/**
* Marlin 3 D Printer Firmware
* Copyright ( c ) 2020 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( c ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < https : //www.gnu.org/licenses/>.
*
*/
# pragma once
/**
* stepper . h - stepper motor driver : executes motion plans of planner . c using the stepper motors
* Derived from Grbl
*
* Copyright ( c ) 2009 - 2011 Simen Svale Skogsrud
*
* Grbl is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* Grbl is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with Grbl . If not , see < https : //www.gnu.org/licenses/>.
*/
# include "../inc/MarlinConfig.h"
# include "planner.h"
# include "stepper/indirection.h"
# ifdef __AVR__
# include "speed_lookuptable.h"
# endif
// Disable multiple steps per ISR
//#define DISABLE_MULTI_STEPPING
//
// Estimate the amount of time the Stepper ISR will take to execute
//
/**
* The method of calculating these cycle - constants is unclear .
* Most of them are no longer used directly for pulse timing , and exist
* only to estimate a maximum step rate based on the user ' s configuration .
* As 32 - bit processors continue to diverge , maintaining cycle counts
* will become increasingly difficult and error - prone .
*/
# ifdef CPU_32_BIT
/**
* Duration of START_TIMED_PULSE
*
* . . . as measured on an LPC1768 with a scope and converted to cycles .
* Not applicable to other 32 - bit processors , but as long as others
* take longer , pulses will be longer . For example the SKR Pro
* ( stm32f407zgt6 ) requires ~ 60 cyles .
*/
# define TIMER_READ_ADD_AND_STORE_CYCLES 34UL
// The base ISR takes 792 cycles
# define ISR_BASE_CYCLES 792UL
// Linear advance base time is 64 cycles
# if ENABLED(LIN_ADVANCE)
# define ISR_LA_BASE_CYCLES 64UL
# else
# define ISR_LA_BASE_CYCLES 0UL
# endif
// S curve interpolation adds 40 cycles
# if ENABLED(S_CURVE_ACCELERATION)
# define ISR_S_CURVE_CYCLES 40UL
# else
# define ISR_S_CURVE_CYCLES 0UL
# endif
// Stepper Loop base cycles
# define ISR_LOOP_BASE_CYCLES 4UL
// To start the step pulse, in the worst case takes
# define ISR_START_STEPPER_CYCLES 13UL
// And each stepper (start + stop pulse) takes in worst case
# define ISR_STEPPER_CYCLES 16UL
# else
// Cycles to perform actions in START_TIMED_PULSE
# define TIMER_READ_ADD_AND_STORE_CYCLES 13UL
// The base ISR takes 752 cycles
# define ISR_BASE_CYCLES 752UL
// Linear advance base time is 32 cycles
# if ENABLED(LIN_ADVANCE)
# define ISR_LA_BASE_CYCLES 32UL
# else
# define ISR_LA_BASE_CYCLES 0UL
# endif
// S curve interpolation adds 160 cycles
# if ENABLED(S_CURVE_ACCELERATION)
# define ISR_S_CURVE_CYCLES 160UL
# else
# define ISR_S_CURVE_CYCLES 0UL
# endif
// Stepper Loop base cycles
# define ISR_LOOP_BASE_CYCLES 32UL
// To start the step pulse, in the worst case takes
# define ISR_START_STEPPER_CYCLES 57UL
// And each stepper (start + stop pulse) takes in worst case
# define ISR_STEPPER_CYCLES 88UL
# endif
// If linear advance is disabled, the loop also handles them
# if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)
# define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
# else
# define ISR_MIXING_STEPPER_CYCLES 0UL
# endif
// Add time for each stepper
# if HAS_X_STEP
# define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
# endif
# if HAS_Y_STEP
# define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
# endif
# if HAS_Z_STEP
# define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
# endif
# if HAS_I_STEP
# define ISR_I_STEPPER_CYCLES ISR_STEPPER_CYCLES
# endif
# if HAS_J_STEP
# define ISR_J_STEPPER_CYCLES ISR_STEPPER_CYCLES
# endif
# if HAS_K_STEP
# define ISR_K_STEPPER_CYCLES ISR_STEPPER_CYCLES
# endif
# if HAS_EXTRUDERS
# define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES // E is always interpolated, even for mixing extruders
# endif
// And the total minimum loop time, not including the base
