|
@ -580,6 +580,7 @@ void Planner::calculate_volumetric_multipliers() { |
|
|
#if PLANNER_LEVELING |
|
|
#if PLANNER_LEVELING |
|
|
/**
|
|
|
/**
|
|
|
* rx, ry, rz - Cartesian positions in mm |
|
|
* rx, ry, rz - Cartesian positions in mm |
|
|
|
|
|
* Leveled XYZ on completion |
|
|
*/ |
|
|
*/ |
|
|
void Planner::apply_leveling(float &rx, float &ry, float &rz) { |
|
|
void Planner::apply_leveling(float &rx, float &ry, float &rz) { |
|
|
|
|
|
|
|
@ -622,7 +623,7 @@ void Planner::calculate_volumetric_multipliers() { |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
rz += ( |
|
|
rz += ( |
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) |
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) // UBL_DELTA
|
|
|
ubl.get_z_correction(rx, ry) * fade_scaling_factor |
|
|
ubl.get_z_correction(rx, ry) * fade_scaling_factor |
|
|
#elif ENABLED(MESH_BED_LEVELING) |
|
|
#elif ENABLED(MESH_BED_LEVELING) |
|
|
mbl.get_z(rx, ry |
|
|
mbl.get_z(rx, ry |
|
@ -698,69 +699,35 @@ void Planner::calculate_volumetric_multipliers() { |
|
|
#endif // PLANNER_LEVELING
|
|
|
#endif // PLANNER_LEVELING
|
|
|
|
|
|
|
|
|
/**
|
|
|
/**
|
|
|
* Planner::_buffer_line |
|
|
* Planner::_buffer_steps |
|
|
* |
|
|
|
|
|
* Add a new linear movement to the buffer in axis units. |
|
|
|
|
|
* |
|
|
* |
|
|
* Leveling and kinematics should be applied ahead of calling this. |
|
|
* Add a new linear movement to the buffer (in terms of steps). |
|
|
* |
|
|
* |
|
|
* a,b,c,e - target positions in mm and/or degrees |
|
|
* target - target position in steps units |
|
|
* fr_mm_s - (target) speed of the move |
|
|
* fr_mm_s - (target) speed of the move |
|
|
* extruder - target extruder |
|
|
* extruder - target extruder |
|
|
*/ |
|
|
*/ |
|
|
void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) { |
|
|
void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const uint8_t extruder) { |
|
|
|
|
|
|
|
|
// The target position of the tool in absolute steps
|
|
|
|
|
|
// Calculate target position in absolute steps
|
|
|
|
|
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
|
|
|
|
const long target[XYZE] = { |
|
|
|
|
|
LROUND(a * axis_steps_per_mm[X_AXIS]), |
|
|
|
|
|
LROUND(b * axis_steps_per_mm[Y_AXIS]), |
|
|
|
|
|
LROUND(c * axis_steps_per_mm[Z_AXIS]), |
|
|
|
|
|
LROUND(e * axis_steps_per_mm[E_AXIS_N]) |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
// When changing extruders recalculate steps corresponding to the E position
|
|
|
|
|
|
#if ENABLED(DISTINCT_E_FACTORS) |
|
|
|
|
|
if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) { |
|
|
|
|
|
position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]); |
|
|
|
|
|
last_extruder = extruder; |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
const int32_t da = target[X_AXIS] - position[X_AXIS], |
|
|
const int32_t da = target[X_AXIS] - position[X_AXIS], |
|
|
db = target[Y_AXIS] - position[Y_AXIS], |
|
|
db = target[Y_AXIS] - position[Y_AXIS], |
|
|
dc = target[Z_AXIS] - position[Z_AXIS]; |
|
|
dc = target[Z_AXIS] - position[Z_AXIS]; |
|
|
|
|
|
|
|
|
/*
|
|
|
int32_t de = target[E_AXIS] - position[E_AXIS]; |
|
|
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s); |
|
|
|
|
|
SERIAL_CHAR(' '); |
|
|
/* <-- add a slash to enable
|
|
|
#if IS_KINEMATIC |
|
|
SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s); |
|
|
SERIAL_ECHOPAIR("A:", a); |
|
|
SERIAL_ECHOPAIR(" A:", target[A_AXIS]); |
|
|
SERIAL_ECHOPAIR(" (", da); |
|
|
|
|
|
