Erik van der Zalm
13 years ago
4 changed files with 1784 additions and 1479 deletions
@ -1,245 +1,248 @@ |
|||
#ifndef CONFIGURATION_H
|
|||
#define CONFIGURATION_H
|
|||
|
|||
//#define DEBUG_STEPS
|
|||
|
|||
// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
|
|||
|
|||
//// The following define selects which electronics board you have. Please choose the one that matches your setup
|
|||
// MEGA/RAMPS up to 1.2 = 3,
|
|||
// RAMPS 1.3 = 33
|
|||
// Gen6 = 5,
|
|||
// Sanguinololu 1.2 and above = 62
|
|||
// Ultimaker = 7,
|
|||
#define MOTHERBOARD 7
|
|||
//#define MOTHERBOARD 5
|
|||
|
|||
|
|||
//// Thermistor settings:
|
|||
// 1 is 100k thermistor
|
|||
// 2 is 200k thermistor
|
|||
// 3 is mendel-parts thermistor
|
|||
// 4 is 10k thermistor
|
|||
// 5 is ParCan supplied 104GT-2 100K
|
|||
// 6 is EPCOS 100k
|
|||
// 7 is 100k Honeywell thermistor 135-104LAG-J01
|
|||
#define THERMISTORHEATER_1 3
|
|||
#define THERMISTORHEATER_2 3
|
|||
#define THERMISTORBED 3
|
|||
|
|||
//#define HEATER_0_USES_THERMISTOR
|
|||
//#define HEATER_1_USES_THERMISTOR
|
|||
#define HEATER_0_USES_AD595
|
|||
//#define HEATER_1_USES_AD595
|
|||
|
|||
// Select one of these only to define how the bed temp is read.
|
|||
//#define BED_USES_THERMISTOR
|
|||
//#define BED_USES_AD595
|
|||
|
|||
#define HEATER_CHECK_INTERVAL 50
|
|||
#define BED_CHECK_INTERVAL 5000
|
|||
|
|||
|
|||
//// Endstop Settings
|
|||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
|||
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
|
|||
const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
|
|||
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
|
|||
|
|||
// This determines the communication speed of the printer
|
|||
#define BAUDRATE 250000
|
|||
//#define BAUDRATE 115200
|
|||
//#define BAUDRATE 230400
|
|||
|
|||
// Comment out (using // at the start of the line) to disable SD support:
|
|||
|
|||
// #define ULTRA_LCD //any lcd
|
|||
|
|||
#define ULTIPANEL
|
|||
#define ULTIPANEL
|
|||
#ifdef ULTIPANEL
|
|||
//#define NEWPANEL //enable this if you have a click-encoder panel
|
|||
#define SDSUPPORT
|
|||
#define ULTRA_LCD
|
|||
#define LCD_WIDTH 20
|
|||
#define LCD_HEIGHT 4
|
|||
#else //no panel but just lcd
|
|||
#ifdef ULTRA_LCD
|
|||
#define LCD_WIDTH 16
|
|||
#define LCD_HEIGHT 2
|
|||
#endif
|
|||
#endif
|
|||
|
|||
|
|||
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
|
|||
|
|||
|
|||
|
|||
const int dropsegments=5; //everything with this number of steps will be ignored as move
|
|||
|
|||
//// ADVANCED SETTINGS - to tweak parameters
|
|||
|
|||
#include "thermistortables.h"
|
|||
|
|||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
|||
#define X_ENABLE_ON 0
|
|||
#define Y_ENABLE_ON 0
|
|||
#define Z_ENABLE_ON 0
|
|||
#define E_ENABLE_ON 0
|
|||
|
|||
// Disables axis when it's not being used.
