|
@ -4274,17 +4274,18 @@ inline void gcode_M42() { |
|
|
*/ |
|
|
*/ |
|
|
setup_for_endstop_move(); |
|
|
setup_for_endstop_move(); |
|
|
|
|
|
|
|
|
|
|
|
// Height before each probe (except the first)
|
|
|
|
|
|
float z_before = current_position[Z_AXIS] + (deploy_probe_for_each_reading ? Z_RAISE_BEFORE_PROBING : Z_RAISE_BETWEEN_PROBINGS); |
|
|
|
|
|
|
|
|
|
|
|
// Deploy the probe and probe the first point
|
|
|
probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, |
|
|
probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, |
|
|
deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy, |
|
|
deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy, |
|
|
verbose_level); |
|
|
verbose_level); |
|
|
|
|
|
|
|
|
raise_z_after_probing(); |
|
|
|
|
|
|
|
|
|
|
|
randomSeed(millis()); |
|
|
randomSeed(millis()); |
|
|
|
|
|
|
|
|
double mean, sigma, sample_set[n_samples]; |
|
|
double mean, sigma, sample_set[n_samples]; |
|
|
for (uint8_t n = 0; n < n_samples; n++) { |
|
|
for (uint8_t n = 0; n < n_samples; n++) { |
|
|
delay(500); |
|
|
|
|
|
if (n_legs) { |
|
|
if (n_legs) { |
|
|
int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
|
|
int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
|
|
float angle = random(0.0, 360.0), |
|
|
float angle = random(0.0, 360.0), |
|
@ -4359,18 +4360,13 @@ inline void gcode_M42() { |
|
|
} // n_legs loop
|
|
|
} // n_legs loop
|
|
|
} // n_legs
|
|
|
} // n_legs
|
|
|
|
|
|
|
|
|
/**
|
|
|
// The last probe will differ
|
|
|
* We don't really have to do this move, but if we don't we can see a |
|
|
|
|
|
* funny shift in the Z Height because the user might not have the |
|
|
|
|
|
* Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBINGS |
|
|
|
|
|
* height. This gets us back to the probe location at the same height that |
|
|
|
|
|
* we have been running around the circle at. |
|
|
|
|
|
*/ |
|
|
|
|
|
bool last_probe = (n == n_samples - 1); |
|
|
bool last_probe = (n == n_samples - 1); |
|
|
do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER)); |
|
|
|
|
|
|
|
|
// Probe a single point
|
|
|
sample_set[n] = probe_pt( |
|
|
sample_set[n] = probe_pt( |
|
|
X_probe_location, Y_probe_location, |
|
|
X_probe_location, Y_probe_location, |
|
|
Z_RAISE_BEFORE_PROBING, |
|
|
z_before, |
|
|
deploy_probe_for_each_reading ? ProbeDeployAndStow : last_probe ? ProbeStow : ProbeStay, |
|
|
deploy_probe_for_each_reading ? ProbeDeployAndStow : last_probe ? ProbeStow : ProbeStay, |
|
|
verbose_level |
|
|
verbose_level |
|
|
); |
|
|
); |
|
@ -4392,6 +4388,7 @@ inline void gcode_M42() { |
|
|
sum += ss * ss; |
|
|
sum += ss * ss; |
|
|
} |
|
|
} |
|
|
sigma = sqrt(sum / (n + 1)); |
|
|
sigma = sqrt(sum / (n + 1)); |
|
|
|
|
|
|
|
|
if (verbose_level > 1) { |
|
|
if (verbose_level > 1) { |
|
|
SERIAL_PROTOCOL(n + 1); |
|
|
SERIAL_PROTOCOL(n + 1); |
|
|
SERIAL_PROTOCOLPGM(" of "); |
|
|
SERIAL_PROTOCOLPGM(" of "); |
|
@ -4407,9 +4404,14 @@ inline void gcode_M42() { |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
if (verbose_level > 0) SERIAL_EOL; |
|
|
if (verbose_level > 0) SERIAL_EOL; |
|
|
delay(50); |
|
|
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + (last_probe ? Z_RAISE_AFTER_PROBING : Z_RAISE_BETWEEN_PROBINGS)); |
|
|
// Raise before the next loop for the legs
|
|
|
} // End of probe loop code
|
|
|
if (n_legs || last_probe) { |
|
|
|
|
|
do_blocking_move_to_z(last_probe ? Z_RAISE_AFTER_PROBING : z_before); |
|
|
|
|
|
if (!last_probe) delay(500); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
} // End of probe loop
|
|
|
|
|
|
|
|
|
if (verbose_level > 0) { |
|
|
if (verbose_level > 0) { |
|
|
SERIAL_PROTOCOLPGM("Mean: "); |
|
|
SERIAL_PROTOCOLPGM("Mean: "); |
|
|