/**
* Marlin 3 D Printer Firmware
* Copyright ( c ) 2019 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( c ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
# pragma once
/**
* stepper / indirection . h
*
* Stepper motor driver indirection to allow some stepper functions to
* be done via SPI / I2c instead of direct pin manipulation .
*
* Copyright ( c ) 2015 Dominik Wenger
*/
# include "../../inc/MarlinConfig.h"
# if HAS_L64XX
# include "L64xx.h"
# endif
# if HAS_DRIVER(TMC26X)
# include "TMC26X.h"
# endif
# if HAS_TRINAMIC
# include "trinamic.h"
# endif
void restore_stepper_drivers ( ) ; // Called by PSU_ON
void reset_stepper_drivers ( ) ; // Called by settings.load / settings.reset
// X Stepper
# ifndef X_ENABLE_INIT
# define X_ENABLE_INIT() SET_OUTPUT(X_ENABLE_PIN)
# define X_ENABLE_WRITE(STATE) WRITE(X_ENABLE_PIN,STATE)
# define X_ENABLE_READ() bool(READ(X_ENABLE_PIN))
# endif
# ifndef X_DIR_INIT
# define X_DIR_INIT() SET_OUTPUT(X_DIR_PIN)
# define X_DIR_WRITE(STATE) WRITE(X_DIR_PIN,STATE)
# define X_DIR_READ() bool(READ(X_DIR_PIN))
# endif
# define X_STEP_INIT() SET_OUTPUT(X_STEP_PIN)
# ifndef X_STEP_WRITE
# define X_STEP_WRITE(STATE) WRITE(X_STEP_PIN,STATE)
# endif
# define X_STEP_READ() bool(READ(X_STEP_PIN))
// Y Stepper
# ifndef Y_ENABLE_INIT
# define Y_ENABLE_INIT() SET_OUTPUT(Y_ENABLE_PIN)
# define Y_ENABLE_WRITE(STATE) WRITE(Y_ENABLE_PIN,STATE)
# define Y_ENABLE_READ() bool(READ(Y_ENABLE_PIN))
# endif
# ifndef Y_DIR_INIT
# define Y_DIR_INIT() SET_OUTPUT(Y_DIR_PIN)
# define Y_DIR_WRITE(STATE) WRITE(Y_DIR_PIN,STATE)
# define Y_DIR_READ() bool(READ(Y_DIR_PIN))
# endif
# define Y_STEP_INIT() SET_OUTPUT(Y_STEP_PIN)
# ifndef Y_STEP_WRITE
# define Y_STEP_WRITE(STATE) WRITE(Y_STEP_PIN,STATE)
# endif
# define Y_STEP_READ() bool(READ(Y_STEP_PIN))
// Z Stepper
# ifndef Z_ENABLE_INIT
# define Z_ENABLE_INIT() SET_OUTPUT(Z_ENABLE_PIN)
# define Z_ENABLE_WRITE(STATE) WRITE(Z_ENABLE_PIN,STATE)
# define Z_ENABLE_READ() bool(READ(Z_ENABLE_PIN))
# endif
# ifndef Z_DIR_INIT
# define Z_DIR_INIT() SET_OUTPUT(Z_DIR_PIN)
# define Z_DIR_WRITE(STATE) WRITE(Z_DIR_PIN,STATE)
# define Z_DIR_READ() bool(READ(Z_DIR_PIN))
# endif
# define Z_STEP_INIT() SET_OUTPUT(Z_STEP_PIN)
# ifndef Z_STEP_WRITE
# define Z_STEP_WRITE(STATE) WRITE(Z_STEP_PIN,STATE)
# endif
# define Z_STEP_READ() bool(READ(Z_STEP_PIN))
// X2 Stepper
# if HAS_X2_ENABLE
# ifndef X2_ENABLE_INIT
# define X2_ENABLE_INIT() SET_OUTPUT(X2_ENABLE_PIN)
# define X2_ENABLE_WRITE(STATE) WRITE(X2_ENABLE_PIN,STATE)
# define X2_ENABLE_READ() bool(READ(X2_ENABLE_PIN))
# endif
# ifndef X2_DIR_INIT
# define X2_DIR_INIT() SET_OUTPUT(X2_DIR_PIN)
# define X2_DIR_WRITE(STATE) WRITE(X2_DIR_PIN,STATE)
# define X2_DIR_READ() bool(READ(X2_DIR_PIN))
# endif
# define X2_STEP_INIT() SET_OUTPUT(X2_STEP_PIN)
# ifndef X2_STEP_WRITE
# define X2_STEP_WRITE(STATE) WRITE(X2_STEP_PIN,STATE)
# endif
# define X2_STEP_READ() bool(READ(X2_STEP_PIN))
# endif
// Y2 Stepper
