|
|
|
/**
|
|
|
|
* Marlin 3D Printer Firmware
|
|
|
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
|
*
|
|
|
|
* Based on Sprinter and grbl.
|
|
|
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
*
|
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include "macros.h"
|
|
|
|
#include "serial_base.h"
|
|
|
|
|
|
|
|
// Used in multiple places
|
|
|
|
typedef int8_t serial_index_t;
|
|
|
|
|
|
|
|
// The most basic serial class: it dispatch to the base serial class with no hook whatsoever. This will compile to nothing but the base serial class
|
|
|
|
template <class SerialT>
|
|
|
|
struct BaseSerial : public SerialBase< BaseSerial<SerialT> >, public SerialT {
|
|
|
|
typedef SerialBase< BaseSerial<SerialT> > BaseClassT;
|
|
|
|
|
|
|
|
// It's required to implement a write method here to help compiler disambiguate what method to call
|
|
|
|
using SerialT::write;
|
|
|
|
using SerialT::flush;
|
|
|
|
|
|
|
|
void msgDone() {}
|
|
|
|
|
|
|
|
// We don't care about indices here, since if one can call us, it's the right index anyway
|
|
|
|
int available(uint8_t) { return (int)SerialT::available(); }
|
|
|
|
int read(uint8_t) { return (int)SerialT::read(); }
|
|
|
|
bool connected() { return CALL_IF_EXISTS(bool, static_cast<SerialT*>(this), connected);; }
|
|
|
|
void flushTX() { CALL_IF_EXISTS(void, static_cast<SerialT*>(this), flushTX); }
|
|
|
|
|
|
|
|
// We have 2 implementation of the same method in both base class, let's say which one we want
|
|
|
|
using SerialT::available;
|
|
|
|
using SerialT::read;
|
|
|
|
using SerialT::begin;
|
|
|
|
using SerialT::end;
|
|
|
|
|
|
|
|
using BaseClassT::print;
|
|
|
|
using BaseClassT::println;
|
|
|
|
|
|
|
|
BaseSerial(const bool e) : BaseClassT(e) {}
|
|
|
|
|
|
|
|
// Forward constructor
|
|
|
|
template <typename... Args>
|
|
|
|
BaseSerial(const bool e, Args... args) : BaseClassT(e), SerialT(args...) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
// A serial with a condition checked at runtime for its output
|
|
|
|
// A bit less efficient than static dispatching but since it's only used for ethernet's serial output right now, it's ok.
|
|
|
|
template <class SerialT>
|
|
|
|
struct ConditionalSerial : public SerialBase< ConditionalSerial<SerialT> > {
|
|
|
|
typedef SerialBase< ConditionalSerial<SerialT> > BaseClassT;
|
|
|
|
|
|
|
|
bool & condition;
|
|
|
|
SerialT & out;
|
|
|
|
NO_INLINE size_t write(uint8_t c) { if (condition) return out.write(c); return 0; }
|
|
|
|
void flush() { if (condition) out.flush(); }
|
|
|
|
void begin(long br) { out.begin(br); }
|
|
|
|
void end() { out.end(); }
|
|
|
|
|
|
|
|
void msgDone() {}
|
|
|
|
bool connected() { return CALL_IF_EXISTS(bool, &out, connected); }
|
|
|
|
void flushTX() { CALL_IF_EXISTS(void, &out, flushTX); }
|
|
|
|
|
|
|
|
int available(uint8_t ) { return (int)out.available(); }
|
|
|
|
int read(uint8_t ) { return (int)out.read(); }
|
|
|
|
int available() { return (int)out.available(); }
|
|
|
|
int read() { return (int)out.read(); }
|
|
|
|
|
|
|
|
|
|
|
|
ConditionalSerial(bool & conditionVariable, SerialT & out, const bool e) : BaseClassT(e), condition(conditionVariable), out(out) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
// A simple foward class that taking a reference to an existing serial instance (likely created in their respective framework)
|
|
|
|
template <class SerialT>
|
|
|
|
struct ForwardSerial : public SerialBase< ForwardSerial<SerialT> > {
|
|
|
