|
|
|
/*
|
|
|
|
temperature.c - temperature control
|
|
|
|
Part of Marlin
|
|
|
|
|
|
|
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
This firmware is a mashup between Sprinter and grbl.
|
|
|
|
(https://github.com/kliment/Sprinter)
|
|
|
|
(https://github.com/simen/grbl/tree)
|
|
|
|
|
|
|
|
It has preliminary support for Matthew Roberts advance algorithm
|
|
|
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
|
|
|
|
|
|
This firmware is optimized for gen6 electronics.
|
|
|
|
*/
|
|
|
|
#include <avr/pgmspace.h>
|
|
|
|
|
|
|
|
#include "fastio.h"
|
|
|
|
#include "Configuration.h"
|
|
|
|
#include "pins.h"
|
|
|
|
#include "Marlin.h"
|
|
|
|
#include "ultralcd.h"
|
|
|
|
#include "temperature.h"
|
|
|
|
#include "watchdog.h"
|
|
|
|
|
|
|
|
//===========================================================================
|
|
|
|
//=============================public variables============================
|
|
|
|
//===========================================================================
|
|
|
|
int target_raw[3] = {0, 0, 0};
|
|
|
|
int current_raw[3] = {0, 0, 0};
|
|
|
|
|
|
|
|
#ifdef PIDTEMP
|
|
|
|
|
|
|
|
// probably used external
|
|
|
|
float HeaterPower;
|
|
|
|
float pid_setpoint = 0.0;
|
|
|
|
|
|
|
|
|
|
|
|
float Kp=DEFAULT_Kp;
|
|
|
|
float Ki=DEFAULT_Ki;
|
|
|
|
float Kd=DEFAULT_Kd;
|
|
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
|
|
float Kc=DEFAULT_Kc;
|
|
|
|
#endif
|
|
|
|
#endif //PIDTEMP
|
|
|
|
|
|
|
|
|
|
|
|
//===========================================================================
|
|
|
|
//=============================private variables============================
|
|
|
|
//===========================================================================
|
|
|
|
static bool temp_meas_ready = false;
|
|
|
|
|
|
|
|
static unsigned long previous_millis_heater, previous_millis_bed_heater;
|
|
|
|
|
|
|
|
#ifdef PIDTEMP
|
|
|
|
//static cannot be external:
|
|
|
|
static float temp_iState = 0;
|
|
|
|
static float temp_dState = 0;
|
|
|
|
static float pTerm;
|
|
|
|
static float iTerm;
|
|
|
|
static float dTerm;
|
|
|
|
//int output;
|
|
|
|
static float pid_error;
|
|
|
|
static float temp_iState_min;
|
|
|
|
static float temp_iState_max;
|
|
|
|
static float pid_input;
|
|
|
|
static float pid_output;
|
|
|
|
static bool pid_reset;
|
|
|
|
|
|
|
|
#endif //PIDTEMP
|
|
|
|
|
|
|
|
#ifdef WATCHPERIOD
|
|
|
|
static int watch_raw[3] = {-1000,-1000,-1000};
|
|
|
|
static unsigned long watchmillis = 0;
|
|
|
|
#endif //WATCHPERIOD
|
|
|
|
|
|
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
|
|
static int minttemp_0 = 0;
|
|
|
|
static int maxttemp_0 = 16383;
|
|
|
|
static int minttemp_1 = 0;
|
|
|
|
static int maxttemp_1 = 16383;
|
|
|
|
static int bed_minttemp = 0;
|
|
|
|
static int bed_maxttemp = 16383;
|
|
|
|
|
|
|
|
//===========================================================================
|
|
|
|
//=============================functions ============================
|
|
|
|
//===========================================================================
|
|
|
|
|
|
|
|
void updatePID()
|
|
|
|
{
|
|
|
|
#ifdef PIDTEMP
|
|
|
|
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void manage_heater()
|
|
|
|
{
|
|
|
|
#ifdef USE_WATCHDOG
|
|
|
|
