculate X at the next Y mesh line (we don't have to worry
|
|||
// about m being equal to 0.0 If this was the case, we would have
|
|||
// detected this as a vertical line move up above and we wouldn't
|
|||
// be down here doing a generic type of move.
|
|||
|
|||
if ((left_flag && (x>next_mesh_line_x)) || (!left_flag && (x<next_mesh_line_x))) { // Check if we hit the Y line first
|
|||
//
|
|||
// Yes! Crossing a Y Mesh Line next
|
|||
//
|
|||
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi-left_flag, current_yi+dyi); |
|||
|
|||
//
|
|||
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
|||
// that the correct value is being passed to planner.buffer_line()
|
|||
//
|
|||
|
|||
/*
|
|||
|
|||
z_optimized = z0; |
|||
|
|||
z0 = blm.get_z_correction( x, next_mesh_line_y); |
|||
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { |
|||
debug_current_and_destination( (char *) "General_1: z_correction()"); |
|||
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); |
|||
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); { |
|||
SERIAL_ECHOPAIR(" x=", x); |
|||
} |
|||
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y); |
|||
SERIAL_ECHOPAIR(" z0=", z0); |
|||
SERIAL_ECHOPAIR(" z_optimized=", z_optimized); |
|||
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); |
|||
SERIAL_ECHO("\n"); |
|||
} |
|||
*/ |
|||
|
|||
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); |
|||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
|||
z0 = 0.0; // in z_values[][] and propagate through the
|
|||
// calculations. If our correction is NAN, we throw it out
|
|||
// because part of the Mesh is undefined and we don't have the
|
|||
// information we need to complete the height correction.
|
|||
} |
|||
|
|||
if ( inf_normalized_flag == false ) { |
|||
if ( use_X_dist ) { |
|||
on_axis_distance = x - x_start; |
|||
} |
|||
else { |
|||
on_axis_distance = next_mesh_line_y - y_start; |
|||
} |
|||
e_position = e_start + on_axis_distance * e_normalized_dist; |
|||
z_position = z_start + on_axis_distance * z_normalized_dist; |
|||
} |
|||
else { |
|||
e_position = e_start; |
|||
z_position = z_start; |
|||
} |
|||
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder); |
|||
current_yi += dyi; |
|||
yi_cnt--; |
|||
} |
|||
else { |
|||
//
|
|||
// Yes! Crossing a X Mesh Line next
|
|||
//
|
|||
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi+dxi, current_yi-down_flag); |
|||
|
|||
|
|||
//
|
|||
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
|||
// that the correct value is being passed to planner.buffer_line()
|
|||
//
|
|||
/*
|
|||
z_optimized = z0; |
|||
z0 = blm.get_z_correction( next_mesh_line_x, y); |
|||
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { |
|||
debug_current_and_destination( (char *) "General_2: z_correction()"); |
|||
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); |
|||
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); |
|||
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x); |
|||
SERIAL_ECHOPAIR(" y=", y); |
|||
SERIAL_ECHOPAIR(" z0=", z0); |
|||
SERIAL_ECHOPAIR(" z_optimized=", z_optimized); |
|||
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); |
|||
SERIAL_ECHO("\n"); |
|||
} |
|||
*/ |
|||
|
|||
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); |
|||
|
|||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
|||
z0 = 0.0; // in z_values[][] and propagate through the
|
|||
// calculations. If our correction is NAN, we throw it out
|
|||
// because part of the Mesh is undefined and we don't have the
|
|||
// information we need to complete the height correction.