|
typedef SerialBase< ForwardSerial<SerialT> > BaseClassT;
|
|
|
|
|
|
|
|
SerialT & out;
|
|
|
|
NO_INLINE size_t write(uint8_t c) { return out.write(c); }
|
|
|
|
void flush() { out.flush(); }
|
|
|
|
void begin(long br) { out.begin(br); }
|
|
|
|
void end() { out.end(); }
|
|
|
|
|
|
|
|
void msgDone() {}
|
|
|
|
// Existing instances implement Arduino's operator bool, so use that if it's available
|
|
|
|
bool connected() { return Private::HasMember_connected<SerialT>::value ? CALL_IF_EXISTS(bool, &out, connected) : (bool)out; }
|
|
|
|
void flushTX() { CALL_IF_EXISTS(void, &out, flushTX); }
|
|
|
|
|
|
|
|
int available(uint8_t) { return (int)out.available(); }
|
|
|
|
int read(uint8_t) { return (int)out.read(); }
|
|
|
|
int available() { return (int)out.available(); }
|
|
|
|
int read() { return (int)out.read(); }
|
|
|
|
|
|
|
|
ForwardSerial(const bool e, SerialT & out) : BaseClassT(e), out(out) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
// A class that's can be hooked and unhooked at runtime, useful to capturing the output of the serial interface
|
|
|
|
template <class SerialT>
|
|
|
|
struct RuntimeSerial : public SerialBase< RuntimeSerial<SerialT> >, public SerialT {
|
|
|
|
typedef SerialBase< RuntimeSerial<SerialT> > BaseClassT;
|
|
|
|
typedef void (*WriteHook)(void * userPointer, uint8_t c);
|
|
|
|
typedef void (*EndOfMessageHook)(void * userPointer);
|
|
|
|
|
|
|
|
WriteHook writeHook;
|
|
|
|
EndOfMessageHook eofHook;
|
|
|
|
void * userPointer;
|
|
|
|
|
|
|
|
NO_INLINE size_t write(uint8_t c) {
|
|
|
|
if (writeHook) writeHook(userPointer, c);
|
|
|
|
return SerialT::write(c);
|
|
|
|
}
|
|
|
|
|
|
|
|
NO_INLINE void msgDone() {
|
|
|
|
if (eofHook) eofHook(userPointer);
|
|
|
|
}
|
|
|
|
|
|
|
|
int available(uint8_t) { return (int)SerialT::available(); }
|
|
|
|
int read(uint8_t) { return (int)SerialT::read(); }
|
|
|
|
using SerialT::available;
|
|
|
|
using SerialT::read;
|
|
|
|
using SerialT::flush;
|
|
|
|
using SerialT::begin;
|
|
|
|
using SerialT::end;
|
|
|
|
|
|
|
|
using BaseClassT::print;
|
|
|
|
using BaseClassT::println;
|
|
|
|
|
|
|
|
// Underlying implementation might use Arduino's bool operator
|
|
|
|
bool connected() {
|
|
|
|
return Private::HasMember_connected<SerialT>::value ? CALL_IF_EXISTS(bool, static_cast<SerialT*>(this), connected) : static_cast<SerialT*>(this)->operator bool();
|
|
|
|
}
|
|
|
|
void flushTX() { CALL_IF_EXISTS(void, static_cast<SerialT*>(this), flushTX); }
|
|
|
|
|
|
|
|
void setHook(WriteHook writeHook = 0, EndOfMessageHook eofHook = 0, void * userPointer = 0) {
|
|
|
|
// Order is important here as serial code can be called inside interrupts
|
|
|
|
// When setting a hook, the user pointer must be set first so if writeHook is called as soon as it's set, it'll be valid
|
|
|
|
if (userPointer) this->userPointer = userPointer;
|
|
|
|
this->writeHook = writeHook;
|
|
|
|
this->eofHook = eofHook;
|
|
|
|
// Order is important here because of asynchronous access here
|
|
|
|
// When unsetting a hook, the user pointer must be unset last so that any pending writeHook is still using the old pointer
|
|
|
|
if (!userPointer) this->userPointer = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
RuntimeSerial(const bool e) : BaseClassT(e), writeHook(0), eofHook(0), userPointer(0) {}
|
|
|
|
|
|
|
|
// Forward constructor
|
|
|
|
template <typename... Args>
|
|
|
|