|
|||
#define DISABLE_X false
|
|||
#define DISABLE_Y false
|
|||
#define DISABLE_Z false
|
|||
#define DISABLE_E false
|
|||
|
|||
// Inverting axis direction
|
|||
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
|
|||
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
|
|||
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
|
|||
#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
|
|||
|
|||
//// ENDSTOP SETTINGS:
|
|||
// Sets direction of endstops when homing; 1=MAX, -1=MIN
|
|||
#define X_HOME_DIR -1
|
|||
#define Y_HOME_DIR -1
|
|||
#define Z_HOME_DIR -1
|
|||
|
|||
#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
|
|||
#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
|
|||
#define X_MAX_LENGTH 210
|
|||
#define Y_MAX_LENGTH 210
|
|||
#define Z_MAX_LENGTH 210
|
|||
|
|||
//// MOVEMENT SETTINGS
|
|||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
|||
//note: on bernhards ultimaker 200 200 12 are working well.
|
|||
#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
|
|||
//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
|
|||
//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
|
|||
// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
|
|||
#define TRAVELING_AT_MAXSPEED
|
|||
#define AXIS_RELATIVE_MODES {false, false, false, false}
|
|||
|
|||
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
|
|||
|
|||
// default settings
|
|||
|
|||
#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
|
|||
#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
|
|||
#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
|
|||
|
|||
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
|
|||
#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
|
|||
|
|||
#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
|
|||
#define DEFAULT_MINTRAVELFEEDRATE 10
|
|||
|
|||
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
|
|||
#define DEFAULT_MINSEGMENTTIME 20000
|
|||
#define DEFAULT_XYJERK 30.0*60
|
|||
#define DEFAULT_ZJERK 10.0*60
|
|||
|
|||
|
|||
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
|
|||
//this enables the watchdog interrupt.
|
|||
#define USE_WATCHDOG
|
|||
//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
|
|||
#define RESET_MANUAL
|
|||
|
|||
#define WATCHDOG_TIMEOUT 4
|
|||
|
|||
|
|||
|
|||
//// Experimental watchdog and minimal temp
|
|||
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
|
|||
// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
|
|||
//#define WATCHPERIOD 5000 //5 seconds
|
|||
|
|||
// Actual temperature must be close to target for this long before M109 returns success
|
|||
//#define TEMP_RESIDENCY_TIME 20 // (seconds)
|
|||
//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
|
|||
|
|||
//// The minimal temperature defines the temperature below which the heater will not be enabled
|
|||
#define HEATER_0_MINTEMP 5
|
|||
//#define HEATER_1_MINTEMP 5
|
|||
//#define BED_MINTEMP 5
|
|||
|
|||
|
|||
// When temperature exceeds max temp, your heater will be switched off.
|
|||
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
|
|||
// You should use MINTEMP for thermistor short/failure protection.
|
|||
#define HEATER_0_MAXTEMP 275
|
|||
//#define_HEATER_1_MAXTEMP 275
|
|||
//#define BED_MAXTEMP 150
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
#define PIDTEMP
|
|||
#ifdef PIDTEMP
|
|||
/// PID settings:
|
|||
// Uncomment the following line to enable PID support.
|
|||
//#define SMOOTHING
|
|||
//#define SMOOTHFACTOR 5.0
|
|||
//float current_raw_average=0;
|
|||
#define K1 0.95 //smoothing of the PID
|
|||
//#define PID_DEBUG // Sends debug data to the serial port.
|
|||
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
|
|||
#define PID_MAX 255 // limits current to nozzle
|
|||
#define PID_INTEGRAL_DRIVE_MAX 255
|
|||
#define PID_dT 0.1
|
|||
//machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47
|
|||
|
|||
#define PID_CRITIAL_GAIN 3000
|
|||
#define PID_SWING_AT_CRITIAL 45 //seconds
|
|||
#define PIDIADD 5
|
|||
/*
|
|||
//PID according to Ziegler-Nichols method
|
|||
float Kp = 0.6*PID_CRITIAL_GAIN;
|
|||
float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT;
|
|||
float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT;
|
|||
*/
|
|||
//PI according to Ziegler-Nichols method
|
|||
#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
|
|||
#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
|
|||
#define DEFAULT_Kd (0)
|
|||
|
|||
#define PID_ADD_EXTRUSION_RATE
|
|||
#ifdef PID_ADD_EXTRUSION_RATE
|
|||
#define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)
|
|||
#endif
|
|||
#endif // PIDTEMP
|
|||
|
|||
// extruder advance constant (s2/mm3)
|
|||
//
|
|||
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
|
|||
//
|
|||
// hooke's law says: force = k * distance
|
|||
// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
|
|||
// so: v ^ 2 is proportional to number of steps we advance the extruder
|
|||
//#define ADVANCE
|
|||
|
|||
#ifdef ADVANCE
|
|||
#define EXTRUDER_ADVANCE_K .3
|
|||
|
|||
#define D_FILAMENT 1.7
|
|||
#define STEPS_MM_E 65
|
|||
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
|
|||
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
|
|||
|
|||
#endif // ADVANCE
|
|||
|
|||
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32
|
|||
#if defined SDSUPPORT
|
|||
// The number of linear motions that can be in the plan at any give time.