SERIAL_ECHOPAIR(") B:", b); |
|
|
|
|
|
#else |
|
|
|
|
|
SERIAL_ECHOPAIR("X:", a); |
|
|
|
|
|
SERIAL_ECHOPAIR(" (", da); |
|
|
SERIAL_ECHOPAIR(" (", da); |
|
|
SERIAL_ECHOPAIR(") Y:", b); |
|
|
SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]); |
|
|
#endif |
|
|
SERIAL_ECHOPAIR(" (", db); |
|
|
SERIAL_ECHOPAIR(" (", db); |
|
|
SERIAL_ECHOPAIR(" steps) C:", target[C_AXIS]); |
|
|
#if ENABLED(DELTA) |
|
|
SERIAL_ECHOPAIR(" (", dc); |
|
|
SERIAL_ECHOPAIR(") C:", c); |
|
|
SERIAL_ECHOPAIR(" steps) E:", target[E_AXIS]); |
|
|
#else |
|
|
SERIAL_ECHOPAIR(" (", de); |
|
|
SERIAL_ECHOPAIR(") Z:", c); |
|
|
SERIAL_ECHOLNPGM(" steps)"); |
|
|
#endif |
|
|
|
|
|
SERIAL_ECHOPAIR(" (", dc); |
|
|
|
|
|
SERIAL_CHAR(')'); |
|
|
|
|
|
SERIAL_EOL(); |
|
|
|
|
|
//*/
|
|
|
//*/
|
|
|
|
|
|
|
|
|
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
|
|
|
|
|
|
if (DEBUGGING(DRYRUN)) |
|
|
|
|
|
position[E_AXIS] = target[E_AXIS]; |
|
|
|
|
|
|
|
|
|
|
|
int32_t de = target[E_AXIS] - position[E_AXIS]; |
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) |
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) |
|
|
if (de) { |
|
|
if (de) { |
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION) |
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION) |
|
@ -1067,6 +1034,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
// Segment time im micro seconds
|
|
|
// Segment time im micro seconds
|
|
|
uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs); |
|
|
uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#if ENABLED(SLOWDOWN) |
|
|
#if ENABLED(SLOWDOWN) |
|
|
if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) { |
|
|
if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) { |
|
|
if (segment_time_us < min_segment_time_us) { |
|
|
if (segment_time_us < min_segment_time_us) { |
|
@ -1314,12 +1282,12 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
|
|
|
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
|
|
|
vmax_junction = min(block->nominal_speed, previous_nominal_speed); |
|
|
vmax_junction = min(block->nominal_speed, previous_nominal_speed); |
|
|
|
|
|
|
|
|
const float smaller_speed_factor = vmax_junction / previous_nominal_speed; |
|
|
|
|
|
|
|
|
|
|
|
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
|
|
|
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
|
|
|
float v_factor = 1; |
|
|
float v_factor = 1; |
|
|
limited = 0; |
|
|
limited = 0; |
|
|
|
|
|
|
|
|
// Now limit the jerk in all axes.
|
|
|
// Now limit the jerk in all axes.
|
|
|
|
|
|
const float smaller_speed_factor = vmax_junction / previous_nominal_speed; |
|
|
LOOP_XYZE(axis) { |
|
|
LOOP_XYZE(axis) { |
|
|
// Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
|
|
|
// Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
|
|
|
float v_exit = previous_speed[axis] * smaller_speed_factor, |
|
|
float v_exit = previous_speed[axis] * smaller_speed_factor, |
|
@ -1414,13 +1382,89 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const |
|
|
block_buffer_head = next_buffer_head; |
|
|
block_buffer_head = next_buffer_head; |
|
|
|
|
|
|
|
|
// Update the position (only when a move was queued)
|
|
|
// Update the position (only when a move was queued)
|
|
|
|
|
|
static_assert(COUNT(target) > 1, "array as function parameter should be declared as reference and with count"); |
|
|
COPY(position, target); |
|
|
COPY(position, target); |
|
|
|
|
|
|
|
|
recalculate(); |
|
|
recalculate(); |
|
|
|