wd_reset();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
float pid_input;
|
|
|
|
float pid_output;
|
|
|
|
if(temp_meas_ready != true) //better readability
|
|
|
|
return;
|
|
|
|
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
temp_meas_ready = false;
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
|
|
|
#ifdef PIDTEMP
|
|
|
|
pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
|
|
|
|
|
|
|
|
#ifndef PID_OPENLOOP
|
|
|
|
pid_error = pid_setpoint - pid_input;
|
|
|
|
if(pid_error > 10){
|
|
|
|
pid_output = PID_MAX;
|
|
|
|
pid_reset = true;
|
|
|
|
}
|
|
|
|
else if(pid_error < -10) {
|
|
|
|
pid_output = 0;
|
|
|
|
pid_reset = true;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if(pid_reset == true) {
|
|
|
|
temp_iState = 0.0;
|
|
|
|
pid_reset = false;
|
|
|
|
}
|
|
|
|
pTerm = Kp * pid_error;
|
|
|
|
temp_iState += pid_error;
|
|
|
|
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
|
|
|
|
iTerm = Ki * temp_iState;
|
|
|
|
//K1 defined in Configuration.h in the PID settings
|
|
|
|
#define K2 (1.0-K1)
|
|
|
|
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
|
|
|
|
temp_dState = pid_input;
|
|
|
|
// #ifdef PID_ADD_EXTRUSION_RATE
|
|
|
|
// pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
|
|
|
|
// #endif
|
|
|
|
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
|
|
|
|
|
|
|
|
}
|
|
|
|
#endif //PID_OPENLOOP
|
|
|
|
#ifdef PID_DEBUG
|
|
|
|
//SERIAL_ECHOLN(" PIDDEBUG Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm<<" iTerm "<<iTerm<<" dTerm "<<dTerm);
|
|
|
|
#endif //PID_DEBUG
|
|
|
|
HeaterPower=pid_output;
|
|
|
|
// Check if temperature is within the correct range
|
|
|
|
if((current_raw[TEMPSENSOR_HOTEND_0] > minttemp_0) && (current_raw[TEMPSENSOR_HOTEND_0] < maxttemp_0)) {
|
|
|
|
analogWrite(HEATER_0_PIN, pid_output);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
analogWrite(HEATER_0_PIN, 0);
|
|
|
|
}
|
|
|
|
#endif //PIDTEMP
|
|
|
|
|
|
|
|
#ifndef PIDTEMP
|
|
|
|
// Check if temperature is within the correct range
|
|
|
|
if((current_raw[TEMPSENSOR_HOTEND_0] > minttemp_0) && (current_raw[TEMPSENSOR_HOTEND_0] < maxttemp_0)) {
|
|
|
|
if(current_raw[TEMPSENSOR_HOTEND_0] >= target_raw[TEMPSENSOR_HOTEND_0]) {
|
|
|
|
WRITE(HEATER_0_PIN,LOW);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
WRITE(HEATER_0_PIN,HIGH);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
WRITE(HEATER_0_PIN,LOW);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
|
|
|
return;
|
|
|
|
previous_millis_bed_heater = millis();
|
|
|
|
|
|
|
|
#if TEMP_1_PIN > -1
|
|
|
|
// Check if temperature is within the correct range
|
|
|
|
if((current_raw[TEMPSENSOR_BED] > bed_minttemp) && (current_raw[TEMPSENSOR_BED] < bed_maxttemp)) {
|
|
|
|
if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])
|
|
|
|
{
|
|
|
|
WRITE(HEATER_1_PIN,LOW);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
WRITE(HEATER_1_PIN,HIGH);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
WRITE(HEATER_1_PIN,LOW);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#define PGM_RD_W(x) (short)pgm_read_word(&x)
|
|
|
|
// Takes hot end temperature value as input and returns corresponding raw value.
|
|
|
|
// For a thermistor, it uses the RepRap thermistor temp table.