|
|||
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
|
|||
#else
|
|||
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
|
|||
#endif
|
|||
|
|||
|
|||
#endif
|
|||
#ifndef CONFIGURATION_H |
|||
#define CONFIGURATION_H |
|||
|
|||
//#define DEBUG_STEPS
|
|||
|
|||
#define MM_PER_ARC_SEGMENT 1 |
|||
#define N_ARC_CORRECTION 25 |
|||
|
|||
// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
|
|||
|
|||
//// The following define selects which electronics board you have. Please choose the one that matches your setup
|
|||
// MEGA/RAMPS up to 1.2 = 3,
|
|||
// RAMPS 1.3 = 33
|
|||
// Gen6 = 5,
|
|||
// Sanguinololu 1.2 and above = 62
|
|||
// Ultimaker = 7,
|
|||
#define MOTHERBOARD 7 |
|||
//#define MOTHERBOARD 5
|
|||
|
|||
|
|||
//// Thermistor settings:
|
|||
// 1 is 100k thermistor
|
|||
// 2 is 200k thermistor
|
|||
// 3 is mendel-parts thermistor
|
|||
// 4 is 10k thermistor
|
|||
// 5 is ParCan supplied 104GT-2 100K
|
|||
// 6 is EPCOS 100k
|
|||
// 7 is 100k Honeywell thermistor 135-104LAG-J01
|
|||
#define THERMISTORHEATER_1 3 |
|||
#define THERMISTORHEATER_2 3 |
|||
#define THERMISTORBED 3 |
|||
|
|||
//#define HEATER_0_USES_THERMISTOR
|
|||
//#define HEATER_1_USES_THERMISTOR
|
|||
#define HEATER_0_USES_AD595 |
|||
//#define HEATER_1_USES_AD595
|
|||
|
|||
// Select one of these only to define how the bed temp is read.
|
|||
//#define BED_USES_THERMISTOR
|
|||
//#define BED_USES_AD595
|
|||
|
|||
#define HEATER_CHECK_INTERVAL 50 |
|||
#define BED_CHECK_INTERVAL 5000 |
|||
|
|||
|
|||
//// Endstop Settings
|
|||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
|||
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
|
|||
const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
|
|||
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
|
|||
|
|||
// This determines the communication speed of the printer
|
|||
#define BAUDRATE 250000 |
|||
//#define BAUDRATE 115200
|
|||
//#define BAUDRATE 230400
|
|||
|
|||
// Comment out (using // at the start of the line) to disable SD support:
|
|||
|
|||
// #define ULTRA_LCD //any lcd
|
|||
|
|||
#define ULTIPANEL |
|||
#define ULTIPANEL |
|||
#ifdef ULTIPANEL |
|||
//#define NEWPANEL //enable this if you have a click-encoder panel
|
|||
#define SDSUPPORT |
|||
#define ULTRA_LCD |
|||
#define LCD_WIDTH 20 |
|||
#define LCD_HEIGHT 4 |
|||
#else //no panel but just lcd
|
|||
#ifdef ULTRA_LCD |
|||
#define LCD_WIDTH 16 |
|||
#define LCD_HEIGHT 2 |
|||
#endif |
|||
#endif |
|||
|
|||
|
|||
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
|
|||
|
|||
|
|||
|
|||
const int dropsegments=5; //everything with this number of steps will be ignored as move
|
|||
|
|||
//// ADVANCED SETTINGS - to tweak parameters
|
|||
|
|||
#include "thermistortables.h" |
|||
|
|||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
|||
#define X_ENABLE_ON 0 |
|||
#define Y_ENABLE_ON 0 |
|||
#define Z_ENABLE_ON 0 |
|||
#define E_ENABLE_ON 0 |
|||
|
|||
// Disables axis when it's not being used.