# if HAS_Y2_ENABLE
# ifndef Y2_ENABLE_INIT
# define Y2_ENABLE_INIT() SET_OUTPUT(Y2_ENABLE_PIN)
# define Y2_ENABLE_WRITE(STATE) WRITE(Y2_ENABLE_PIN,STATE)
# define Y2_ENABLE_READ() bool(READ(Y2_ENABLE_PIN))
# endif
# ifndef Y2_DIR_INIT
# define Y2_DIR_INIT() SET_OUTPUT(Y2_DIR_PIN)
# define Y2_DIR_WRITE(STATE) WRITE(Y2_DIR_PIN,STATE)
# define Y2_DIR_READ() bool(READ(Y2_DIR_PIN))
# endif
# define Y2_STEP_INIT() SET_OUTPUT(Y2_STEP_PIN)
# ifndef Y2_STEP_WRITE
# define Y2_STEP_WRITE(STATE) WRITE(Y2_STEP_PIN,STATE)
# endif
# define Y2_STEP_READ() bool(READ(Y2_STEP_PIN))
# else
# define Y2_DIR_WRITE(STATE) NOOP
# endif
// Z2 Stepper
# if HAS_Z2_ENABLE
# ifndef Z2_ENABLE_INIT
# define Z2_ENABLE_INIT() SET_OUTPUT(Z2_ENABLE_PIN)
# define Z2_ENABLE_WRITE(STATE) WRITE(Z2_ENABLE_PIN,STATE)
# define Z2_ENABLE_READ() bool(READ(Z2_ENABLE_PIN))
# endif
# ifndef Z2_DIR_INIT
# define Z2_DIR_INIT() SET_OUTPUT(Z2_DIR_PIN)
# define Z2_DIR_WRITE(STATE) WRITE(Z2_DIR_PIN,STATE)
# define Z2_DIR_READ() bool(READ(Z2_DIR_PIN))
# endif
# define Z2_STEP_INIT() SET_OUTPUT(Z2_STEP_PIN)
# ifndef Z2_STEP_WRITE
# define Z2_STEP_WRITE(STATE) WRITE(Z2_STEP_PIN,STATE)
# endif
# define Z2_STEP_READ() bool(READ(Z2_STEP_PIN))
# else
# define Z2_DIR_WRITE(STATE) NOOP
# endif
// Z3 Stepper
# if HAS_Z3_ENABLE
# ifndef Z3_ENABLE_INIT
# define Z3_ENABLE_INIT() SET_OUTPUT(Z3_ENABLE_PIN)
# define Z3_ENABLE_WRITE(STATE) WRITE(Z3_ENABLE_PIN,STATE)
# define Z3_ENABLE_READ() bool(READ(Z3_ENABLE_PIN))
# endif
# ifndef Z3_DIR_INIT
# define Z3_DIR_INIT() SET_OUTPUT(Z3_DIR_PIN)
# define Z3_DIR_WRITE(STATE) WRITE(Z3_DIR_PIN,STATE)
# define Z3_DIR_READ() bool(READ(Z3_DIR_PIN))
# endif
# define Z3_STEP_INIT() SET_OUTPUT(Z3_STEP_PIN)
# ifndef Z3_STEP_WRITE
# define Z3_STEP_WRITE(STATE) WRITE(Z3_STEP_PIN,STATE)
# endif
# define Z3_STEP_READ() bool(READ(Z3_STEP_PIN))
# else
# define Z3_DIR_WRITE(STATE) NOOP
# endif
// Z4 Stepper
# if HAS_Z4_ENABLE
# ifndef Z4_ENABLE_INIT
# define Z4_ENABLE_INIT() SET_OUTPUT(Z4_ENABLE_PIN)
# define Z4_ENABLE_WRITE(STATE) WRITE(Z4_ENABLE_PIN,STATE)
# define Z4_ENABLE_READ() READ(Z4_ENABLE_PIN)
# endif
# ifndef Z4_DIR_INIT
# define Z4_DIR_INIT() SET_OUTPUT(Z4_DIR_PIN)
# define Z4_DIR_WRITE(STATE) WRITE(Z4_DIR_PIN,STATE)
# define Z4_DIR_READ() READ(Z4_DIR_PIN)
# endif
# define Z4_STEP_INIT SET_OUTPUT(Z4_STEP_PIN)
# ifndef Z4_STEP_WRITE
# define Z4_STEP_WRITE(STATE) WRITE(Z4_STEP_PIN,STATE)
# endif
# define Z4_STEP_READ READ(Z4_STEP_PIN)
# else
# define Z4_DIR_WRITE(STATE) NOOP
# endif
// E0 Stepper
# ifndef E0_ENABLE_INIT
# define E0_ENABLE_INIT() SET_OUTPUT(E0_ENABLE_PIN)
# define E0_ENABLE_WRITE(STATE) WRITE(E0_ENABLE_PIN,STATE)
# define E0_ENABLE_READ() bool(READ(E0_ENABLE_PIN))
# endif
# ifndef E0_DIR_INIT
# define E0_DIR_INIT() SET_OUTPUT(E0_DIR_PIN)
# define E0_DIR_WRITE(STATE) WRITE(E0_DIR_PIN,STATE)
# define E0_DIR_READ() bool(READ(E0_DIR_PIN))
# endif
# define E0_STEP_INIT() SET_OUTPUT(E0_STEP_PIN)
# ifndef E0_STEP_WRITE
# define E0_STEP_WRITE(STATE) WRITE(E0_STEP_PIN,STATE)
# endif
# define E0_STEP_READ() bool(READ(E0_STEP_PIN))
// E1 Stepper