|
|
|
|
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
|
|
|
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
|
|
|
int temp2analog(int celsius) {
|
|
|
|
#ifdef HEATER_0_USES_THERMISTOR
|
|
|
|
int raw = 0;
|
|
|
|
byte i;
|
|
|
|
|
|
|
|
for (i=1; i<NUMTEMPS_HEATER_0; i++)
|
|
|
|
{
|
|
|
|
if (PGM_RD_W(heater_0_temptable[i][1]) < celsius)
|
|
|
|
{
|
|
|
|
raw = PGM_RD_W(heater_0_temptable[i-1][0]) +
|
|
|
|
(celsius - PGM_RD_W(heater_0_temptable[i-1][1])) *
|
|
|
|
(PGM_RD_W(heater_0_temptable[i][0]) - PGM_RD_W(heater_0_temptable[i-1][0])) /
|
|
|
|
(PGM_RD_W(heater_0_temptable[i][1]) - PGM_RD_W(heater_0_temptable[i-1][1]));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overflow: Set to last value in the table
|
|
|
|
if (i == NUMTEMPS_HEATER_0) raw = PGM_RD_W(heater_0_temptable[i-1][0]);
|
|
|
|
|
|
|
|
return (1023 * OVERSAMPLENR) - raw;
|
|
|
|
#elif defined HEATER_0_USES_AD595
|
|
|
|
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// Takes bed temperature value as input and returns corresponding raw value.
|
|
|
|
// For a thermistor, it uses the RepRap thermistor temp table.
|
|
|
|
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
|
|
|
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
|
|
|
int temp2analogBed(int celsius) {
|
|
|
|
#ifdef BED_USES_THERMISTOR
|
|
|
|
|
|
|
|
int raw = 0;
|
|
|
|
byte i;
|
|
|
|
|
|
|
|
for (i=1; i<BNUMTEMPS; i++)
|
|
|
|
{
|
|
|
|
if (PGM_RD_W(bedtemptable[i][1]) < celsius)
|
|
|
|
{
|
|
|
|
raw = PGM_RD_W(bedtemptable[i-1][0]) +
|
|
|
|
(celsius - PGM_RD_W(bedtemptable[i-1][1])) *
|
|
|
|
(PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0])) /
|
|
|
|
(PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1]));
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overflow: Set to last value in the table
|
|
|
|
if (i == BNUMTEMPS) raw = PGM_RD_W(bedtemptable[i-1][0]);
|
|
|
|
|
|
|
|
return (1023 * OVERSAMPLENR) - raw;
|
|
|
|
#elif defined BED_USES_AD595
|
|
|
|
return lround(celsius * (1024.0 * OVERSAMPLENR/ (5.0 * 100.0) ) );
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
|
|
// For hot end temperature measurement.
|
|
|
|
float analog2temp(int raw) {
|
|
|
|
#ifdef HEATER_0_USES_THERMISTOR
|
|
|
|
float celsius = 0;
|
|
|
|
byte i;
|
|
|
|
raw = (1023 * OVERSAMPLENR) - raw;
|
|
|
|
for (i=1; i<NUMTEMPS_HEATER_0; i++)
|
|
|
|
{
|
|
|
|
if (PGM_RD_W(heater_0_temptable[i][0]) > raw)
|
|
|
|
{
|
|
|
|
celsius = PGM_RD_W(heater_0_temptable[i-1][1]) +
|
|
|
|
(raw - PGM_RD_W(heater_0_temptable[i-1][0])) *
|
|
|
|
(float)(PGM_RD_W(heater_0_temptable[i][1]) - PGM_RD_W(heater_0_temptable[i-1][1])) /
|
|
|
|
(float)(PGM_RD_W(heater_0_temptable[i][0]) - PGM_RD_W(heater_0_temptable[i-1][0]));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overflow: Set to last value in the table
|
|
|
|
if (i == NUMTEMPS_HEATER_0) celsius = PGM_RD_W(heater_0_temptable[i-1][1]);
|
|
|
|
|
|
|
|
return celsius;
|
|
|
|
#elif defined HEATER_0_USES_AD595
|
|
|
|
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
|
|
// For bed temperature measurement.