# define MIN_ISR_LOOP_CYCLES (ISR_MIXING_STEPPER_CYCLES LOGICAL_AXIS_GANG(+ ISR_E_STEPPER_CYCLES, + ISR_X_STEPPER_CYCLES, + ISR_Y_STEPPER_CYCLES, + ISR_Z_STEPPER_CYCLES, + ISR_I_STEPPER_CYCLES, + ISR_J_STEPPER_CYCLES, + ISR_K_STEPPER_CYCLES))
// Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate
# define _MIN_STEPPER_PULSE_CYCLES(N) _MAX(uint32_t((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N))
# if MINIMUM_STEPPER_PULSE
# define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(uint32_t(MINIMUM_STEPPER_PULSE))
# elif HAS_DRIVER(LV8729)
# define MIN_STEPPER_PULSE_CYCLES uint32_t((((F_CPU) - 1) / 2000000) + 1) // 0.5µs, aka 500ns
# else
# define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL)
# endif
// Calculate the minimum pulse times (high and low)
# if MINIMUM_STEPPER_PULSE && MAXIMUM_STEPPER_RATE
constexpr uint32_t _MIN_STEP_PERIOD_NS = 1000000000UL / MAXIMUM_STEPPER_RATE ;
constexpr uint32_t _MIN_PULSE_HIGH_NS = 1000UL * MINIMUM_STEPPER_PULSE ;
constexpr uint32_t _MIN_PULSE_LOW_NS = _MAX ( ( _MIN_STEP_PERIOD_NS - _MIN ( _MIN_STEP_PERIOD_NS , _MIN_PULSE_HIGH_NS ) ) , _MIN_PULSE_HIGH_NS ) ;
# elif MINIMUM_STEPPER_PULSE
// Assume 50% duty cycle
constexpr uint32_t _MIN_PULSE_HIGH_NS = 1000UL * MINIMUM_STEPPER_PULSE ;
constexpr uint32_t _MIN_PULSE_LOW_NS = _MIN_PULSE_HIGH_NS ;
# elif MAXIMUM_STEPPER_RATE
// Assume 50% duty cycle
constexpr uint32_t _MIN_PULSE_HIGH_NS = 500000000UL / MAXIMUM_STEPPER_RATE ;
constexpr uint32_t _MIN_PULSE_LOW_NS = _MIN_PULSE_HIGH_NS ;
# else
# error "Expected at least one of MINIMUM_STEPPER_PULSE or MAXIMUM_STEPPER_RATE to be defined"
# endif
// But the user could be enforcing a minimum time, so the loop time is
# define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))
// If linear advance is enabled, then it is handled separately
# if ENABLED(LIN_ADVANCE)
// Estimate the minimum LA loop time
# if ENABLED(MIXING_EXTRUDER) // ToDo: ???
// HELP ME: What is what?
// Directions are set up for MIXING_STEPPERS - like before.
// Finding the right stepper may last up to MIXING_STEPPERS loops in get_next_stepper().
// These loops are a bit faster than advancing a bresenham counter.
// Always only one e-stepper is stepped.
# define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
# else
# define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES
# endif
// And the real loop time
# define ISR_LA_LOOP_CYCLES _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES)
# else
# define ISR_LA_LOOP_CYCLES 0UL
# endif
// Now estimate the total ISR execution time in cycles given a step per ISR multiplier
# define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R))
// The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz)
# define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128))
# define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64))
# define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32))
# define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16))
# define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8))
# define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4))
# define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))
# define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))
// The minimum step ISR rate used by ADAPTIVE_STEP_SMOOTHING to target 50% CPU usage
// This does not account for the possibility of multi-stepping.
// Perhaps DISABLE_MULTI_STEPPING should be required with ADAPTIVE_STEP_SMOOTHING.