# ifndef E1_ENABLE_INIT
# define E1_ENABLE_INIT() SET_OUTPUT(E1_ENABLE_PIN)
# define E1_ENABLE_WRITE(STATE) WRITE(E1_ENABLE_PIN,STATE)
# define E1_ENABLE_READ() bool(READ(E1_ENABLE_PIN))
# endif
# ifndef E1_DIR_INIT
# define E1_DIR_INIT() SET_OUTPUT(E1_DIR_PIN)
# define E1_DIR_WRITE(STATE) WRITE(E1_DIR_PIN,STATE)
# define E1_DIR_READ() bool(READ(E1_DIR_PIN))
# endif
# define E1_STEP_INIT() SET_OUTPUT(E1_STEP_PIN)
# ifndef E1_STEP_WRITE
# define E1_STEP_WRITE(STATE) WRITE(E1_STEP_PIN,STATE)
# endif
# define E1_STEP_READ() bool(READ(E1_STEP_PIN))
// E2 Stepper
# ifndef E2_ENABLE_INIT
# define E2_ENABLE_INIT() SET_OUTPUT(E2_ENABLE_PIN)
# define E2_ENABLE_WRITE(STATE) WRITE(E2_ENABLE_PIN,STATE)
# define E2_ENABLE_READ() bool(READ(E2_ENABLE_PIN))
# endif
# ifndef E2_DIR_INIT
# define E2_DIR_INIT() SET_OUTPUT(E2_DIR_PIN)
# define E2_DIR_WRITE(STATE) WRITE(E2_DIR_PIN,STATE)
# define E2_DIR_READ() bool(READ(E2_DIR_PIN))
# endif
# define E2_STEP_INIT() SET_OUTPUT(E2_STEP_PIN)
# ifndef E2_STEP_WRITE
# define E2_STEP_WRITE(STATE) WRITE(E2_STEP_PIN,STATE)
# endif
# define E2_STEP_READ() bool(READ(E2_STEP_PIN))
// E3 Stepper
# ifndef E3_ENABLE_INIT
# define E3_ENABLE_INIT() SET_OUTPUT(E3_ENABLE_PIN)
# define E3_ENABLE_WRITE(STATE) WRITE(E3_ENABLE_PIN,STATE)
# define E3_ENABLE_READ() bool(READ(E3_ENABLE_PIN))
# endif
# ifndef E3_DIR_INIT
# define E3_DIR_INIT() SET_OUTPUT(E3_DIR_PIN)
# define E3_DIR_WRITE(STATE) WRITE(E3_DIR_PIN,STATE)
# define E3_DIR_READ() bool(READ(E3_DIR_PIN))
# endif
# define E3_STEP_INIT() SET_OUTPUT(E3_STEP_PIN)
# ifndef E3_STEP_WRITE
# define E3_STEP_WRITE(STATE) WRITE(E3_STEP_PIN,STATE)
# endif
# define E3_STEP_READ() bool(READ(E3_STEP_PIN))
// E4 Stepper
# ifndef E4_ENABLE_INIT
# define E4_ENABLE_INIT() SET_OUTPUT(E4_ENABLE_PIN)
# define E4_ENABLE_WRITE(STATE) WRITE(E4_ENABLE_PIN,STATE)
# define E4_ENABLE_READ() bool(READ(E4_ENABLE_PIN))
# endif
# ifndef E4_DIR_INIT
# define E4_DIR_INIT() SET_OUTPUT(E4_DIR_PIN)
# define E4_DIR_WRITE(STATE) WRITE(E4_DIR_PIN,STATE)
# define E4_DIR_READ() bool(READ(E4_DIR_PIN))
# endif
# define E4_STEP_INIT() SET_OUTPUT(E4_STEP_PIN)
# ifndef E4_STEP_WRITE
# define E4_STEP_WRITE(STATE) WRITE(E4_STEP_PIN,STATE)
# endif
# define E4_STEP_READ() bool(READ(E4_STEP_PIN))
// E5 Stepper
# ifndef E5_ENABLE_INIT
# define E5_ENABLE_INIT() SET_OUTPUT(E5_ENABLE_PIN)
# define E5_ENABLE_WRITE(STATE) WRITE(E5_ENABLE_PIN,STATE)
# define E5_ENABLE_READ() bool(READ(E5_ENABLE_PIN))
# endif
# ifndef E5_DIR_INIT
# define E5_DIR_INIT() SET_OUTPUT(E5_DIR_PIN)
# define E5_DIR_WRITE(STATE) WRITE(E5_DIR_PIN,STATE)
# define E5_DIR_READ() bool(READ(E5_DIR_PIN))
# endif
# define E5_STEP_INIT() SET_OUTPUT(E5_STEP_PIN)
# ifndef E5_STEP_WRITE
# define E5_STEP_WRITE(STATE) WRITE(E5_STEP_PIN,STATE)
# endif
# define E5_STEP_READ() bool(READ(E5_STEP_PIN))
/**