|
|
|
|
float analog2tempBed(int raw) {
|
|
|
|
#ifdef BED_USES_THERMISTOR
|
|
|
|
int celsius = 0;
|
|
|
|
byte i;
|
|
|
|
|
|
|
|
raw = (1023 * OVERSAMPLENR) - raw;
|
|
|
|
|
|
|
|
for (i=1; i<BNUMTEMPS; i++)
|
|
|
|
{
|
|
|
|
if (PGM_RD_W(bedtemptable[i][0]) > raw)
|
|
|
|
{
|
|
|
|
celsius = PGM_RD_W(bedtemptable[i-1][1]) +
|
|
|
|
(raw - PGM_RD_W(bedtemptable[i-1][0])) *
|
|
|
|
(PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1])) /
|
|
|
|
(PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0]));
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overflow: Set to last value in the table
|
|
|
|
if (i == BNUMTEMPS) celsius = PGM_RD_W(bedtemptable[i-1][1]);
|
|
|
|
|
|
|
|
return celsius;
|
|
|
|
|
|
|
|
#elif defined BED_USES_AD595
|
|
|
|
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void tp_init()
|
|
|
|
{
|
|
|
|
#if (HEATER_0_PIN > -1)
|
|
|
|
SET_OUTPUT(HEATER_0_PIN);
|
|
|
|
#endif
|
|
|
|
#if (HEATER_1_PIN > -1)
|
|
|
|
SET_OUTPUT(HEATER_1_PIN);
|
|
|
|
#endif
|
|
|
|
#if (HEATER_2_PIN > -1)
|
|
|
|
SET_OUTPUT(HEATER_2_PIN);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef PIDTEMP
|
|
|
|
temp_iState_min = 0.0;
|
|
|
|
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
|
|
|
#endif //PIDTEMP
|
|
|
|
|
|
|
|
// Set analog inputs
|
|
|
|
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
|
|
|
DIDR0 = 0;
|
|
|
|
#ifdef DIDR2
|
|
|
|
DIDR2 = 0;
|
|
|
|
#endif
|
|
|
|
#if (TEMP_0_PIN > -1)
|
|
|
|
#if TEMP_0_PIN < 8
|
|
|
|
DIDR0 |= 1 << TEMP_0_PIN;
|
|
|
|
#else
|
|
|
|
DIDR2 |= 1<<(TEMP_0_PIN - 8);
|
|
|
|
ADCSRB = 1<<MUX5;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if (TEMP_1_PIN > -1)
|
|
|
|
#if TEMP_1_PIN < 8
|
|
|
|
DIDR0 |= 1<<TEMP_1_PIN;
|
|
|
|
#else
|
|
|
|
DIDR2 |= 1<<(TEMP_1_PIN - 8);
|
|
|
|
ADCSRB = 1<<MUX5;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if (TEMP_2_PIN > -1)
|
|
|
|
#if TEMP_2_PIN < 8
|
|
|
|
DIDR0 |= 1 << TEMP_2_PIN;
|
|
|
|
#else
|
|
|
|
DIDR2 = 1<<(TEMP_2_PIN - 8);
|
|
|
|
ADCSRB = 1<<MUX5;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Use timer0 for temperature measurement
|
|
|
|
// Interleave temperature interrupt with millies interrupt
|
|
|
|
OCR0B = 128;
|
|
|
|
TIMSK0 |= (1<<OCIE0B);
|
|
|
|
|
|
|
|
// Wait for temperature measurement to settle
|
|
|
|
delay(200);
|
|
|
|
|
|
|
|
#ifdef HEATER_0_MINTEMP
|
|
|
|
minttemp_0 = temp2analog(HEATER_0_MINTEMP);
|
|
|
|
#endif //MINTEMP
|
|
|
|
#ifdef HEATER_0_MAXTEMP
|
|
|
|
maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);
|
|
|
|
#endif //MAXTEMP
|
|
|
|
|
|
|
|
#ifdef HEATER_1_MINTEMP
|
|
|
|
minttemp_1 = temp2analog(HEATER_1_MINTEMP);
|
|
|
|
#endif //MINTEMP
|
|
|
|
#ifdef HEATER_1_MAXTEMP
|
|
|
|
maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);
|
|
|
|
#endif //MAXTEMP
|
|
|
|
|
|
|
|
#ifdef BED_MINTEMP
|
|
|
|
bed_minttemp = temp2analog(BED_MINTEMP);
|
|
|
|
#endif //BED_MINTEMP
|
|
|
|
#ifdef BED_MAXTEMP
|
|
|
|
bed_maxttemp = temp2analog(BED_MAXTEMP);
|
|
|
|
#endif //BED_MAXTEMP
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void setWatch()
|
|
|
|
{
|
|
