|
|
|
/**
|
|
|
|
* Marlin 3D Printer Firmware
|
|
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
|
*
|
|
|
|
* Based on Sprinter and grbl.
|
|
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
*
|
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* delta.cpp
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "../inc/MarlinConfig.h"
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
|
|
|
#include "delta.h"
|
|
|
|
#include "motion.h"
|
|
|
|
|
|
|
|
// For homing:
|
|
|
|
#include "stepper.h"
|
|
|
|
#include "endstops.h"
|
|
|
|
#include "../lcd/ultralcd.h"
|
|
|
|
#include "../Marlin.h"
|
|
|
|
|
|
|
|
// Initialized by settings.load()
|
|
|
|
float delta_endstop_adj[ABC] = { 0 },
|
|
|
|
delta_radius,
|
|
|
|
delta_diagonal_rod,
|
|
|
|
delta_segments_per_second,
|
|
|
|
delta_calibration_radius,
|
|
|
|
delta_tower_angle_trim[2];
|
|
|
|
|
|
|
|
float delta_tower[ABC][2],
|
|
|
|
delta_diagonal_rod_2_tower[ABC],
|
|
|
|
delta_clip_start_height = Z_MAX_POS;
|
|
|
|
|
|
|
|
float delta_safe_distance_from_top();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Recalculate factors used for delta kinematics whenever
|
|
|
|
* settings have been changed (e.g., by M665).
|
|
|
|
*/
|
|
|
|
void recalc_delta_settings(float radius, float diagonal_rod) {
|
|
|
|
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
|
|
|
|
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
|
|
|
|
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
|
|
|
|
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
|
|
|
|
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
|
|
|
|
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
|
|
|
|
delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
|
|
|
|
delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Delta Inverse Kinematics
|
|
|
|
*
|
|
|
|
* Calculate the tower positions for a given logical
|
|
|
|
* position, storing the result in the delta[] array.
|
|
|
|
*
|
|
|
|
* This is an expensive calculation, requiring 3 square
|
|
|
|
* roots per segmented linear move, and strains the limits
|
|
|
|
* of a Mega2560 with a Graphical Display.
|
|
|
|
*
|
|
|
|
* Suggested optimizations include:
|
|
|
|
*
|
|
|
|
* - Disable the home_offset (M206) and/or position_shift (G92)
|
|
|
|
* features to remove up to 12 float additions.
|
|
|
|
*
|
|
|
|
* - Use a fast-inverse-sqrt function and add the reciprocal.
|
|
|
|
* (see above)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if ENABLED(DELTA_FAST_SQRT) && defined(__AVR__)
|
|
|
|
/**
|
|
|
|
* Fast inverse sqrt from Quake III Arena
|
|
|
|
* See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
|
|
|
|
*/
|
|
|
|
float Q_rsqrt(float number) {
|
|
|
|
long i;
|
|
|
|
float x2, y;
|
|
|
|
const float threehalfs = 1.5f;
|
|
|
|
x2 = number * 0.5f;
|
|
|
|
y = number;
|
|
|
|
i = * ( long * ) &y; // evil floating point bit level hacking
|
|
|
|
i = 0x5F3759DF - ( i >> 1 ); // what the f***?
|
|
|
|
y = * ( float * ) &i;
|
|
|
|
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
|
|
|
|
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
|
|
|
|
return y;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define DELTA_DEBUG() do { \
|
|
|
|
SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
|
|
|
|
SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
|
|
|
|
SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
|
|
|
|
SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
|
|
|
|
SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
|
|
|
|
SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
|
|
|
|
}while(0)
|
|
|
|
|
|
|
|
void inverse_kinematics(const float logical[XYZ]) {
|
|
|
|
DELTA_LOGICAL_IK();
|
|
|
|
// DELTA_DEBUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculate the highest Z position where the
|
|
|
|
* effector has the full range of XY motion.
|
|
|
|
*/
|
|
|
|
float delta_safe_distance_from_top() {
|
|
|
|
float cartesian[XYZ] = {
|
|
|
|
LOGICAL_X_POSITION(0),
|
|
|
|
LOGICAL_Y_POSITION(0),
|
|
|
|
LOGICAL_Z_POSITION(0)
|
|
|
|
};
|
|
|
|
inverse_kinematics(cartesian);
|
|
|
|
float distance = delta[A_AXIS];
|
|
|
|
cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
|
|
|
|
inverse_kinematics(cartesian);
|
|
|
|
return FABS(distance - delta[A_AXIS]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Delta Forward Kinematics
|
|
|
|
*
|
|
|
|
* See the Wikipedia article "Trilateration"
|
|
|
|
* https://en.wikipedia.org/wiki/Trilateration
|
|
|
|
*
|
|
|
|
* Establish a new coordinate system in the plane of the
|
|
|
|
* three carriage points. This system has its origin at
|
|
|
|
* tower1, with tower2 on the X axis. Tower3 is in the X-Y
|
|
|
|
* plane with a Z component of zero.