* Extruder indirection for the single E axis
*/
# if ENABLED(SWITCHING_EXTRUDER) // One stepper driver per two extruders, reversed on odd index
# if EXTRUDERS > 5
# define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else { E2_STEP_WRITE(V); } }while(0)
# define NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); break; case 4: E2_DIR_WRITE(!INVERT_E2_DIR); case 5: E2_DIR_WRITE( INVERT_E2_DIR); } }while(0)
# define REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 4: E2_DIR_WRITE( INVERT_E2_DIR); case 5: E2_DIR_WRITE(!INVERT_E2_DIR); } }while(0)
# elif EXTRUDERS > 4
# define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else { E2_STEP_WRITE(V); } }while(0)
# define NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); break; case 4: E2_DIR_WRITE(!INVERT_E2_DIR); } }while(0)
# define REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 4: E2_DIR_WRITE( INVERT_E2_DIR); } }while(0)
# elif EXTRUDERS > 3
# define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0)
# define NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); } }while(0)
# define REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); } }while(0)
# elif EXTRUDERS > 2
# define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0)
# define NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; case 2: E1_DIR_WRITE(!INVERT_E1_DIR); } }while(0)
# define REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 2: E1_DIR_WRITE( INVERT_E1_DIR); } }while(0)
# else
# define E_STEP_WRITE(E,V) E0_STEP_WRITE(V)
# define NORM_E_DIR(E) do{ E0_DIR_WRITE(E ? INVERT_E0_DIR : !INVERT_E0_DIR); }while(0)
# define REV_E_DIR(E) do{ E0_DIR_WRITE(E ? !INVERT_E0_DIR : INVERT_E0_DIR); }while(0)
# endif
# elif ENABLED(PRUSA_MMU2)
# define E_STEP_WRITE(E,V) E0_STEP_WRITE(V)
# define NORM_E_DIR(E) E0_DIR_WRITE(!INVERT_E0_DIR)
# define REV_E_DIR(E) E0_DIR_WRITE( INVERT_E0_DIR)
# elif ENABLED(MK2_MULTIPLEXER) // One multiplexed stepper driver, reversed on odd index
# define E_STEP_WRITE(E,V) E0_STEP_WRITE(V)
# define NORM_E_DIR(E) do{ E0_DIR_WRITE(TEST(E, 0) ? !INVERT_E0_DIR: INVERT_E0_DIR); }while(0)
# define REV_E_DIR(E) do{ E0_DIR_WRITE(TEST(E, 0) ? INVERT_E0_DIR: !INVERT_E0_DIR); }while(0)
# elif E_STEPPERS > 1
# if E_STEPPERS > 5
# define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); break; case 4: E4_STEP_WRITE(V); case 5: E5_STEP_WRITE(V); } }while(0)
# define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); break; case 4: E4_DIR_WRITE(!INVERT_E4_DIR); case 5: E5_DIR_WRITE(!INVERT_E5_DIR); } }while(0)
# define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); break; case 4: E4_DIR_WRITE( INVERT_E4_DIR); case 5: E5_DIR_WRITE( INVERT_E5_DIR); } }while(0)
# elif E_STEPPERS > 4
# define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); break; case 4: E4_STEP_WRITE(V); } }while(0)
# define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); break; case 4: E4_DIR_WRITE(!INVERT_E4_DIR); } }while(0)
# define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); break; case 4: E4_DIR_WRITE( INVERT_E4_DIR); } }while(0)
# elif E_STEPPERS > 3
# define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); } }while(0)
# define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); } }while(0)
# define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); } }while(0)
# elif E_STEPPERS > 2
# define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); } }while(0)
# define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); } }while(0)
# define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); } }while(0)
# else
# define _E_STEP_WRITE(E,V) do{ if (E == 0) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0)
# define _NORM_E_DIR(E) do{ if (E == 0) { E0_DIR_WRITE(!INVERT_E0_DIR); } else { E1_DIR_WRITE(!INVERT_E1_DIR); } }while(0)
# define _REV_E_DIR(E) do{ if (E == 0) { E0_DIR_WRITE( INVERT_E0_DIR); } else { E1_DIR_WRITE( INVERT_E1_DIR); } }while(0)
# endif
# if HAS_DUPLICATION_MODE
# if ENABLED(MULTI_NOZZLE_DUPLICATION)
# define _DUPE(N,T,V) do{ if (TEST(duplication_e_mask, N)) E##N##_##T##_WRITE(V); }while(0)
# else
# define _DUPE(N,T,V) E##N##_##T##_WRITE(V)
# endif
# define NDIR(N) _DUPE(N,DIR,!INVERT_E##N##_DIR)
# define RDIR(N) _DUPE(N,DIR, INVERT_E##N##_DIR)
# define E_STEP_WRITE(E,V) do{ if (extruder_duplication_enabled) { DUPE(STEP,V); } else _E_STEP_WRITE(E,V); }while(0)
# if E_STEPPERS > 2
# if E_STEPPERS > 5
# define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); _DUPE(4,T,V); _DUPE(5,T,V); }while(0)
# define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); NDIR(4); NDIR(5); } else _NORM_E_DIR(E); }while(0)
# define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); RDIR(4); RDIR(5); } else _REV_E_DIR(E); }while(0)
# elif E_STEPPERS > 4
# define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); _DUPE(4,T,V); }while(0)
# define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); NDIR(4); } else _NORM_E_DIR(E); }while(0)
# define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); RDIR(4); } else _REV_E_DIR(E); }while(0)
# elif E_STEPPERS > 3
# define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); }while(0)
# define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); } else _NORM_E_DIR(E); }while(0)
# define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); } else _REV_E_DIR(E); }while(0)
# else
# define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); }while(0)
# define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); } else _NORM_E_DIR(E); }while(0)