|
|
#ifdef WATCHPERIOD
|
|
|
|
if(isHeatingHotend0())
|
|
|
|
{
|
|
|
|
watchmillis = max(1,millis());
|
|
|
|
watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
watchmillis = 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void disable_heater()
|
|
|
|
{
|
|
|
|
#if TEMP_0_PIN > -1
|
|
|
|
target_raw[0]=0;
|
|
|
|
#if HEATER_0_PIN > -1
|
|
|
|
digitalWrite(HEATER_0_PIN,LOW);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if TEMP_1_PIN > -1
|
|
|
|
target_raw[1]=0;
|
|
|
|
#if HEATER_1_PIN > -1
|
|
|
|
digitalWrite(HEATER_1_PIN,LOW);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if TEMP_2_PIN > -1
|
|
|
|
target_raw[2]=0;
|
|
|
|
#if HEATER_2_PIN > -1
|
|
|
|
digitalWrite(HEATER_2_PIN,LOW);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// Timer 0 is shared with millies
|
|
|
|
ISR(TIMER0_COMPB_vect)
|
|
|
|
{
|
|
|
|
//these variables are only accesible from the ISR, but static, so they don't loose their value
|
|
|
|
static unsigned char temp_count = 0;
|
|
|
|
static unsigned long raw_temp_0_value = 0;
|
|
|
|
static unsigned long raw_temp_1_value = 0;
|
|
|
|
static unsigned long raw_temp_2_value = 0;
|
|
|
|
static unsigned char temp_state = 0;
|
|
|
|
|
|
|
|
switch(temp_state) {
|
|
|
|
case 0: // Prepare TEMP_0
|
|
|
|
#if (TEMP_0_PIN > -1)
|
|
|
|
#if TEMP_0_PIN > 7
|
|
|
|
ADCSRB = 1<<MUX5;
|
|
|
|
#else
|
|
|
|
ADCSRB = 0;
|
|
|
|
#endif
|
|
|
|
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
|
|
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
|
|
#endif
|
|
|
|
#ifdef ULTIPANEL
|
|
|
|
buttons_check();
|
|
|
|
#endif
|
|
|
|
temp_state = 1;
|
|
|
|
break;
|
|
|
|
case 1: // Measure TEMP_0
|
|
|
|
#if (TEMP_0_PIN > -1)
|
|
|
|
raw_temp_0_value += ADC;
|
|
|
|
#endif
|
|
|
|
temp_state = 2;
|
|
|
|
break;
|
|
|
|
case 2: // Prepare TEMP_1
|
|
|
|
#if (TEMP_1_PIN > -1)
|
|
|
|
#if TEMP_1_PIN > 7
|
|
|
|
ADCSRB = 1<<MUX5;
|
|
|
|
#else
|
|
|
|
ADCSRB = 0;
|
|
|
|
#endif
|
|
|
|
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
|
|
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
|
|
#endif
|
|
|
|
#ifdef ULTIPANEL
|
|
|
|
buttons_check();
|
|
|
|
#endif
|
|
|
|
temp_state = 3;
|
|
|
|
break;
|
|
|
|
case 3: // Measure TEMP_1
|
|
|
|
#if (TEMP_1_PIN > -1)
|
|
|
|
raw_temp_1_value += ADC;
|
|
|
|
#endif
|
|
|
|
temp_state = 4;
|
|
|
|
break;
|
|
|
|
case 4: // Prepare TEMP_2
|
|
|
|
#if (TEMP_2_PIN > -1)
|
|
|
|
#if TEMP_2_PIN > 7
|
|
|
|
ADCSRB = 1<<MUX5;
|
|
|
|
#else
|
|
|
|
ADCSRB = 0;
|
|
|
|
#endif
|
|
|
|
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
|
|
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
|
|
#endif
|
|
|
|
#ifdef ULTIPANEL
|
|
|
|
buttons_check();
|
|
|
|
#endif
|
|
|
|
temp_state = 5;
|
|
|
|
break;
|
|
|
|
case 5: // Measure TEMP_2
|
|
|
|
#if (TEMP_2_PIN > -1)
|
|
|
|
raw_temp_2_value += ADC;
|
|
|
|
#endif
|
|
|
|
temp_state = 0;
|
|
|
|
temp_count++;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
SERIAL_ERRORLNPGM("Temp measurement error!");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(temp_count >= 16) // 6 ms * 16 = 96ms.
