Browse Source

Calculate dm and e-steps earlier in planner

pull/1/head
Scott Lahteine 8 years ago
parent
commit
1cf878fdb1
  1. 76
      Marlin/planner.cpp

76
Marlin/planner.cpp

@ -656,6 +656,35 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
}
#endif
// Compute direction bit-mask for this block
uint8_t dm = 0;
#if ENABLED(COREXY)
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
if (db < 0) SBI(dm, Y_HEAD); // ...and Y
if (dc < 0) SBI(dm, Z_AXIS);
if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
if (da - db < 0) SBI(dm, B_AXIS); // Motor B direction
#elif ENABLED(COREXZ)
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
if (db < 0) SBI(dm, Y_AXIS);
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
if (da - dc < 0) SBI(dm, C_AXIS); // Motor C direction
#elif ENABLED(COREYZ)
if (da < 0) SBI(dm, X_AXIS);
if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
if (db - dc < 0) SBI(dm, C_AXIS); // Motor C direction
#else
if (da < 0) SBI(dm, X_AXIS);
if (db < 0) SBI(dm, Y_AXIS);
if (dc < 0) SBI(dm, Z_AXIS);
#endif
if (de < 0) SBI(dm, E_AXIS);
int32_t esteps = labs(de) * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01 + 0.5;
// Calculate the buffer head after we push this byte
int next_buffer_head = next_block_index(block_buffer_head);
@ -669,6 +698,9 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
// Clear all flags, including the "busy" bit
block->flag = 0;
// Set direction bits
block->direction_bits = dm;
// Number of steps for each axis
#if ENABLED(COREXY)
// corexy planning
@ -693,8 +725,8 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
block->steps[Z_AXIS] = labs(dc);
#endif
block->steps[E_AXIS] = labs(de) * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01 + 0.5;
block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], block->steps[E_AXIS]);
block->steps[E_AXIS] = esteps;
block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], esteps);
// Bail if this is a zero-length block
if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
@ -714,34 +746,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
block->e_to_p_pressure = baricuda_e_to_p_pressure;
#endif
// Compute direction bit-mask for this block
uint8_t dm = 0;
#if ENABLED(COREXY)
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
if (db < 0) SBI(dm, Y_HEAD); // ...and Y
if (dc < 0) SBI(dm, Z_AXIS);
if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
if (da - db < 0) SBI(dm, B_AXIS); // Motor B direction
#elif ENABLED(COREXZ)
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
if (db < 0) SBI(dm, Y_AXIS);
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
if (da - dc < 0) SBI(dm, C_AXIS); // Motor C direction
#elif ENABLED(COREYZ)
if (da < 0) SBI(dm, X_AXIS);
if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
if (db - dc < 0) SBI(dm, C_AXIS); // Motor C direction
#else
if (da < 0) SBI(dm, X_AXIS);
if (db < 0) SBI(dm, Y_AXIS);
if (dc < 0) SBI(dm, Z_AXIS);
#endif
if (de < 0) SBI(dm, E_AXIS);
block->direction_bits = dm;
block->active_extruder = extruder;
//enable active axes
@ -768,7 +772,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
#endif
// Enable extruder(s)
if (block->steps[E_AXIS]) {
if (esteps) {
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
@ -837,7 +841,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
#endif
}
if (block->steps[E_AXIS])
if (esteps)
NOLESS(fr_mm_s, min_feedrate_mm_s);
else
NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
@ -1035,7 +1039,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
}while(0)
// Start with print or travel acceleration
accel = ceil((block->steps[E_AXIS] ? acceleration : travel_acceleration) * steps_per_mm);
accel = ceil((esteps ? acceleration : travel_acceleration) * steps_per_mm);
// Limit acceleration per axis
if (block->step_event_count <= cutoff_long){
@ -1222,18 +1226,18 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
// This leads to an enormous number of advance steps due to a huge e_acceleration.
// The math is correct, but you don't want a retract move done with advance!
// So this situation is filtered out here.
if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS]) || stepper.get_advance_k() == 0 || (uint32_t) block->steps[E_AXIS] == block->step_event_count) {
if (!esteps || (!block->steps[X_AXIS] && !block->steps[Y_AXIS]) || stepper.get_advance_k() == 0 || (uint32_t)esteps == block->step_event_count) {
block->use_advance_lead = false;
}
else {
block->use_advance_lead = true;
block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count;
block->e_speed_multiplier8 = (esteps << 8) / block->step_event_count;
}
#elif ENABLED(ADVANCE)
// Calculate advance rate
if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) {
if (!esteps || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) {
block->advance_rate = 0;
block->advance = 0;
}

Loading…
Cancel
Save