Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

170 lines
4.5 KiB

/*
temperature.h - temperature controller
Part of Marlin
Copyright (c) 2011 Erik van der Zalm
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef temperature_h
#define temperature_h
#include "Marlin.h"
#include "planner.h"
#ifdef PID_ADD_EXTRUSION_RATE
#include "stepper.h"
#endif
// public functions
void tp_init(); //initialise the heating
void manage_heater(); //it is critical that this is called periodically.
//low leven conversion routines
// do not use this routines and variables outsie of temperature.cpp
int temp2analog(int celsius, uint8_t e);
int temp2analogBed(int celsius);
float analog2temp(int raw, uint8_t e);
float analog2tempBed(int raw);
extern int target_raw[EXTRUDERS];
extern int heatingtarget_raw[EXTRUDERS];
extern int current_raw[EXTRUDERS];
extern int target_raw_bed;
extern int current_raw_bed;
#ifdef BED_LIMIT_SWITCHING
extern int target_bed_low_temp ;
extern int target_bed_high_temp ;
#endif
#ifdef PIDTEMP
extern float Kp,Ki,Kd,Kc;
extern float pid_setpoint[EXTRUDERS];
#endif
#ifdef PIDTEMPBED
extern float bedKp,bedKi,bedKd;
extern float pid_setpoint_bed;
#endif
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) {
return analog2temp(current_raw[extruder], extruder);
};
FORCE_INLINE float degBed() {
return analog2tempBed(current_raw_bed);
};
FORCE_INLINE float degTargetHotend(uint8_t extruder) {
return analog2temp(target_raw[extruder], extruder);
};
FORCE_INLINE float degTargetBed() {
return analog2tempBed(target_raw_bed);
};
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
target_raw[extruder] = temp2analog(celsius, extruder);
#ifdef PIDTEMP
pid_setpoint[extruder] = celsius;
#endif //PIDTEMP
};
FORCE_INLINE void setTargetBed(const float &celsius) {
target_raw_bed = temp2analogBed(celsius);
#ifdef PIDTEMPBED
pid_setpoint_bed = celsius;
#elif defined BED_LIMIT_SWITCHING
if(celsius>BED_HYSTERESIS)
{
target_bed_low_temp= temp2analogBed(celsius-BED_HYSTERESIS);
target_bed_high_temp= temp2analogBed(celsius+BED_HYSTERESIS);
}
else
{
target_bed_low_temp=0;
target_bed_high_temp=0;
}
#endif
};
FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
return target_raw[extruder] > current_raw[extruder];
};
FORCE_INLINE bool isHeatingBed() {
return target_raw_bed > current_raw_bed;
};
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
return target_raw[extruder] < current_raw[extruder];
};
FORCE_INLINE bool isCoolingBed() {
return target_raw_bed < current_raw_bed;
};
#define degHotend0() degHotend(0)
#define degTargetHotend0() degTargetHotend(0)
#define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
#define isHeatingHotend0() isHeatingHotend(0)
#define isCoolingHotend0() isCoolingHotend(0)
#if EXTRUDERS > 1
#define degHotend1() degHotend(1)
#define degTargetHotend1() degTargetHotend(1)
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
#define isHeatingHotend1() isHeatingHotend(1)
#define isCoolingHotend1() isCoolingHotend(1)
#else
#define setTargetHotend1(_celsius) do{}while(0)
#endif
#if EXTRUDERS > 2
#define degHotend2() degHotend(2)
#define degTargetHotend2() degTargetHotend(2)
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
#define isHeatingHotend2() isHeatingHotend(2)
#define isCoolingHotend2() isCoolingHotend(2)
#else
#define setTargetHotend2(_celsius) do{}while(0)
#endif
#if EXTRUDERS > 3
#error Invalid number of extruders
#endif
int getHeaterPower(int heater);
void disable_heater();
void setWatch();
void updatePID();
FORCE_INLINE void autotempShutdown(){
#ifdef AUTOTEMP
if(autotemp_enabled)
{
autotemp_enabled=false;
if(degTargetHotend(active_extruder)>autotemp_min)
setTargetHotend(0,active_extruder);
}
#endif
}
void PID_autotune(float temp, int extruder, int ncycles);
#endif