# define MIN_STEP_ISR_FREQUENCY (MAX_STEP_ISR_FREQUENCY_1X / 2)
# define ENABLE_COUNT (LINEAR_AXES + E_STEPPERS)
typedef IF < ( ENABLE_COUNT > 8 ) , uint16_t , uint8_t > : : type ena_mask_t ;
// Axis flags type, for enabled state or other simple state
typedef struct {
union {
ena_mask_t bits ;
struct {
bool LINEAR_AXIS_LIST ( X : 1 , Y : 1 , Z : 1 , I : 1 , J : 1 , K : 1 ) ;
# if HAS_EXTRUDERS
bool LIST_N ( EXTRUDERS , E0 : 1 , E1 : 1 , E2 : 1 , E3 : 1 , E4 : 1 , E5 : 1 , E6 : 1 , E7 : 1 ) ;
# endif
} ;
} ;
constexpr ena_mask_t linear_bits ( ) { return _BV ( LINEAR_AXES ) - 1 ; }
constexpr ena_mask_t e_bits ( ) { return ( _BV ( EXTRUDERS ) - 1 ) < < LINEAR_AXES ; }
} axis_flags_t ;
// All the stepper enable pins
constexpr pin_t ena_pins [ ] = {
LINEAR_AXIS_LIST ( X_ENABLE_PIN , Y_ENABLE_PIN , Z_ENABLE_PIN , I_ENABLE_PIN , J_ENABLE_PIN , K_ENABLE_PIN ) ,
LIST_N ( E_STEPPERS , E0_ENABLE_PIN , E1_ENABLE_PIN , E2_ENABLE_PIN , E3_ENABLE_PIN , E4_ENABLE_PIN , E5_ENABLE_PIN , E6_ENABLE_PIN , E7_ENABLE_PIN )
} ;
// Index of the axis or extruder element in a combined array
constexpr uint8_t index_of_axis ( const AxisEnum axis E_OPTARG ( const uint8_t eindex = 0 ) ) {
return uint8_t ( axis ) + ( E_TERN0 ( axis < LINEAR_AXES ? 0 : eindex ) ) ;
}
//#define __IAX_N(N,V...) _IAX_##N(V)
//#define _IAX_N(N,V...) __IAX_N(N,V)
//#define _IAX_1(A) index_of_axis(A)
//#define _IAX_2(A,B) index_of_axis(A E_OPTARG(B))
//#define INDEX_OF_AXIS(V...) _IAX_N(TWO_ARGS(V),V)
# define INDEX_OF_AXIS(A,V...) index_of_axis(A E_OPTARG(V+0))
// Bit mask for a matching enable pin, or 0
constexpr ena_mask_t ena_same ( const uint8_t a , const uint8_t b ) {
return ena_pins [ a ] = = ena_pins [ b ] ? _BV ( b ) : 0 ;
}
// Recursively get the enable overlaps mask for a given linear axis or extruder
constexpr ena_mask_t ena_overlap ( const uint8_t a = 0 , const uint8_t b = 0 ) {
return b > = ENABLE_COUNT ? 0 : ( a = = b ? 0 : ena_same ( a , b ) ) | ena_overlap ( a , b + 1 ) ;
}
// Recursively get whether there's any overlap at all
constexpr bool any_enable_overlap ( const uint8_t a = 0 ) {
return a > = ENABLE_COUNT ? false : ena_overlap ( a ) | | any_enable_overlap ( a + 1 ) ;
}
// Array of axes that overlap with each
// TODO: Consider cases where >=2 steppers are used by a linear axis or extruder
// (e.g., CoreXY, Dual XYZ, or E with multiple steppers, etc.).
