Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

169 lines
5.6 KiB

/* **************************************************************************
Marlin 3D Printer Firmware
Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
/**
*
* For TARGET_LPC1768
*/
#ifdef TARGET_LPC1768
#include "../HAL.h"
extern "C" {
//#include <lpc17xx_adc.h>
//#include <lpc17xx_pinsel.h>
}
HalSerial usb_serial;
//u8glib required fucntions
extern "C" void u8g_xMicroDelay(uint16_t val) {
delayMicroseconds(val);
}
extern "C" void u8g_MicroDelay(void) {
u8g_xMicroDelay(1);
}
extern "C" void u8g_10MicroDelay(void) {
u8g_xMicroDelay(10);
}
extern "C" void u8g_Delay(uint16_t val) {
delay(val);
}
//************************//
// return free heap space
int freeMemory(){
char stack_end;
void *heap_start = malloc(sizeof(uint32_t));
if (heap_start == 0) return 0;
uint32_t result = (uint32_t)&stack_end - (uint32_t)heap_start;
free(heap_start);
return result;
}
// --------------------------------------------------------------------------
// ADC
// --------------------------------------------------------------------------
#define ADC_DONE 0x80000000
#define ADC_OVERRUN 0x40000000
void HAL_adc_init(void) {
LPC_SC->PCONP |= (1 << 12); // Enable CLOCK for internal ADC controller
LPC_SC->PCLKSEL0 &= ~(0x3 << 24);
LPC_SC->PCLKSEL0 |= (0x1 << 24); // 0: 25MHz, 1: 100MHz, 2: 50MHz, 3: 12.5MHZ to ADC clock divider
LPC_ADC->ADCR = (0 << 0) // SEL: 0 = no channels selected
| (0xFF << 8) // select slowest clock for A/D conversion 150 - 190 uS for a complete conversion
| (0 << 16) // BURST: 0 = software control
| (0 << 17) // CLKS: not applicable
| (1 << 21) // PDN: 1 = operational
| (0 << 24) // START: 0 = no start
| (0 << 27); // EDGE: not applicable
}
// externals need to make the call to KILL compile
#include "../../../language.h"
extern void kill(const char*);
extern const char errormagic[];
void HAL_adc_enable_channel(int pin) {
if (pin < 0 || pin >= NUM_ANALOG_INPUTS) {
usb_serial.printf("%sINVALID ANALOG PORT:%d\n", errormagic, pin);
kill(MSG_KILLED);
}
int8_t pin_port = adc_pin_map[pin].port;
int8_t pin_port_pin = adc_pin_map[pin].pin;
int8_t pinsel_start_bit = pin_port_pin > 15 ? 2 * (pin_port_pin - 16) : 2 * pin_port_pin;
uint8_t pin_sel_register = (pin_port == 0 && pin_port_pin <= 15) ? 0 :
(pin_port == 0) ? 1 :
pin_port == 1 ? 3 : 10;
switch (pin_sel_register) {
case 1 :
LPC_PINCON->PINSEL1 &= ~(0x3 << pinsel_start_bit);
LPC_PINCON->PINSEL1 |= (0x1 << pinsel_start_bit);
break;
case 3 :
LPC_PINCON->PINSEL3 &= ~(0x3 << pinsel_start_bit);
LPC_PINCON->PINSEL3 |= (0x3 << pinsel_start_bit);
break;
case 0 :
LPC_PINCON->PINSEL0 &= ~(0x3 << pinsel_start_bit);
LPC_PINCON->PINSEL0 |= (0x2 << pinsel_start_bit);
break;
};
}
void HAL_adc_start_conversion(uint8_t adc_pin) {
if( (adc_pin >= NUM_ANALOG_INPUTS) || (adc_pin_map[adc_pin].port == 0xFF) ) {
usb_serial.printf("HAL: HAL_adc_start_conversion: no pinmap for %d\n",adc_pin);
return;
}
LPC_ADC->ADCR &= ~0xFF; // Reset
LPC_ADC->ADCR |= ( 0x01 << adc_pin_map[adc_pin].adc ); // Select Channel
LPC_ADC->ADCR |= ( 0x01 << 24 ); // start conversion
}
bool HAL_adc_finished(void) {
uint32_t data = LPC_ADC->ADGDR;
return LPC_ADC->ADGDR & ADC_DONE;
}
uint16_t HAL_adc_get_result(void) {
uint32_t data = LPC_ADC->ADGDR;
LPC_ADC->ADCR &= ~(1 << 24); //stop conversion
if ( data & ADC_OVERRUN ) return 0;
return ((data >> 6) & 0x3ff); //10bit
}
#define SBIT_CNTEN 0
#define SBIT_PWMEN 2
#define SBIT_PWMMR0R 1
#define PWM_1 0 //P2_0 (0-1 Bits of PINSEL4)
#define PWM_2 2 //P2_1 (2-3 Bits of PINSEL4)
#define PWM_3 4 //P2_2 (4-5 Bits of PINSEL4)
#define PWM_4 6 //P2_3 (6-7 Bits of PINSEL4)
#define PWM_5 8 //P2_4 (8-9 Bits of PINSEL4)
#define PWM_6 10 //P2_5 (10-11 Bits of PINSEL4)
void HAL_pwm_init(void) {
LPC_PINCON->PINSEL4 = _BV(PWM_5) | _BV(PWM_6);
LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_PWMEN);
LPC_PWM1->PR = 0x0; // No prescalar
LPC_PWM1->MCR = _BV(SBIT_PWMMR0R); // Reset on PWMMR0, reset TC if it matches MR0
LPC_PWM1->MR0 = 255; /* set PWM cycle(Ton+Toff)=255) */
LPC_PWM1->MR5 = 0; /* Set 50% Duty Cycle for the channels */
LPC_PWM1->MR6 = 0;
// Trigger the latch Enable Bits to load the new Match Values MR0, MR5, MR6
LPC_PWM1->LER = _BV(0) | _BV(5) | _BV(6);
// Enable the PWM output pins for PWM_5-PWM_6(P2_4 - P2_5)
LPC_PWM1->PCR = _BV(13) | _BV(14);
}
#endif // TARGET_LPC1768