|
|||
#define DISABLE_X false |
|||
#define DISABLE_Y false |
|||
#define DISABLE_Z false |
|||
#define DISABLE_E false |
|||
|
|||
// Inverting axis direction
|
|||
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
|
|||
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
|
|||
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
|
|||
#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
|
|||
|
|||
//// ENDSTOP SETTINGS:
|
|||
// Sets direction of endstops when homing; 1=MAX, -1=MIN
|
|||
#define X_HOME_DIR -1 |
|||
#define Y_HOME_DIR -1 |
|||
#define Z_HOME_DIR -1 |
|||
|
|||
#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
|
|||
#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
|
|||
#define X_MAX_LENGTH 210 |
|||
#define Y_MAX_LENGTH 210 |
|||
#define Z_MAX_LENGTH 210 |
|||
|
|||
//// MOVEMENT SETTINGS
|
|||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
|||
//note: on bernhards ultimaker 200 200 12 are working well.
|
|||
#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
|
|||
//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
|
|||
//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
|
|||
// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
|
|||
#define TRAVELING_AT_MAXSPEED |
|||
#define AXIS_RELATIVE_MODES {false, false, false, false} |
|||
|
|||
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
|
|||
|
|||
// default settings
|
|||
|
|||
#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
|
|||
#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000} |
|||
#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
|
|||
|
|||
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
|
|||
#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
|
|||
|
|||
#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
|
|||
#define DEFAULT_MINTRAVELFEEDRATE 10 |
|||
|
|||
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
|
|||
#define DEFAULT_MINSEGMENTTIME 20000 |
|||
#define DEFAULT_XYJERK 30.0*60 |
|||
#define DEFAULT_ZJERK 10.0*60 |
|||
|
|||
|
|||
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
|
|||
//this enables the watchdog interrupt.
|
|||
#define USE_WATCHDOG |
|||
//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
|
|||
#define RESET_MANUAL |
|||
|
|||
#define WATCHDOG_TIMEOUT 4 |
|||
|
|||
|
|||
|
|||
//// Experimental watchdog and minimal temp
|
|||
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
|
|||
// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
|
|||
//#define WATCHPERIOD 5000 //5 seconds
|
|||
|
|||
// Actual temperature must be close to target for this long before M109 returns success
|
|||
//#define TEMP_RESIDENCY_TIME 20 // (seconds)
|
|||
//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
|
|||
|
|||
//// The minimal temperature defines the temperature below which the heater will not be enabled
|
|||
#define HEATER_0_MINTEMP 5 |
|||
//#define HEATER_1_MINTEMP 5
|
|||
//#define BED_MINTEMP 5
|
|||
|
|||
|
|||
// When temperature exceeds max temp, your heater will be switched off.
|
|||
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
|
|||
// You should use MINTEMP for thermistor short/failure protection.
|
|||
#define HEATER_0_MAXTEMP 275 |
|||
//#define_HEATER_1_MAXTEMP 275
|
|||
//#define BED_MAXTEMP 150
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
#define PIDTEMP |
|||
#ifdef PIDTEMP |
|||
/// PID settings:
|
|||
// Uncomment the following line to enable PID support.
|
|||
//#define SMOOTHING
|
|||
//#define SMOOTHFACTOR 5.0
|
|||
//float current_raw_average=0;
|
|||
#define K1 0.95 //smoothing of the PID
|
|||
//#define PID_DEBUG // Sends debug data to the serial port.