constexpr ena_mask_t enable_overlap [ ] = {
# define _OVERLAP(N) ena_overlap(INDEX_OF_AXIS(AxisEnum(N))),
REPEAT ( LINEAR_AXES , _OVERLAP )
# if HAS_EXTRUDERS
# define _E_OVERLAP(N) ena_overlap(INDEX_OF_AXIS(E_AXIS, N)),
REPEAT ( E_STEPPERS , _E_OVERLAP )
# endif
} ;
//static_assert(!any_enable_overlap(), "There is some overlap.");
//
// Stepper class definition
//
class Stepper {
public :
# if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
static bool separate_multi_axis ;
# endif
# if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
# if HAS_MOTOR_CURRENT_PWM
# ifndef PWM_MOTOR_CURRENT
# define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
# endif
# ifndef MOTOR_CURRENT_PWM_FREQUENCY
# define MOTOR_CURRENT_PWM_FREQUENCY 31400
# endif
# define MOTOR_CURRENT_COUNT LINEAR_AXES
# elif HAS_MOTOR_CURRENT_SPI
static constexpr uint32_t digipot_count [ ] = DIGIPOT_MOTOR_CURRENT ;
# define MOTOR_CURRENT_COUNT COUNT(Stepper::digipot_count)
# endif
static bool initialized ;
static uint32_t motor_current_setting [ MOTOR_CURRENT_COUNT ] ; // Initialized by settings.load()
# endif
// Last-moved extruder, as set when the last movement was fetched from planner
# if HAS_MULTI_EXTRUDER
static uint8_t last_moved_extruder ;
# else
static constexpr uint8_t last_moved_extruder = 0 ;
# endif
# if HAS_FREEZE_PIN
static bool frozen ; // Set this flag to instantly freeze motion
# endif
private :
static block_t * current_block ; // A pointer to the block currently being traced
static axis_bits_t last_direction_bits , // The next stepping-bits to be output
axis_did_move ; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
static bool abort_current_block ; // Signals to the stepper that current block should be aborted
# if ENABLED(X_DUAL_ENDSTOPS)
static bool locked_X_motor , locked_X2_motor ;
# endif
# if ENABLED(Y_DUAL_ENDSTOPS)
static bool locked_Y_motor , locked_Y2_motor ;
# endif
# if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
static bool locked_Z_motor , locked_Z2_motor
# if NUM_Z_STEPPER_DRIVERS >= 3
, locked_Z3_motor
# if NUM_Z_STEPPER_DRIVERS >= 4
, locked_Z4_motor
# endif
# endif
;
# endif
static uint32_t acceleration_time , deceleration_time ; // time measured in Stepper Timer ticks
static uint8_t steps_per_isr ; // Count of steps to perform per Stepper ISR call
# if ENABLED(ADAPTIVE_STEP_SMOOTHING)
static uint8_t oversampling_factor ; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
# else
static constexpr uint8_t oversampling_factor = 0 ;
# endif
// Delta error variables for the Bresenham line tracer
static xyze_long_t delta_error ;
static xyze_ulong_t advance_dividend ;
static uint32_t advance_divisor ,
step_events_completed , // The number of step events executed in the current block
accelerate_until , // The point from where we need to stop acceleration
decelerate_after , // The point from where we need to start decelerating
step_event_count ; // The total event count for the current block
# if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
static uint8_t stepper_extruder ;
# else
static constexpr uint8_t stepper_extruder = 0 ;
# endif
# if ENABLED(S_CURVE_ACCELERATION)
static int32_t bezier_A , // A coefficient in Bézier speed curve
bezier_B , // B coefficient in Bézier speed curve
bezier_C ; // C coefficient in Bézier speed curve
static uint32_t bezier_F , // F coefficient in Bézier speed curve
bezier_AV ; // AV coefficient in Bézier speed curve
# ifdef __AVR__
static bool A_negative ; // If A coefficient was negative
# endif
static bool bezier_2nd_half ; // If Bézier curve has been initialized or not
# endif
# if ENABLED(LIN_ADVANCE)
static constexpr uint32_t LA_ADV_NEVER = 0xFFFFFFFF ;
static uint32_t nextAdvanceISR , LA_isr_rate ;
static uint16_t LA_current_adv_steps , LA_final_adv_steps , LA_max_adv_steps ; // Copy from current executed block. Needed because current_block is set to NULL "too early".