|
|
|
|
* We will define unit vectors in this coordinate system
|
|
|
|
* in our original coordinate system. Then when we calculate
|
|
|
|
* the Xnew, Ynew and Znew values, we can translate back into
|
|
|
|
* the original system by moving along those unit vectors
|
|
|
|
* by the corresponding values.
|
|
|
|
*
|
|
|
|
* Variable names matched to Marlin, c-version, and avoid the
|
|
|
|
* use of any vector library.
|
|
|
|
*
|
|
|
|
* by Andreas Hardtung 2016-06-07
|
|
|
|
* based on a Java function from "Delta Robot Kinematics V3"
|
|
|
|
* by Steve Graves
|
|
|
|
*
|
|
|
|
* The result is stored in the cartes[] array.
|
|
|
|
*/
|
|
|
|
void forward_kinematics_DELTA(float z1, float z2, float z3) {
|
|
|
|
// Create a vector in old coordinates along x axis of new coordinate
|
|
|
|
float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
|
|
|
|
|
|
|
|
// Get the Magnitude of vector.
|
|
|
|
float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
|
|
|
|
|
|
|
|
// Create unit vector by dividing by magnitude.
|
|
|
|
float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
|
|
|
|
|
|
|
|
// Get the vector from the origin of the new system to the third point.
|
|
|
|
float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
|
|
|
|
|
|
|
|
// Use the dot product to find the component of this vector on the X axis.
|
|
|
|
float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
|
|
|
|
|
|
|
|
// Create a vector along the x axis that represents the x component of p13.
|
|
|
|
float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
|
|
|
|
|
|
|
|
// Subtract the X component from the original vector leaving only Y. We use the
|
|
|
|
// variable that will be the unit vector after we scale it.
|
|
|
|
float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
|
|
|
|
|
|
|
|
// The magnitude of Y component
|
|
|
|
float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
|
|
|
|
|
|
|
|
// Convert to a unit vector
|
|
|
|
ey[0] /= j; ey[1] /= j; ey[2] /= j;
|
|
|
|
|
|
|
|
// The cross product of the unit x and y is the unit z
|
|
|
|
// float[] ez = vectorCrossProd(ex, ey);
|
|
|
|
float ez[3] = {
|
|
|
|
ex[1] * ey[2] - ex[2] * ey[1],
|
|
|
|
ex[2] * ey[0] - ex[0] * ey[2],
|
|
|
|
ex[0] * ey[1] - ex[1] * ey[0]
|
|
|
|
};
|
|
|
|
|
|
|
|
// We now have the d, i and j values defined in Wikipedia.
|
|
|
|
// Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
|
|
|
|
float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
|
|
|
|
Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
|
|
|
|
Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
|
|
|
|
|
|
|
|
// Start from the origin of the old coordinates and add vectors in the
|
|
|
|
// old coords that represent the Xnew, Ynew and Znew to find the point
|
|
|
|
// in the old system.
|
|
|
|
cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
|
|
|
|
cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
|
|
|
|
cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* A delta can only safely home all axes at the same time
|
|
|
|
* This is like quick_home_xy() but for 3 towers.
|
|
|
|
*/
|
|
|
|
bool home_delta() {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
|
|
|
|
#endif
|
|
|
|
// Init the current position of all carriages to 0,0,0
|
|
|
|
ZERO(current_position);
|
|
|
|
sync_plan_position();
|
|
|
|
|
|
|
|
// Move all carriages together linearly until an endstop is hit.
|
|
|
|
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (DELTA_HEIGHT + home_offset[Z_AXIS] + 10);
|
|
|
|
feedrate_mm_s = homing_feedrate(X_AXIS);
|
|
|
|
line_to_current_position();
|
|
|
|
stepper.synchronize();
|
|
|
|
|
|
|
|
// If an endstop was not hit, then damage can occur if homing is continued.
|
|
|
|
// This can occur if the delta height (DELTA_HEIGHT + home_offset[Z_AXIS]) is
|
|
|
|
// not set correctly.
|
|
|
|
if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
|
|
|
|
LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
|
|
|
|
SERIAL_ERROR_START();
|
|
|
|
SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
|
|
|
|
|
|
|
// At least one carriage has reached the top.
|
|
|
|
// Now re-home each carriage separately.
|
|
|
|
HOMEAXIS(A);
|
|
|
|
HOMEAXIS(B);
|
|
|
|
HOMEAXIS(C);
|
|
|
|
|
|
|
|
// Set all carriages to their home positions
|
|
|
|
// Do this here all at once for Delta, because
|
|
|
|
// XYZ isn't ABC. Applying this per-tower would
|
|
|
|
// give the impression that they are the same.
|
|
|
|
LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
|
|
|
|
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // DELTA
|