|
|||
} |
|||
if ( inf_normalized_flag == false ) { |
|||
if ( use_X_dist ) { |
|||
on_axis_distance = next_mesh_line_x - x_start; |
|||
} |
|||
else { |
|||
on_axis_distance = y - y_start; |
|||
} |
|||
e_position = e_start + on_axis_distance * e_normalized_dist; |
|||
z_position = z_start + on_axis_distance * z_normalized_dist; |
|||
} |
|||
else { |
|||
e_position = e_start; |
|||
z_position = z_start; |
|||
} |
|||
|
|||
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder); |
|||
current_xi += dxi; |
|||
xi_cnt--; |
|||
} |
|||
} |
|||
if (G26_Debug_flag) { |
|||
debug_current_and_destination( (char *) "generic move done in UBL_line_to_destination()"); |
|||
} |
|||
if (current_position[0] != x_end || current_position[1] != y_end) { |
|||
goto FINAL_MOVE; |
|||
} |
|||
set_current_to_destination(); |
|||
return; |
|||
} |
|||
|
|||
void wait_for_button_press() { |
|||
// if ( !been_to_2_6 )
|
|||
//return; // bob - I think this should be commented out
|
|||
|
|||
SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
|
|||
SET_OUTPUT(64); |
|||
while (READ(66) & 0x01) idle(); |
|||
|
|||
delay(50); |
|||
while (!(READ(66) & 0x01)) idle(); |
|||
delay(50); |
|||
} |
|||
|
|||
#endif |
|||
|
|||
|
@ -0,0 +1,47 @@ |
|||
/**
|
|||
* Marlin 3D Printer Firmware |
|||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|||
* |
|||
* Based on Sprinter and grbl. |
|||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
|||
* |
|||
* This program is free software: you can redistribute it and/or modify |
|||
* it under the terms of the GNU General Public License as published by |
|||
* the Free Software Foundation, either version 3 of the License, or |
|||
* (at your option) any later version. |
|||
* |
|||
* This program is distributed in the hope that it will be useful, |
|||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
* GNU General Public License for more details. |
|||
* |
|||
* You should have received a copy of the GNU General Public License |
|||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
* |
|||
*/ |
|||
|
|||
|
|||
#include "Marlin.h" |
|||
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(M100_FREE_MEMORY_WATCHER) |
|||
|
|||
#include "hex_print_routines.h" |
|||
|
|||
void prt_hex_nibble(uint8_t n) { |
|||
if (n <= 9) |
|||
SERIAL_ECHO(n); |
|||
else |
|||
SERIAL_ECHO((char)('A' + n - 10)); |
|||
delay(3); |
|||
} |
|||
|
|||
void prt_hex_byte(uint8_t b) { |
|||
prt_hex_nibble((b & 0xF0) >> 4); |
|||
prt_hex_nibble(b & 0x0F); |
|||
} |
|||
|
|||
void prt_hex_word(uint16_t w) { |
|||
prt_hex_byte((w & 0xFF00) >> 8); |
|||
prt_hex_byte(w & 0x0FF); |
|||
} |
|||
|
|||
#endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER
|
@ -0,0 +1,33 @@ |
|||
/**
|
|||
* Marlin 3D Printer Firmware |
|||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|||
* |
|||
* Based on Sprinter and grbl. |
|||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
|||
* |
|||
* This program is free software: you can redistribute it and/or modify |
|||
* it under the terms of the GNU General Public License as published by |
|||
* the Free Software Foundation, either version 3 of the License, or |
|||
* (at your option) any later version. |
|||
* |
|||
* This program is distributed in the hope that it will be useful, |
|||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
* GNU General Public License for more details. |
|||
* |
|||
* You should have received a copy of the GNU General Public License |
|||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
* |
|||
*/ |
|||
|
|||
#ifndef HEX_PRINT_ROUTINES_H |
|||
#define HEX_PRINT_ROUTINES_H |
|||
|
|||
//
|
|||
// 3 support routines to print hex numbers. We can print a nibble, byte and word
|
|||
//
|
|||
void prt_hex_nibble(uint8_t n); |
|||
void prt_hex_byte(uint8_t b); |
|||
void prt_hex_word(uint16_t w); |
|||
|
|||
#endif // HEX_PRINT_ROUTINES_H
|
Loading…
Reference in new issue