static int8_t LA_steps ;
static bool LA_use_advance_lead ;
# endif
# if ENABLED(INTEGRATED_BABYSTEPPING)
static constexpr uint32_t BABYSTEP_NEVER = 0xFFFFFFFF ;
static uint32_t nextBabystepISR ;
# endif
# if ENABLED(DIRECT_STEPPING)
static page_step_state_t page_step_state ;
# endif
static int32_t ticks_nominal ;
# if DISABLED(S_CURVE_ACCELERATION)
static uint32_t acc_step_rate ; // needed for deceleration start point
# endif
// Exact steps at which an endstop was triggered
static xyz_long_t endstops_trigsteps ;
// Positions of stepper motors, in step units
static xyze_long_t count_position ;
// Current stepper motor directions (+1 or -1)
static xyze_int8_t count_direction ;
# if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
typedef struct {
bool enabled ; // Trapezoid needed flag (i.e., laser on, planner in control)
uint8_t cur_power ; // Current laser power
bool cruise_set ; // Power set up for cruising?
# if ENABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
uint16_t till_update ; // Countdown to the next update
# else
uint32_t last_step_count , // Step count from the last update
acc_step_count ; // Bresenham counter for laser accel/decel
# endif
} stepper_laser_t ;
static stepper_laser_t laser_trap ;
# endif
public :
// Initialize stepper hardware
static void init ( ) ;
// Interrupt Service Routine and phases
// The stepper subsystem goes to sleep when it runs out of things to execute.
// Call this to notify the subsystem that it is time to go to work.
static void wake_up ( ) { ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ; }
static bool is_awake ( ) { return STEPPER_ISR_ENABLED ( ) ; }
static bool suspend ( ) {
const bool awake = is_awake ( ) ;
if ( awake ) DISABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
return awake ;
}
// The ISR scheduler
static void isr ( ) ;
// The stepper pulse ISR phase
static void pulse_phase_isr ( ) ;
// The stepper block processing ISR phase
static uint32_t block_phase_isr ( ) ;
# if ENABLED(LIN_ADVANCE)
// The Linear advance ISR phase
static uint32_t advance_isr ( ) ;
FORCE_INLINE static void initiateLA ( ) { nextAdvanceISR = 0 ; }
# endif
# if ENABLED(INTEGRATED_BABYSTEPPING)
// The Babystepping ISR phase
static uint32_t babystepping_isr ( ) ;
FORCE_INLINE static void initiateBabystepping ( ) {
if ( nextBabystepISR = = BABYSTEP_NEVER ) {
nextBabystepISR = 0 ;
wake_up ( ) ;
}
}
# endif
// Check if the given block is busy or not - Must not be called from ISR contexts
static bool is_block_busy ( const block_t * const block ) ;
// Get the position of a stepper, in steps
static int32_t position ( const AxisEnum axis ) ;
// Set the current position in steps
static void set_position ( const xyze_long_t & spos ) ;
static void set_axis_position ( const AxisEnum a , const int32_t & v ) ;
// Report the positions of the steppers, in steps
static void report_a_position ( const xyz_long_t & pos ) ;
static void report_positions ( ) ;
// Discard current block and free any resources
FORCE_INLINE static void discard_current_block ( ) {
# if ENABLED(DIRECT_STEPPING)
if ( IS_PAGE ( current_block ) )
page_manager . free_page ( current_block - > page_idx ) ;
# endif
current_block = nullptr ;
axis_did_move = 0 ;
planner . release_current_block ( ) ;
}
// Quickly stop all steppers
FORCE_INLINE static void quick_stop ( ) { abort_current_block = true ; }
// The direction of a single motor
FORCE_INLINE static bool motor_direction ( const AxisEnum axis ) { return TEST ( last_direction_bits , axis ) ; }
// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
FORCE_INLINE static bool axis_is_moving ( const AxisEnum axis ) { return TEST ( axis_did_move , axis ) ; }
// Handle a triggered endstop
static void endstop_triggered ( const AxisEnum axis ) ;
// Triggered position of an axis in steps
static int32_t triggered_position ( const AxisEnum axis ) ;
# if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
static void set_digipot_value_spi ( const int16_t address , const int16_t value ) ;
static void set_digipot_current ( const uint8_t driver , const int16_t current ) ;
# endif
# if HAS_MICROSTEPS
static void microstep_ms ( const uint8_t driver , const int8_t ms1 , const int8_t ms2 , const int8_t ms3 ) ;
static void microstep_mode ( const uint8_t driver , const uint8_t stepping ) ;
static void microstep_readings ( ) ;
# endif
# if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
FORCE_INLINE static void set_separate_multi_axis ( const bool state ) { separate_multi_axis = state ; }
# endif
# if ENABLED(X_DUAL_ENDSTOPS)
FORCE_INLINE static void set_x_lock ( const bool state ) { locked_X_motor = state ; }
FORCE_INLINE static void set_x2_lock ( const bool state ) { locked_X2_motor = state ; }
# endif
# if ENABLED(Y_DUAL_ENDSTOPS)
FORCE_INLINE static void set_y_lock ( const bool state ) { locked_Y_motor = state ; }
FORCE_INLINE static void set_y2_lock ( const bool state ) { locked_Y2_motor = state ; }
# endif
# if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
FORCE_INLINE static void set_z1_lock ( const bool state ) { locked_Z_motor = state ; }
FORCE_INLINE static void set_z2_lock ( const bool state ) { locked_Z2_motor = state ; }
# if NUM_Z_STEPPER_DRIVERS >= 3
FORCE_INLINE static void set_z3_lock ( const bool state ) { locked_Z3_motor = state ; }
# if NUM_Z_STEPPER_DRIVERS >= 4
FORCE_INLINE static void set_z4_lock ( const bool state ) { locked_Z4_motor = state ; }
# endif
# endif
static void set_all_z_lock ( const bool lock , const int8_t except = - 1 ) {
set_z1_lock ( lock ^ ( except = = 0 ) ) ;
set_z2_lock ( lock ^ ( except = = 1 ) ) ;
# if NUM_Z_STEPPER_DRIVERS >= 3
set_z3_lock ( lock ^ ( except = = 2 ) ) ;
# if NUM_Z_STEPPER_DRIVERS >= 4
set_z4_lock ( lock ^ ( except = = 3 ) ) ;
# endif
# endif
}
# endif
# if ENABLED(BABYSTEPPING)
static void do_babystep ( const AxisEnum axis , const bool direction ) ; // perform a short step with a single stepper motor, outside of any convention
# endif
# if HAS_MOTOR_CURRENT_PWM
static void refresh_motor_power ( ) ;
# endif
static axis_flags_t axis_enabled ; // Axis stepper(s) ENABLED states
static bool axis_is_enabled ( const AxisEnum axis E_OPTARG ( const uint8_t eindex = 0 ) ) {
return TEST ( axis_enabled . bits , INDEX_OF_AXIS ( axis , eindex ) ) ;
}
static void mark_axis_enabled ( const AxisEnum axis E_OPTARG ( const uint8_t eindex = 0 ) ) {
SBI ( axis_enabled . bits , INDEX_OF_AXIS ( axis , eindex ) ) ;
}
static void mark_axis_disabled ( const AxisEnum axis E_OPTARG ( const uint8_t eindex = 0 ) ) {
CBI ( axis_enabled . bits , INDEX_OF_AXIS ( axis , eindex ) ) ;
}
static bool can_axis_disable ( const AxisEnum axis E_OPTARG ( const uint8_t eindex = 0 ) ) {
return ! any_enable_overlap ( ) | | ! ( axis_enabled . bits & enable_overlap [ INDEX_OF_AXIS ( axis , eindex ) ] ) ;
}
static void enable_axis ( const AxisEnum axis ) ;
static bool disable_axis ( const AxisEnum axis ) ;
# if HAS_EXTRUDERS
static void enable_extruder ( E_TERN_ ( const uint8_t eindex = 0 ) ) ;