# define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); } else _REV_E_DIR(E); }while(0)
# endif
# else
# define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); }while(0)
# define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); } else _NORM_E_DIR(E); }while(0)
# define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); } else _REV_E_DIR(E); }while(0)
# endif
# else
# define E_STEP_WRITE(E,V) _E_STEP_WRITE(E,V)
# define NORM_E_DIR(E) _NORM_E_DIR(E)
# define REV_E_DIR(E) _REV_E_DIR(E)
# endif
# elif E_STEPPERS
# define E_STEP_WRITE(E,V) E0_STEP_WRITE(V)
# define NORM_E_DIR(E) E0_DIR_WRITE(!INVERT_E0_DIR)
# define REV_E_DIR(E) E0_DIR_WRITE( INVERT_E0_DIR)
# else
# define E_STEP_WRITE(E,V) NOOP
# define NORM_E_DIR(E) NOOP
# define REV_E_DIR(E) NOOP
# endif
//
// X, Y, Z Stepper enable / disable
//
# if AXIS_DRIVER_TYPE_X(L6470)
extern L6470 stepperX ;
# define X_enable() NOOP
# define X_disable() stepperX.free()
# elif HAS_X_ENABLE
# define X_enable() X_ENABLE_WRITE( X_ENABLE_ON)
# define X_disable() X_ENABLE_WRITE(!X_ENABLE_ON)
# else
# define X_enable() NOOP
# define X_disable() NOOP
# endif
# if AXIS_DRIVER_TYPE_X2(L6470)
extern L6470 stepperX2 ;
# define X2_enable() NOOP
# define X2_disable() stepperX2.free()
# elif HAS_X2_ENABLE
# define X2_enable() X2_ENABLE_WRITE( X_ENABLE_ON)
# define X2_disable() X2_ENABLE_WRITE(!X_ENABLE_ON)
# else
# define X2_enable() NOOP
# define X2_disable() NOOP
# endif
# define enable_X() do{ X_enable(); X2_enable(); }while(0)
# define disable_X() do{ X_disable(); X2_disable(); CBI(axis_known_position, X_AXIS); }while(0)
# if AXIS_DRIVER_TYPE_Y(L6470)
extern L6470 stepperY ;
# define Y_enable() NOOP
# define Y_disable() stepperY.free()
# elif HAS_Y_ENABLE
# define Y_enable() Y_ENABLE_WRITE( Y_ENABLE_ON)
# define Y_disable() Y_ENABLE_WRITE(!Y_ENABLE_ON)
# else
# define Y_enable() NOOP
# define Y_disable() NOOP
# endif
# if AXIS_DRIVER_TYPE_Y2(L6470)
extern L6470 stepperY2 ;
# define Y2_enable() NOOP
# define Y2_disable() stepperY2.free()
# elif HAS_Y2_ENABLE
# define Y2_enable() Y2_ENABLE_WRITE( Y_ENABLE_ON)
# define Y2_disable() Y2_ENABLE_WRITE(!Y_ENABLE_ON)
# else
# define Y2_enable() NOOP
# define Y2_disable() NOOP
# endif
# define enable_Y() do{ Y_enable(); Y2_enable(); }while(0)
# define disable_Y() do{ Y_disable(); Y2_disable(); CBI(axis_known_position, Y_AXIS); }while(0)
# if AXIS_DRIVER_TYPE_Z(L6470)
extern L6470 stepperZ ;
# define Z_enable() NOOP
# define Z_disable() stepperZ.free()
# elif HAS_Z_ENABLE
# define Z_enable() Z_ENABLE_WRITE( Z_ENABLE_ON)
# define Z_disable() Z_ENABLE_WRITE(!Z_ENABLE_ON)
# else
# define Z_enable() NOOP
# define Z_disable() NOOP
# endif
# if AXIS_DRIVER_TYPE_Z2(L6470)
extern L6470 stepperZ2 ;
# define Z2_enable() NOOP
# define Z2_disable() stepperZ2.free()
# elif HAS_Z2_ENABLE
# define Z2_enable() Z2_ENABLE_WRITE( Z_ENABLE_ON)
# define Z2_disable() Z2_ENABLE_WRITE(!Z_ENABLE_ON)
# else
# define Z2_enable() NOOP
# define Z2_disable() NOOP
# endif
# if AXIS_DRIVER_TYPE_Z3(L6470)
extern L6470 stepperZ3 ;