|
|||
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
|
|||
#define PID_MAX 255 // limits current to nozzle
|
|||
#define PID_INTEGRAL_DRIVE_MAX 255 |
|||
#define PID_dT 0.1 |
|||
//machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47
|
|||
|
|||
#define PID_CRITIAL_GAIN 3000 |
|||
#define PID_SWING_AT_CRITIAL 45 //seconds
|
|||
#define PIDIADD 5 |
|||
/*
|
|||
//PID according to Ziegler-Nichols method
|
|||
float Kp = 0.6*PID_CRITIAL_GAIN; |
|||
float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT; |
|||
float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT; |
|||
*/ |
|||
//PI according to Ziegler-Nichols method
|
|||
#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2) |
|||
#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT) |
|||
#define DEFAULT_Kd (0) |
|||
|
|||
#define PID_ADD_EXTRUSION_RATE |
|||
#ifdef PID_ADD_EXTRUSION_RATE |
|||
#define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)
|
|||
#endif |
|||
#endif // PIDTEMP
|
|||
|
|||
// extruder advance constant (s2/mm3)
|
|||
//
|
|||
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
|
|||
//
|
|||
// hooke's law says: force = k * distance
|
|||
// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
|
|||
// so: v ^ 2 is proportional to number of steps we advance the extruder
|
|||
//#define ADVANCE
|
|||
|
|||
#ifdef ADVANCE |
|||
#define EXTRUDER_ADVANCE_K .3 |
|||
|
|||
#define D_FILAMENT 1.7 |
|||
#define STEPS_MM_E 65 |
|||
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159) |
|||
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA) |
|||
|
|||
#endif // ADVANCE
|
|||
|
|||
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32
|
|||
#if defined SDSUPPORT |
|||
// The number of linear motions that can be in the plan at any give time.
|
|||
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
|
|||
#else |
|||
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
|
|||
#endif |
|||
|
|||
|
|||
#endif |
|||
|
File diff suppressed because it is too large
@ -0,0 +1,133 @@ |
|||
/*
|
|||
motion_control.c - high level interface for issuing motion commands |
|||
Part of Grbl |
|||
|
|||
Copyright (c) 2009-2011 Simen Svale Skogsrud |
|||
Copyright (c) 2011 Sungeun K. Jeon |
|||
|
|||
Grbl is free software: you can redistribute it and/or modify |
|||
it under the terms of the GNU General Public License as published by |
|||
the Free Software Foundation, either version 3 of the License, or |
|||
(at your option) any later version. |
|||
|
|||
Grbl is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
GNU General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU General Public License |
|||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|||
*/ |
|||
|
|||
//#include "motion_control.h"
|
|||
#include "Configuration.h" |
|||
#include "Marlin.h" |
|||
//#include <util/delay.h>
|
|||
//#include <math.h>
|
|||
//#include <stdlib.h>
|
|||
#include "stepper.h" |
|||
#include "planner.h" |
|||
|
|||
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
|
|||
// segment is configured in settings.mm_per_arc_segment.
|
|||
void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1, |
|||
uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise) |
|||
{ |
|||
// int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
|
|||
// plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
|
|||
Serial.println("mc_arc"); |
|||
float center_axis0 = position[axis_0] + offset[axis_0]; |
|||
float center_axis1 = position[axis_1] + offset[axis_1]; |
|||
float linear_travel = target[axis_linear] - position[axis_linear]; |
|||
float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
|
|||
float r_axis1 = -offset[axis_1]; |
|||
float rt_axis0 = target[axis_0] - center_axis0; |
|||
float rt_axis1 = target[axis_1] - center_axis1; |
|||
|
|||
// CCW angle between position and target from circle center. Only one atan2() trig computation required.
|
|||
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); |
|||
if (angular_travel < 0) { angular_travel += 2*M_PI; } |
|||
if (isclockwise) { angular_travel -= 2*M_PI; } |
|||
|
|||
float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); |
|||
if (millimeters_of_travel == 0.0) { return; } |
|||
uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT); |
|||
/*
|
|||
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
|
|||
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
|
|||
// all segments.