static bool disable_extruder ( E_TERN_ ( const uint8_t eindex = 0 ) ) ;
static void enable_e_steppers ( ) ;
static void disable_e_steppers ( ) ;
# else
static void enable_extruder ( ) { }
static bool disable_extruder ( ) { return true ; }
static void enable_e_steppers ( ) { }
static void disable_e_steppers ( ) { }
# endif
# define ENABLE_EXTRUDER(N) enable_extruder(E_TERN_(N))
# define DISABLE_EXTRUDER(N) disable_extruder(E_TERN_(N))
# define AXIS_IS_ENABLED(N,V...) axis_is_enabled(N E_OPTARG(#V))
static void enable_all_steppers ( ) ;
static void disable_all_steppers ( ) ;
// Update direction states for all steppers
static void set_directions ( ) ;
// Set direction bits and update all stepper DIR states
static void set_directions ( const axis_bits_t bits ) {
last_direction_bits = bits ;
set_directions ( ) ;
}
private :
// Set the current position in steps
static void _set_position ( const abce_long_t & spos ) ;
FORCE_INLINE static uint32_t calc_timer_interval ( uint32_t step_rate , uint8_t * loops ) {
uint32_t timer ;
// Scale the frequency, as requested by the caller
step_rate < < = oversampling_factor ;
uint8_t multistep = 1 ;
# if DISABLED(DISABLE_MULTI_STEPPING)
// The stepping frequency limits for each multistepping rate
static const uint32_t limit [ ] PROGMEM = {
( MAX_STEP_ISR_FREQUENCY_1X ) ,
( MAX_STEP_ISR_FREQUENCY_2X > > 1 ) ,
( MAX_STEP_ISR_FREQUENCY_4X > > 2 ) ,
( MAX_STEP_ISR_FREQUENCY_8X > > 3 ) ,
( MAX_STEP_ISR_FREQUENCY_16X > > 4 ) ,
( MAX_STEP_ISR_FREQUENCY_32X > > 5 ) ,
( MAX_STEP_ISR_FREQUENCY_64X > > 6 ) ,
( MAX_STEP_ISR_FREQUENCY_128X > > 7 )
} ;
// Select the proper multistepping
uint8_t idx = 0 ;
while ( idx < 7 & & step_rate > ( uint32_t ) pgm_read_dword ( & limit [ idx ] ) ) {
step_rate > > = 1 ;
multistep < < = 1 ;
+ + idx ;
} ;
# else
NOMORE ( step_rate , uint32_t ( MAX_STEP_ISR_FREQUENCY_1X ) ) ;
# endif
* loops = multistep ;
# ifdef CPU_32_BIT
// In case of high-performance processor, it is able to calculate in real-time
timer = uint32_t ( STEPPER_TIMER_RATE ) / step_rate ;
# else
constexpr uint32_t min_step_rate = ( F_CPU ) / 500000U ;
NOLESS ( step_rate , min_step_rate ) ;
step_rate - = min_step_rate ; // Correct for minimal speed
if ( step_rate > = ( 8 * 256 ) ) { // higher step rate
const uint8_t tmp_step_rate = ( step_rate & 0x00FF ) ;
const uint16_t table_address = ( uint16_t ) & speed_lookuptable_fast [ ( uint8_t ) ( step_rate > > 8 ) ] [ 0 ] ,
gain = ( uint16_t ) pgm_read_word ( table_address + 2 ) ;
timer = MultiU16X8toH16 ( tmp_step_rate , gain ) ;
timer = ( uint16_t ) pgm_read_word ( table_address ) - timer ;
}
else { // lower step rates
uint16_t table_address = ( uint16_t ) & speed_lookuptable_slow [ 0 ] [ 0 ] ;
table_address + = ( ( step_rate ) > > 1 ) & 0xFFFC ;
timer = ( uint16_t ) pgm_read_word ( table_address )
- ( ( ( uint16_t ) pgm_read_word ( table_address + 2 ) * ( uint8_t ) ( step_rate & 0x0007 ) ) > > 3 ) ;
}
// (there is no need to limit the timer value here. All limits have been
// applied above, and AVR is able to keep up at 30khz Stepping ISR rate)
# endif
return timer ;
}
# if ENABLED(S_CURVE_ACCELERATION)
static void _calc_bezier_curve_coeffs ( const int32_t v0 , const int32_t v1 , const uint32_t av ) ;
static int32_t _eval_bezier_curve ( const uint32_t curr_step ) ;
# endif
# if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
static void digipot_init ( ) ;
# endif
# if HAS_MICROSTEPS
static void microstep_init ( ) ;
# endif
} ;
extern Stepper stepper ;