# define Z3_enable() NOOP
# define Z3_disable() stepperZ3.free()
# elif HAS_Z3_ENABLE
# define Z3_enable() Z3_ENABLE_WRITE( Z_ENABLE_ON)
# define Z3_disable() Z3_ENABLE_WRITE(!Z_ENABLE_ON)
# else
# define Z3_enable() NOOP
# define Z3_disable() NOOP
# endif
# if AXIS_DRIVER_TYPE_Z4(L6470)
extern L6470 stepperZ4 ;
# define Z4_enable() NOOP
# define Z4_disable() stepperZ4.free()
# elif HAS_Z4_ENABLE
# define Z4_enable() Z4_ENABLE_WRITE( Z_ENABLE_ON)
# define Z4_disable() Z4_ENABLE_WRITE(!Z_ENABLE_ON)
# else
# define Z4_enable() NOOP
# define Z4_disable() NOOP
# endif
# define enable_Z() do{ Z_enable(); Z2_enable(); Z3_enable(); Z4_enable(); }while(0)
# define disable_Z() do{ Z_disable(); Z2_disable(); Z3_disable(); Z4_disable(); CBI(axis_known_position, Z_AXIS); }while(0)
//
// Extruder Stepper enable / disable
//
// define the individual enables/disables
# if AXIS_DRIVER_TYPE_E0(L6470)
extern L6470 stepperE0 ;
# define E0_enable() NOOP
# define E0_disable() do{ stepperE0.free(); CBI(axis_known_position, E_AXIS); }while(0)
# elif HAS_E0_ENABLE
# define E0_enable() E0_ENABLE_WRITE( E_ENABLE_ON)
# define E0_disable() E0_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define E0_enable() NOOP
# define E0_disable() NOOP
# endif
# if AXIS_DRIVER_TYPE_E1(L6470)
extern L6470 stepperE1 ;
# define E1_enable() NOOP
# define E1_disable() do{ stepperE1.free(); CBI(axis_known_position, E_AXIS); }while(0)
# elif E_STEPPERS > 1 && HAS_E1_ENABLE
# define E1_enable() E1_ENABLE_WRITE( E_ENABLE_ON)
# define E1_disable() E1_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define E1_enable() NOOP
# define E1_disable() NOOP
# endif
# if AXIS_DRIVER_TYPE_E2(L6470)
extern L6470 stepperE2 ;
# define E2_enable() NOOP
# define E2_disable() do{ stepperE2.free(); CBI(axis_known_position, E_AXIS); }while(0)
# elif E_STEPPERS > 2 && HAS_E2_ENABLE
# define E2_enable() E2_ENABLE_WRITE( E_ENABLE_ON)
# define E2_disable() E2_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define E2_enable() NOOP
# define E2_disable() NOOP
# endif
# if AXIS_DRIVER_TYPE_E3(L6470)
extern L6470 stepperE3 ;
# define E3_enable() NOOP
# define E3_disable() do{ stepperE3.free(); CBI(axis_known_position, E_AXIS); }while(0)
# elif E_STEPPERS > 3 && HAS_E3_ENABLE
# define E3_enable() E3_ENABLE_WRITE( E_ENABLE_ON)
# define E3_disable() E3_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define E3_enable() NOOP
# define E3_disable() NOOP
# endif
# if AXIS_DRIVER_TYPE_E4(L6470)
extern L6470 stepperE4 ;
# define E4_enable() NOOP
# define E4_disable() do{ stepperE4.free(); CBI(axis_known_position, E_AXIS); }while(0)
# elif E_STEPPERS > 4 && HAS_E4_ENABLE
# define E4_enable() E4_ENABLE_WRITE( E_ENABLE_ON)
# define E4_disable() E4_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define E4_enable() NOOP
# define E4_disable() NOOP
# endif
# if AXIS_DRIVER_TYPE_E5(L6470)
extern L6470 stepperE5 ;