|
|
|
|
|
|
|
|
} // _buffer_steps()
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
* Planner::_buffer_line |
|
|
|
|
|
* |
|
|
|
|
|
* Add a new linear movement to the buffer in axis units. |
|
|
|
|
|
* |
|
|
|
|
|
* Leveling and kinematics should be applied ahead of calling this. |
|
|
|
|
|
* |
|
|
|
|
|
* a,b,c,e - target positions in mm and/or degrees |
|
|
|
|
|
* fr_mm_s - (target) speed of the move |
|
|
|
|
|
* extruder - target extruder |
|
|
|
|
|
*/ |
|
|
|
|
|
void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder) { |
|
|
|
|
|
// When changing extruders recalculate steps corresponding to the E position
|
|
|
|
|
|
#if ENABLED(DISTINCT_E_FACTORS) |
|
|
|
|
|
if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) { |
|
|
|
|
|
position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]); |
|
|
|
|
|
last_extruder = extruder; |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
// The target position of the tool in absolute steps
|
|
|
|
|
|
// Calculate target position in absolute steps
|
|
|
|
|
|
const int32_t target[XYZE] = { |
|
|
|
|
|
LROUND(a * axis_steps_per_mm[X_AXIS]), |
|
|
|
|
|
LROUND(b * axis_steps_per_mm[Y_AXIS]), |
|
|
|
|
|
LROUND(c * axis_steps_per_mm[Z_AXIS]), |
|
|
|
|
|
LROUND(e * axis_steps_per_mm[E_AXIS_N]) |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
/* <-- add a slash to enable
|
|
|
|
|
|
SERIAL_ECHOPAIR(" _buffer_line FR:", fr_mm_s); |
|
|
|
|
|
#if IS_KINEMATIC |
|
|
|
|
|
SERIAL_ECHOPAIR(" A:", a); |
|
|
|
|
|
SERIAL_ECHOPAIR(" (", position[A_AXIS]); |
|
|
|
|
|
SERIAL_ECHOPAIR("->", target[A_AXIS]); |
|
|
|
|
|
SERIAL_ECHOPAIR(") B:", b); |
|
|
|
|
|
#else |
|
|
|
|
|
SERIAL_ECHOPAIR(" X:", a); |
|
|
|
|
|
SERIAL_ECHOPAIR(" (", position[X_AXIS]); |
|
|
|
|
|
SERIAL_ECHOPAIR("->", target[X_AXIS]); |
|
|
|
|
|
SERIAL_ECHOPAIR(") Y:", b); |
|
|
|
|
|
#endif |
|
|
|
|
|
SERIAL_ECHOPAIR(" (", position[Y_AXIS]); |
|
|
|
|
|
SERIAL_ECHOPAIR("->", target[Y_AXIS]); |
|
|
|
|
|
#if ENABLED(DELTA) |
|
|
|
|
|
SERIAL_ECHOPAIR(") C:", c); |
|
|
|
|
|
#else |
|
|
|
|
|
SERIAL_ECHOPAIR(") Z:", c); |
|
|
|
|
|
#endif |
|
|
|
|
|
SERIAL_ECHOPAIR(" (", position[Z_AXIS]); |
|
|
|
|
|
SERIAL_ECHOPAIR("->", target[Z_AXIS]); |
|
|
|
|
|
SERIAL_ECHOPAIR(") E:", e); |
|
|
|
|
|
SERIAL_ECHOPAIR(" (", position[E_AXIS]); |
|
|
|
|
|
SERIAL_ECHOPAIR("->", target[E_AXIS]); |
|
|
|
|
|
SERIAL_ECHOLNPGM(")"); |
|
|
|
|
|
//*/
|
|
|
|
|
|
|
|
|
|
|
|
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
|
|
|
|
|
|
if (DEBUGGING(DRYRUN)) |
|
|
|
|
|
position[E_AXIS] = target[E_AXIS]; |
|
|
|
|
|
|
|
|
|
|
|
// Always split the first move into one longer and one shorter move
|
|
|
|
|
|
if (!blocks_queued()) { |
|
|
|
|
|
#define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1 |
|
|
|
|
|
const int32_t between[XYZE] = { _BETWEEN(X), _BETWEEN(Y), _BETWEEN(Z), _BETWEEN(E) }; |
|
|
|
|
|
DISABLE_STEPPER_DRIVER_INTERRUPT(); |
|
|
|
|
|
_buffer_steps(between, fr_mm_s, extruder); |
|
|
|
|
|
_buffer_steps(target, fr_mm_s, extruder); |
|
|
|
|
|
ENABLE_STEPPER_DRIVER_INTERRUPT(); |
|
|
|
|
|
} |
|
|
|
|
|
else |
|
|
|
|
|
_buffer_steps(target, fr_mm_s, extruder); |
|
|
|
|
|
|
|
|
stepper.wake_up(); |
|
|
stepper.wake_up(); |
|
|
|
|
|
|
|
|
} // buffer_line()
|
|
|
} // _buffer_line()
|
|
|
|
|
|
|
|
|
/**
|
|
|
/**
|
|
|
* Directly set the planner XYZ position (and stepper positions) |
|
|
* Directly set the planner XYZ position (and stepper positions) |
|
|