Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

171 lines
5.9 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../platforms.h"
#if defined(HAL_STM32) && !defined(STM32H7xx)
#include "MarlinSPI.h"
static void spi_init(spi_t *obj, uint32_t speed, spi_mode_e mode, uint8_t msb, uint32_t dataSize) {
spi_init(obj, speed, mode, msb);
// spi_init set 8bit always
// TODO: copy the code from spi_init and handle data size, to avoid double init always!!
if (dataSize != SPI_DATASIZE_8BIT) {
obj->handle.Init.DataSize = dataSize;
HAL_SPI_Init(&obj->handle);
__HAL_SPI_ENABLE(&obj->handle);
}
}
void MarlinSPI::setClockDivider(uint8_t _div) {
_speed = spi_getClkFreq(&_spi);// / _div;
_clockDivider = _div;
}
void MarlinSPI::begin(void) {
//TODO: only call spi_init if any parameter changed!!
spi_init(&_spi, _speed, _dataMode, _bitOrder, _dataSize);
}
void MarlinSPI::setupDma(SPI_HandleTypeDef &_spiHandle, DMA_HandleTypeDef &_dmaHandle, uint32_t direction, bool minc) {
_dmaHandle.Init.Direction = direction;
_dmaHandle.Init.PeriphInc = DMA_PINC_DISABLE;
_dmaHandle.Init.Mode = DMA_NORMAL;
_dmaHandle.Init.Priority = DMA_PRIORITY_LOW;
_dmaHandle.Init.MemInc = minc ? DMA_MINC_ENABLE : DMA_MINC_DISABLE;
if (_dataSize == DATA_SIZE_8BIT) {
_dmaHandle.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
_dmaHandle.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
}
else {
_dmaHandle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
_dmaHandle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
}
#ifdef STM32F4xx
_dmaHandle.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
#endif
// start DMA hardware
// TODO: check if hardware is already enabled
#ifdef SPI1_BASE
if (_spiHandle.Instance == SPI1) {
#ifdef STM32F1xx
__HAL_RCC_DMA1_CLK_ENABLE();
_dmaHandle.Instance = (direction == DMA_MEMORY_TO_PERIPH) ? DMA1_Channel3 : DMA1_Channel2;
#elif defined(STM32F4xx)
__HAL_RCC_DMA2_CLK_ENABLE();
_dmaHandle.Init.Channel = DMA_CHANNEL_3;
_dmaHandle.Instance = (direction == DMA_MEMORY_TO_PERIPH) ? DMA2_Stream3 : DMA2_Stream0;
#endif
}
#endif
#ifdef SPI2_BASE
if (_spiHandle.Instance == SPI2) {
#ifdef STM32F1xx
__HAL_RCC_DMA1_CLK_ENABLE();
_dmaHandle.Instance = (direction == DMA_MEMORY_TO_PERIPH) ? DMA1_Channel5 : DMA1_Channel4;
#elif defined(STM32F4xx)
__HAL_RCC_DMA1_CLK_ENABLE();
_dmaHandle.Init.Channel = DMA_CHANNEL_0;
_dmaHandle.Instance = (direction == DMA_MEMORY_TO_PERIPH) ? DMA1_Stream4 : DMA1_Stream3;
#endif
}
#endif
#ifdef SPI3_BASE
if (_spiHandle.Instance == SPI3) {
#ifdef STM32F1xx
__HAL_RCC_DMA2_CLK_ENABLE();
_dmaHandle.Instance = (direction == DMA_MEMORY_TO_PERIPH) ? DMA2_Channel2 : DMA2_Channel1;
#elif defined(STM32F4xx)
__HAL_RCC_DMA1_CLK_ENABLE();
_dmaHandle.Init.Channel = DMA_CHANNEL_0;
_dmaHandle.Instance = (direction == DMA_MEMORY_TO_PERIPH) ? DMA1_Stream5 : DMA1_Stream2;
#endif
}
#endif
HAL_DMA_Init(&_dmaHandle);
}
byte MarlinSPI::transfer(uint8_t _data) {
uint8_t rxData = 0xFF;
HAL_SPI_TransmitReceive(&_spi.handle, &_data, &rxData, 1, HAL_MAX_DELAY);
return rxData;
}
uint8_t MarlinSPI::dmaTransfer(const void *transmitBuf, void *receiveBuf, uint16_t length) {
const uint8_t ff = 0xFF;
//if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) //only enable if disabled
__HAL_SPI_ENABLE(&_spi.handle);
if (receiveBuf) {
setupDma(_spi.handle, _dmaRx, DMA_PERIPH_TO_MEMORY, true);
HAL_DMA_Start(&_dmaRx, (uint32_t)&(_spi.handle.Instance->DR), (uint32_t)receiveBuf, length);
SET_BIT(_spi.handle.Instance->CR2, SPI_CR2_RXDMAEN); /* Enable Rx DMA Request */
}
// check for 2 lines transfer
bool mincTransmit = true;
if (transmitBuf == nullptr && _spi.handle.Init.Direction == SPI_DIRECTION_2LINES && _spi.handle.Init.Mode == SPI_MODE_MASTER) {
transmitBuf = &ff;
mincTransmit = false;
}
if (transmitBuf) {
setupDma(_spi.handle, _dmaTx, DMA_MEMORY_TO_PERIPH, mincTransmit);
HAL_DMA_Start(&_dmaTx, (uint32_t)transmitBuf, (uint32_t)&(_spi.handle.Instance->DR), length);
SET_BIT(_spi.handle.Instance->CR2, SPI_CR2_TXDMAEN); /* Enable Tx DMA Request */
}
if (transmitBuf) {
HAL_DMA_PollForTransfer(&_dmaTx, HAL_DMA_FULL_TRANSFER, HAL_MAX_DELAY);
HAL_DMA_Abort(&_dmaTx);
HAL_DMA_DeInit(&_dmaTx);
}
// while ((_spi.handle.Instance->SR & SPI_FLAG_RXNE) != SPI_FLAG_RXNE) {}
if (receiveBuf) {
HAL_DMA_PollForTransfer(&_dmaRx, HAL_DMA_FULL_TRANSFER, HAL_MAX_DELAY);
HAL_DMA_Abort(&_dmaRx);
HAL_DMA_DeInit(&_dmaRx);
}
return 1;
}
uint8_t MarlinSPI::dmaSend(const void * transmitBuf, uint16_t length, bool minc) {
setupDma(_spi.handle, _dmaTx, DMA_MEMORY_TO_PERIPH, minc);
HAL_DMA_Start(&_dmaTx, (uint32_t)transmitBuf, (uint32_t)&(_spi.handle.Instance->DR), length);
__HAL_SPI_ENABLE(&_spi.handle);
SET_BIT(_spi.handle.Instance->CR2, SPI_CR2_TXDMAEN); /* Enable Tx DMA Request */
HAL_DMA_PollForTransfer(&_dmaTx, HAL_DMA_FULL_TRANSFER, HAL_MAX_DELAY);
HAL_DMA_Abort(&_dmaTx);
// DeInit objects
HAL_DMA_DeInit(&_dmaTx);
return 1;
}
#endif // HAL_STM32 && !STM32H7xx