|
|
|
|
{
|
|
|
|
#ifdef HEATER_0_USES_AD595
|
|
|
|
current_raw[0] = raw_temp_0_value;
|
|
|
|
#else
|
|
|
|
current_raw[0] = 16383 - raw_temp_0_value;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HEATER_1_USES_AD595
|
|
|
|
current_raw[2] = raw_temp_2_value;
|
|
|
|
#else
|
|
|
|
current_raw[2] = 16383 - raw_temp_2_value;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef BED_USES_AD595
|
|
|
|
current_raw[1] = raw_temp_1_value;
|
|
|
|
#else
|
|
|
|
current_raw[1] = 16383 - raw_temp_1_value;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
temp_meas_ready = true;
|
|
|
|
temp_count = 0;
|
|
|
|
raw_temp_0_value = 0;
|
|
|
|
raw_temp_1_value = 0;
|
|
|
|
raw_temp_2_value = 0;
|
|
|
|
#ifdef HEATER_0_MAXTEMP
|
|
|
|
#if (HEATER_0_PIN > -1)
|
|
|
|
if(current_raw[TEMPSENSOR_HOTEND_0] >= maxttemp_0) {
|
|
|
|
target_raw[TEMPSENSOR_HOTEND_0] = 0;
|
|
|
|
digitalWrite(HEATER_0_PIN, 0);
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
SERIAL_ERRORLNPGM("Temperature extruder 0 switched off. MAXTEMP triggered !!");
|
|
|
|
kill();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifdef HEATER_1_MAXTEMP
|
|
|
|
#if (HEATER_1_PIN > -1)
|
|
|
|
if(current_raw[TEMPSENSOR_HOTEND_1] >= maxttemp_1) {
|
|
|
|
target_raw[TEMPSENSOR_HOTEND_1] = 0;
|
|
|
|
digitalWrite(HEATER_2_PIN, 0);
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
SERIAL_ERRORLNPGM("Temperature extruder 1 switched off. MAXTEMP triggered !!");
|
|
|
|
kill();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif //MAXTEMP
|
|
|
|
|
|
|
|
#ifdef HEATER_0_MINTEMP
|
|
|
|
#if (HEATER_0_PIN > -1)
|
|
|
|
if(current_raw[TEMPSENSOR_HOTEND_0] <= minttemp_0) {
|
|
|
|
target_raw[TEMPSENSOR_HOTEND_0] = 0;
|
|
|
|
digitalWrite(HEATER_0_PIN, 0);
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
SERIAL_ERRORLNPGM("Temperature extruder 0 switched off. MINTEMP triggered !!");
|
|
|
|
kill();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HEATER_1_MINTEMP
|
|
|
|
#if (HEATER_2_PIN > -1)
|
|
|
|
if(current_raw[TEMPSENSOR_HOTEND_1] <= minttemp_1) {
|
|
|
|
target_raw[TEMPSENSOR_HOTEND_1] = 0;
|
|
|
|
digitalWrite(HEATER_2_PIN, 0);
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
SERIAL_ERRORLNPGM("Temperature extruder 1 switched off. MINTEMP triggered !!");
|
|
|
|
kill();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif //MAXTEMP
|
|
|
|
|
|
|
|
#ifdef BED_MINTEMP
|
|
|
|
#if (HEATER_1_PIN > -1)
|
|
|
|
if(current_raw[1] <= bed_minttemp) {
|
|
|
|
target_raw[1] = 0;
|
|
|
|
digitalWrite(HEATER_1_PIN, 0);
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
SERIAL_ERRORLNPGM("Temperatur heated bed switched off. MINTEMP triggered !!");
|
|
|
|
kill();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef BED_MAXTEMP
|
|
|
|
#if (HEATER_1_PIN > -1)
|
|
|
|
if(current_raw[1] >= bed_maxttemp) {
|
|
|
|
target_raw[1] = 0;
|
|
|
|
digitalWrite(HEATER_1_PIN, 0);
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
|
|
|
|
kill();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|