|
|||
if (invert_feed_rate) { feed_rate *= segments; } |
|||
*/ |
|||
float theta_per_segment = angular_travel/segments; |
|||
float linear_per_segment = linear_travel/segments; |
|||
|
|||
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|||
and phi is the angle of rotation. Based on the solution approach by Jens Geisler. |
|||
r_T = [cos(phi) -sin(phi); |
|||
sin(phi) cos(phi] * r ; |
|||
|
|||
For arc generation, the center of the circle is the axis of rotation and the radius vector is |
|||
defined from the circle center to the initial position. Each line segment is formed by successive |
|||
vector rotations. This requires only two cos() and sin() computations to form the rotation |
|||
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since |
|||
all double numbers are single precision on the Arduino. (True double precision will not have |
|||
round off issues for CNC applications.) Single precision error can accumulate to be greater than |
|||
tool precision in some cases. Therefore, arc path correction is implemented. |
|||
|
|||
Small angle approximation may be used to reduce computation overhead further. This approximation |
|||
holds for everything, but very small circles and large mm_per_arc_segment values. In other words, |
|||
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large |
|||
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for |
|||
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an |
|||
issue for CNC machines with the single precision Arduino calculations. |
|||
|
|||
This approximation also allows mc_arc to immediately insert a line segment into the planner |
|||
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied |
|||
a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead. |
|||
This is important when there are successive arc motions. |
|||
*/ |
|||
// Vector rotation matrix values
|
|||
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
|||
float sin_T = theta_per_segment; |
|||
|
|||
float arc_target[3]; |
|||
float sin_Ti; |
|||
float cos_Ti; |
|||
float r_axisi; |
|||
uint16_t i; |
|||
int8_t count = 0; |
|||
|
|||
// Initialize the linear axis
|
|||
arc_target[axis_linear] = position[axis_linear]; |
|||
|
|||
for (i = 1; i<segments; i++) { // Increment (segments-1)
|
|||
|
|||
if (count < N_ARC_CORRECTION) { |
|||
// Apply vector rotation matrix
|
|||
r_axisi = r_axis0*sin_T + r_axis1*cos_T; |
|||
r_axis0 = r_axis0*cos_T - r_axis1*sin_T; |
|||
r_axis1 = r_axisi; |
|||
count++; |
|||
} else { |
|||
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|||
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|||
cos_Ti = cos(i*theta_per_segment); |
|||
sin_Ti = sin(i*theta_per_segment); |
|||
r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti; |
|||
r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti; |
|||
count = 0; |
|||
} |
|||
|
|||
// Update arc_target location
|
|||
arc_target[axis_0] = center_axis0 + r_axis0; |
|||
arc_target[axis_1] = center_axis1 + r_axis1; |
|||
arc_target[axis_linear] += linear_per_segment; |
|||
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], target[E_AXIS], feed_rate); |
|||
|
|||
} |
|||
// Ensure last segment arrives at target location.
|
|||
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate); |
|||
|
|||
// plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
|
|||
} |
|||
|
@ -0,0 +1,32 @@ |
|||
/*
|
|||
motion_control.h - high level interface for issuing motion commands |
|||
Part of Grbl |
|||
|
|||
Copyright (c) 2009-2011 Simen Svale Skogsrud |
|||
Copyright (c) 2011 Sungeun K. Jeon |
|||
|
|||
Grbl is free software: you can redistribute it and/or modify |
|||
it under the terms of the GNU General Public License as published by |
|||
the Free Software Foundation, either version 3 of the License, or |
|||
(at your option) any later version. |
|||
|
|||
Grbl is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
GNU General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU General Public License |
|||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|||
*/ |
|||
|
|||
#ifndef motion_control_h |
|||
#define motion_control_h |
|||
|
|||
// Execute an arc in offset mode format. position == current xyz, target == target xyz,
|
|||
// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
|
|||
// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
|
|||
// for vector transformation direction.
|
|||
void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1, |
|||
unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise); |
|||
|
|||
#endif |
Loading…
Reference in new issue