# define E5_enable() NOOP
# define E5_disable() do{ stepperE5.free(); CBI(axis_known_position, E_AXIS); }while(0)
# elif E_STEPPERS > 5 && HAS_E5_ENABLE
# define E5_enable() E5_ENABLE_WRITE( E_ENABLE_ON)
# define E5_disable() E5_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define E5_enable() NOOP
# define E5_disable() NOOP
# endif
# if ENABLED(MIXING_EXTRUDER)
/**
* Mixing steppers synchronize their enable ( and direction ) together
*/
# if MIXING_STEPPERS > 5
# define enable_E0() { E0_enable(); E1_enable(); E2_enable(); E3_enable(); E4_enable(); E5_enable(); }
# define disable_E0() { E0_disable(); E1_disable(); E2_disable(); E3_disable(); E4_disable(); E5_disable(); }
# elif MIXING_STEPPERS > 4
# define enable_E0() { E0_enable(); E1_enable(); E2_enable(); E3_enable(); E4_enable(); }
# define disable_E0() { E0_disable(); E1_disable(); E2_disable(); E3_disable(); E4_disable(); }
# elif MIXING_STEPPERS > 3
# define enable_E0() { E0_enable(); E1_enable(); E2_enable(); E3_enable(); }
# define disable_E0() { E0_disable(); E1_disable(); E2_disable(); E3_disable(); }
# elif MIXING_STEPPERS > 2
# define enable_E0() { E0_enable(); E1_enable(); E2_enable(); }
# define disable_E0() { E0_disable(); E1_disable(); E2_disable(); }
# else
# define enable_E0() { E0_enable(); E1_enable(); }
# define disable_E0() { E0_disable(); E1_disable(); }
# endif
# define enable_E1() NOOP
# define disable_E1() NOOP
# define enable_E2() NOOP
# define disable_E2() NOOP
# define enable_E3() NOOP
# define disable_E3() NOOP
# define enable_E4() NOOP
# define disable_E4() NOOP
# define enable_E5() NOOP
# define disable_E5() NOOP
# else // !MIXING_EXTRUDER
# if HAS_E0_ENABLE
# define enable_E0() E0_enable()
# define disable_E0() E0_disable()
# else
# define enable_E0() NOOP
# define disable_E0() NOOP
# endif
# if E_STEPPERS > 1 && HAS_E1_ENABLE
# define enable_E1() E1_enable()
# define disable_E1() E1_disable()
# else
# define enable_E1() NOOP
# define disable_E1() NOOP
# endif
# if E_STEPPERS > 2 && HAS_E2_ENABLE
# define enable_E2() E2_enable()
# define disable_E2() E2_disable()
# else
# define enable_E2() NOOP
# define disable_E2() NOOP
# endif
# if E_STEPPERS > 3 && HAS_E3_ENABLE
# define enable_E3() E3_enable()
# define disable_E3() E3_disable()
# else
# define enable_E3() NOOP
# define disable_E3() NOOP
# endif
# if E_STEPPERS > 4 && HAS_E4_ENABLE
# define enable_E4() E4_enable()
# define disable_E4() E4_disable()
# else
# define enable_E4() NOOP
# define disable_E4() NOOP
# endif
# if E_STEPPERS > 5 && HAS_E5_ENABLE
# define enable_E5() E5_enable()
# define disable_E5() E5_disable()
# else
# define enable_E5() NOOP
# define disable_E5() NOOP
# endif
# endif // !MIXING_EXTRUDER