Browse Source

Fix manage_inactivity

- Document `manage_inactivity` function
- Allow `EXTRUDER_RUNOUT_PREVENT` to work with all extruders
- Use faster `memcpy` for copying coordinates
pull/1/head
Scott Lahteine 10 years ago
parent
commit
0935084141
  1. 193
      Marlin/Marlin_main.cpp

193
Marlin/Marlin_main.cpp

@ -1009,6 +1009,8 @@ inline void sync_plan_position() {
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
}
#endif
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
#ifdef ENABLE_AUTO_BED_LEVELING
@ -1020,7 +1022,7 @@ inline void sync_plan_position() {
refresh_cmd_timeout();
calculate_delta(destination);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
for (int i = 0; i < NUM_AXIS; i++) current_position[i] = destination[i];
set_current_to_destination();
}
#endif
@ -1564,7 +1566,7 @@ static void homeaxis(int axis) {
float oldFeedrate = feedrate;
for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
set_destination_to_current();
if (retracting) {
@ -1769,7 +1771,7 @@ inline void gcode_G28() {
enable_endstops(true);
for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
set_destination_to_current();
feedrate = 0.0;
@ -1997,7 +1999,7 @@ inline void gcode_G28() {
if (mbl_was_active) {
current_position[X_AXIS] = mbl.get_x(0);
current_position[Y_AXIS] = mbl.get_y(0);
for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
set_destination_to_current();
feedrate = homing_feedrate[X_AXIS];
line_to_destination();
st_synchronize();
@ -4613,7 +4615,7 @@ inline void gcode_T() {
#if EXTRUDERS > 1
if (tmp_extruder != active_extruder) {
// Save current position to return to after applying extruder offset
memcpy(destination, current_position, sizeof(destination));
set_destination_to_current();
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
@ -5338,9 +5340,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
{
if (!mbl.active) {
plan_buffer_line(x, y, z, e, feed_rate, extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
set_current_to_destination();
return;
}
int pix = mbl.select_x_index(current_position[X_AXIS]);
@ -5354,9 +5354,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
if (pix == ix && piy == iy) {
// Start and end on same mesh square
plan_buffer_line(x, y, z, e, feed_rate, extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
set_current_to_destination();
return;
}
float nx, ny, ne, normalized_dist;
@ -5387,9 +5385,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
} else {
// Already split on a border
plan_buffer_line(x, y, z, e, feed_rate, extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
set_current_to_destination();
return;
}
// Do the split and look for more borders
@ -5477,64 +5473,58 @@ void prepare_move() {
#endif // DELTA
#ifdef DUAL_X_CARRIAGE
if (active_extruder_parked)
{
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
{
// move duplicate extruder into correct duplication position.
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[X_AXIS], 1);
sync_plan_position();
st_synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false;
}
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
{
if (current_position[E_AXIS] == destination[E_AXIS])
{
// this is a travel move - skit it but keep track of current position (so that it can later
// be used as start of first non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL)
{
memcpy(current_position, destination, sizeof(current_position));
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
raised_parked_position[Z_AXIS] = destination[Z_AXIS];
delayed_move_time = millis();
return;
#ifdef DUAL_X_CARRIAGE
if (active_extruder_parked) {
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
// move duplicate extruder into correct duplication position.
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[X_AXIS], 1);
sync_plan_position();
st_synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false;
}
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
if (current_position[E_AXIS] == destination[E_AXIS]) {
// this is a travel move - skit it but keep track of current position (so that it can later
// be used as start of first non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) {
set_current_to_destination();
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
raised_parked_position[Z_AXIS] = destination[Z_AXIS];
delayed_move_time = millis();
return;
}
}
delayed_move_time = 0;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
active_extruder_parked = false;
}
delayed_move_time = 0;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
active_extruder_parked = false;
}
}
#endif //DUAL_X_CARRIAGE
#endif // DUAL_X_CARRIAGE
#if !defined(DELTA) && !defined(SCARA)
// Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
line_to_destination();
} else {
#ifdef MESH_BED_LEVELING
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
return;
#else
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
#endif // MESH_BED_LEVELING
}
#endif // !(DELTA || SCARA)
#if !defined(DELTA) && !defined(SCARA)
// Do not use feedmultiply for E or Z only moves
if ( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
line_to_destination();
}
else {
#ifdef MESH_BED_LEVELING
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
return;
#else
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
#endif // MESH_BED_LEVELING
}
#endif // !(DELTA || SCARA)
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
set_current_to_destination();
}
void prepare_arc_move(char isclockwise) {
@ -5546,9 +5536,7 @@ void prepare_arc_move(char isclockwise) {
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
set_current_to_destination();
refresh_cmd_timeout();
}
@ -5718,7 +5706,16 @@ void disable_all_steppers() {
}
/**
*
* Manage several activities:
* - Check for Filament Runout
* - Keep the command buffer full
* - Check for maximum inactive time between commands
* - Check for maximum inactive time between stepper commands
* - Check if pin CHDK needs to go LOW
* - Check for KILL button held down
* - Check for HOME button held down
* - Check if cooling fan needs to be switched on
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
*/
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
@ -5737,7 +5734,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
&& !ignore_stepper_queue && !blocks_queued())
disable_all_steppers();
#ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
chdkActive = false;
WRITE(CHDK, LOW);
@ -5780,14 +5777,37 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
#endif
#if HAS_CONTROLLERFAN
controllerFan(); //Check if fan should be turned on to cool stepper drivers down
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
#endif
#ifdef EXTRUDER_RUNOUT_PREVENT
if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000)
if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
bool oldstatus = E0_ENABLE_READ;
enable_e0();
bool oldstatus;
switch(active_extruder) {
case 0:
oldstatus = E0_ENABLE_READ;
enable_e0();
break;
#if EXTRUDERS > 1
case 1:
oldstatus = E1_ENABLE_READ;
enable_e1();
break;
#if EXTRUDERS > 2
case 2:
oldstatus = E2_ENABLE_READ;
enable_e2();
break;
#if EXTRUDERS > 3
case 3:
oldstatus = E3_ENABLE_READ;
enable_e3();
break;
#endif
#endif
#endif
}
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
@ -5797,7 +5817,26 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
plan_set_e_position(oldepos);
previous_millis_cmd = ms; // refresh_cmd_timeout()
st_synchronize();
E0_ENABLE_WRITE(oldstatus);
switch(active_extruder) {
case 0:
E0_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 1
case 1:
E1_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 2
case 2:
E2_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 3
case 3:
E3_ENABLE_WRITE(oldstatus);
break;
#endif
#endif
#endif
}
}
#endif
@ -5806,7 +5845,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
if (delayed_move_time && ms > delayed_move_time + 1000 && !Stopped) {
// travel moves have been received so enact them
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
memcpy(destination, current_position, sizeof(destination));
set_destination_to_current();
prepare_move();
}
#endif

Loading…
Cancel
Save