RuntimeSerial(const bool e, Args... args) : BaseClassT(e), SerialT(args...), writeHook(0), eofHook(0), userPointer(0) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
// A class that duplicates its output conditionally to 2 serial interfaces
|
|
|
|
template <class Serial0T, class Serial1T, const uint8_t offset = 0, const uint8_t step = 1>
|
|
|
|
struct MultiSerial : public SerialBase< MultiSerial<Serial0T, Serial1T, offset, step> > {
|
|
|
|
typedef SerialBase< MultiSerial<Serial0T, Serial1T, offset, step> > BaseClassT;
|
|
|
|
|
|
|
|
uint8_t portMask;
|
|
|
|
Serial0T & serial0;
|
|
|
|
Serial1T & serial1;
|
|
|
|
|
|
|
|
enum Masks {
|
|
|
|
UsageMask = ((1 << step) - 1), // A bit mask containing as many bits as step
|
|
|
|
FirstOutputMask = (UsageMask << offset),
|
|
|
|
SecondOutputMask = (UsageMask << (offset + step)),
|
|
|
|
AllMask = FirstOutputMask | SecondOutputMask,
|
|
|
|
};
|
|
|
|
|
|
|
|
NO_INLINE size_t write(uint8_t c) {
|
|
|
|
size_t ret = 0;
|
|
|
|
if (portMask & FirstOutputMask) ret = serial0.write(c);
|
|
|
|
if (portMask & SecondOutputMask) ret = serial1.write(c) | ret;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
NO_INLINE void msgDone() {
|
|
|
|
if (portMask & FirstOutputMask) serial0.msgDone();
|
|
|
|
if (portMask & SecondOutputMask) serial1.msgDone();
|
|
|
|
}
|
|
|
|
int available(uint8_t index) {
|
|
|
|
if (index >= 0 + offset && index < step + offset)
|
|
|
|
return serial0.available(index);
|
|
|
|
else if (index >= step + offset && index < 2 * step + offset)
|
|
|
|
return serial1.available(index);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
int read(uint8_t index) {
|
|
|
|
if (index >= 0 + offset && index < step + offset)
|
|
|
|
return serial0.read(index);
|
|
|
|
else if (index >= step + offset && index < 2 * step + offset)
|
|
|
|
return serial1.read(index);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
void begin(const long br) {
|
|
|
|
if (portMask & FirstOutputMask) serial0.begin(br);
|
|
|
|
if (portMask & SecondOutputMask) serial1.begin(br);
|
|
|
|
}
|
|
|
|
void end() {
|
|
|
|
if (portMask & FirstOutputMask) serial0.end();
|
|
|
|
if (portMask & SecondOutputMask) serial1.end();
|
|
|
|
}
|
|
|
|
bool connected() {
|
|
|
|
bool ret = true;
|
|
|
|
if (portMask & FirstOutputMask) ret = CALL_IF_EXISTS(bool, &serial0, connected);
|
|
|
|
if (portMask & SecondOutputMask) ret = ret && CALL_IF_EXISTS(bool, &serial1, connected);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
using BaseClassT::available;
|
|
|
|
using BaseClassT::read;
|
|
|
|
|
|
|
|
// Redirect flush
|
|
|
|
NO_INLINE void flush() {
|
|
|
|
if (portMask & FirstOutputMask) serial0.flush();
|
|
|
|
if (portMask & SecondOutputMask) serial1.flush();
|
|
|
|
}
|
|
|
|
NO_INLINE void flushTX() {
|
|
|
|
if (portMask & FirstOutputMask) CALL_IF_EXISTS(void, &serial0, flushTX);
|
|
|
|
if (portMask & SecondOutputMask) CALL_IF_EXISTS(void, &serial1, flushTX);
|
|
|
|
}
|
|
|
|
|
|
|
|
MultiSerial(Serial0T & serial0, Serial1T & serial1, int8_t mask = AllMask, const bool e = false) :
|
|
|
|
BaseClassT(e),
|
|
|
|
portMask(mask), serial0(serial0), serial1(serial1) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Build the actual serial object depending on current configuration
|
|
|
|
#define Serial0Type TERN(SERIAL_RUNTIME_HOOK, RuntimeSerial, BaseSerial)
|
|
|
|
#define ForwardSerial0Type TERN(SERIAL_RUNTIME_HOOK, RuntimeSerial, ForwardSerial)
|
|
|
|
#ifdef HAS_MULTI_SERIAL
|
|
|
|
#define Serial1Type ConditionalSerial
|
|
|
|
#endif
|